Optimal Control with State and Command Limits
for a Simulated Ball Batting Task

Dennis Schiithe and Udo Frese

Abstract— We introduce a task oriented optimal controller
based on the finite horizon quadratic regulator (LQR). The
task of being at a specified position with a specified velocity
in specified time is formalized by cost functions. Moreover, we
include soft constraints which are part of the cost function, such
that the optimal control can be computed in fixed time. We show
how soft constraints help to use redundancy and point out the
limitations of our soft constraint approach in simulations.

[. INTRODUCTION

When humans are doing sports, they move fast and have
to be agile. E.g. a table tennis player hits the ball in various
positions of the table and always goes back to an initial
position between the strikes, i.e. the middle of the table. We
want to implement a similar agile task on our ball playing
robot. Therefore, we developed a task level optimal controller
(TLOC) whose aim is to fulfill a task in its entirety. The
task is to wait in an initial position for balls thrown to the
robot by an audience and to play them back. Then it should
move back to its initial position after the ball has been hit.
As controller we use a linear quadratic regulator (LQR) and
modify it by applying appropriate time varying cost functions
that modulate the task. Additionally, we add constraints on
the states and the commands, to get the physical limitations
of the robot included.

A. System

The system to be controlled is a three revolute joint
entertainment robot, which is 2.1 m tall and plays ball games
(c.f. Fig. 1). “Doggy” hits the balls with its head and tries
to rebound them directly to an opponent player. The 40 cm
Styrofoam head (end-effector) is connected to Axis 3 by a
carbon rod. Thus, the orientation of the end-effector (EOF)
does not matter. Axes 2 and 3 (pitch and roll) generate a
spherical workspace (partially, due to joint limitations) on
which the head can be moved. The first Axis acts like a hip
(yaw) and turns the sphere around. This makes the robot
redundant, as all axes intersect (c.f. Fig. 1).

The joints are driven by DC-Motors through tooth belts
resulting in elasticity between joint and motor. Therefore,
the controller has to take both, elasticity and redundancy,
into account.

To detect the balls thrown towards Doggy, i.e. with varying
speed from various positions, a stereo camera system is
attached to the hip. The system is able to detect multiple
balls and predict their trajectories [1]. Out of the trajectory a

D. Schiithe and U. Frese are with University of Bre-
men, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
{schuethe,ufrese}@informatik.uni-bremen.de.

X y

Fig. 1. Ball playing entertainment robot “Doggy” (left) and the interior
as simulation (right). The colors red, green, and blue denote z, y, and z
axis respectively. Numbers denote joints. The World Coordinate system is
on the ground.

heuristics decides when (tq) to place the heads center where
(pa) and with what velocity (vq) to play the ball back. The
scope of this paper is how to realize the task (¢4, P4, Va)
by optimal control.

B. Contribution

Already, we described the task of hitting a ball back to an
audience by our robot. This itself is a sporty task. We want
to show that it is possible and elegant to specify this task on
top of a standard optimization algorithm. Here, we want to
use the optimal control algorithm of a time varying LQR as
basis for our optimization. Our question is, is it effective to
formulate such a task within an LQR optimization process?

We have already shown that it is elegant to describe a
whole task as optimization problem [2]. Our contribution is
to enhance the TLOC of [2] by soft constraints on states
and commands and use them in cost functionals. Due to
the optimization approach the controller then automatically
utilizes the robot’s redundancy to accommodate joint limits.
To our knowledge the combination of LQR, model-predictive
control and soft limits via cost functions into a single
controller which has full freedom to fulfill a task is unique. It
also shapes the motion in a way torque limits are met. Unlike
trajectory planning plus position control our controller reacts
to disturbances in a (linearized) optimal way.

II. RELATED WORK

The idea of TLOC is similar to [3]. They use model
predictive control to get the best choice between speed

Fig. 2. Principle drawing of implemented receding horizon regulator with
prediction and linearization of nonlinear dynamic system.

limitations and ramp metering on a freeway. The task is
about finding the optimal traffic flow. Also, they work with
a fixed horizon and predict the traffic for that, which is
then used as input for the controller and optimizer. Close
to our algorithm is the principle of iLQR described in [4].
Nonlinear dynamics are linearized around a trajectory which
is optimized using the LQR principle iteratively. In [4] this
is done offline, we perform iterations online interleaved with
execution and refining goal updates provided by the tracker.

Constraints in LQR algorithms can be equality or inequal-
ity constraints. The difficulty is the number of constraints
and decision variables in the optimization, which both are
infinite [5]. The big advantage of soft constraints is that
the solution for the optimal control is computed in fixed
time and relaxes the hard constraints as shown in [6] for
state constraints. Another approach on how to use constraints
is given in [7] where the controller is modified to explicit
suboptimal control, which reduces the horizon length as
much as possible. This can not be an option for us, as our
horizon length is part of the task. Another approach was
given by [8], where only input constraints are used. Here, the
input is basically saturated at the boundaries and by using
quadratic programming algorithms the optimal control gain is
calculated. This is in contrast to our goal, where we need the
feedback gain and not explicitly the control. In [9] a control
saturation function is handled through optimal control for
LQR.

Similar batting tasks can be found in [10] and [11], where
a robot is playing table tennis using movement templates
and a baseball task is fulfilled using a trajectory generator
respectively. Both control the direction of the rebound.

III. OVERVIEW

The task for the controller is to move the EOF such that
at a given time t4, it has a Cartesian position pq with
velocity vq. After the task has been defined, we want to
give an overview of the implementation and the structure of
this paper. Fig. 2 shows the basic concept. The algorithm
iteratively optimizes the control gains K(t) for every point
in time by alternatingly linearizing the nonlinear dynamics
(Sec. IV) and cost functions and optimally solving the

linearized problem via LQR. At time t;, we take the actual
state x(tp) and give it to our prediction algorithm. The
prediction computes the behavior and linearizes the nonlinear
system dynamics at those predicted values for a horizon T’
forward in time (Sec. V). The linearization of cost functions
needed for the LQR are also described herein. The task
of hitting the ball constitutes a special cost function at tq,
similar for returning after the hit.

The LQR uses the linearized system (A (t), B(t)) and cost
terms (Q(t), R(t),S(t)) to compute the optimal feedback
gains K(t) backward in time for each time instance of
the horizon (also in Sec. V). This is done by dynamic
programming. The LQR puts the feedback gain K () back
to the system, where it is actually used, and all gains K(t)
back to the prediction stage for the next iteration.

The task is described by cost functions given in Sec. VI.
To handle physical limitations of the system soft con-
straints are introduced in Sec. VII. The whole process of
linearization and optimization runs slower than the actual
controller (Sec. VIII). Simulation experiments demonstrate
the approach (Sec. IX).

IV. ROBOT MODEL

After a process overview in the previous section we
describe the robot model our controller and the simulation
is based on.

A. Kinematics

The kinematics give the world coordinate position of the
EOF with respect to joint positions. It describes how joints
are connected to another by rotations and translations of
their coordinate systems. For our special case we do not
have translations between the joints as they share a common
turning point, where all axes intersect. This reduces the
kinematics to rotations of axes, a translation from world co-
ordinates to intersecting point coordinates, and a translation
from intersecting point to EOF (c.f. Fig. 1).

fiin(@) = TY + R (q1)R3(q2)R3(q3) Thop 1

Hereby the EOFs position is first translated to the third
coordinate system with T%,, -, then rotated with R and the
joint’s angles q = (q1 q2 q3) , which are equivalent for
yaw, pitch, and roll respectively, down to the base coordinate
system. Additionally, a translation from intersection point to
ground is added. Explicitly, our robot has the kinematics

(c1s2c3 — 8183) 0.9 m
(c183 4 s182¢3) 0.9m | | 2
c9¢30.9m + 1m

fkin (q) =

where c; is cos qi, s1 is sin g1, etc. Note that the kinematics
exclude the orientation of the EOF as it is spherical.

B. Dynamics

The dynamics describe the relation between actuation and
forces acting on the robot, as well as acceleration and motion
that follow. Motors and joints are linked through tooth belts
which have relevant elasticities. Therefore, the elastic joint

model will take the vectors of motor angles 6, velocities
6, and accelerations @ additionally to the vectors of joint
angles q, velocities q, and accelerations ¢ into account [12].
The elasticity is approximately a spring of stiffness Kg and
damping Dg. The damping is set to zero to handle the worst
case [13]. Thus, the dynamics in state space notation are

% = f(x,u) = —M; (q)(C(q,q(;+Tg+Ks(q—9)) . 3)

~M;, Ks(8—q)+My' T

with state and command vector

N\T
x=(a" 4" 67 67)",)
u="Tp, (&)

Where Mj(q), My, c(q, q) , 74(q), and 7, are joint in-

ertia, motor inertia, vector of Coriolis and centrifugal terms,

vector of gravitational terms and motor torque respectively.

We have obtained these functions from the Spatial_v2 library

in MatLab [14], where we plugged in inertia matrices from
geometries and masses from a CAD model.

V. LQR OPTIMAL CONTROL

Consider a nonlinear continuous system dynamics as in
(3) and cost function for a horizon of length 7' starting at
the current time g

to+T
J = costiy 17 (x(to+T))+ /

to

cost(x(7),u(r),) dr, (6)

both dependent on the state vector x € X of the state set
and the input command u € U of the command set. The cost
cost(x(t),u(t), t) for each time is a quadratic function

cost(x(t),u(t), t) = waﬂ (x(t), u(t),t) 7)
= h(x(t),u(t),t) T Wh(x(t),u(t),t)

with weighting W = diag(w;) and h a vector function that
specifies how the cost depend on state and command. The
optimal control is given by minimizing the cost function J
with respect to u, starting from initial state x(t¢) = xo € X.

A. Linearization and Discretization of Dynamics
To make use of LQR for finding the optimal control, we
need a linear dynamic system
x(t) = A(t)x(t) + B(t)u(t) (8)

with the state matrix A and the input matrix B. We linearize
the dynamics with a first order Taylor series around the
linearization points x, and u,, which are predicted values.

f(x(t),u(t)) = f(xp(t), uy(t))+

0 (xy(1), 1wy (1))
o -

Of (xp(t), up(t))
Ou

= O x(t) Su u(t) + c(t)
— —
A(t) B(t)

The function c is

c(t) = f(xp(t), up(t))

_ of (xp(t), up(t))x _ Of (xp(1), up(t))

8X p(t) au up(t)
(10)
To fit (9) into (8), we make an affine extension to
x(t) = A(H)x(t) + B(t)u(t), (11)

where x = (¥), A=(4§) and B=(B).

For discrete time steps we can discretize (11) to calculate
the next state. Using linear Taylor series for the matrix
exponential to solve the first order differential equation (c.f.
[2], [15]), we get the discrete system
Xpt1 = (I4+ A()Ty) %, + B(t) Ty u, (12)

A, B,

for the sample time Tg. If we get an initial state 2(0), we
can predict forward in time, linearize, and discretize the
state matrices for each step, like it is illustrated in Fig. 2.
Linearizing and discretizing the state space equation (3) with
(9) to (12), we can use them for the LQR as A and B.

B. Quadratization of Costs

The linearization process described in (9) can also be
applied to h in (7) leading to a quadratic cost

h(x(t),u(t),t) = h(xp, u,)+

Oh(xy, up) x,u) — (X,,u
6(X,u) (()) (P P))

13)

X

= (2L, ngom) - LR). 252520) (1)
T x(t)
@0 3.0) ()
Where t is a multiple of the sample time 7;, so we can

replace it by the discrete step n. Thus, the quadratic cost
can be approximated in discrete form as

(14)

costy % (3 1) (5))7 W (3o 30) (52))

= ()" (e 3 W (o0 (32)

(% (Qn ST (%4

o un STL R?’L un '
State weight Q > 0 is symmetric positive semidefinite and
command weight R > 0 is symmetric positive definite. We

also have a combinatorial matrix S for mixed X, u terms, in
particular for the part linear in u using the 1 from x.

(=]

C. Algebraic Riccati Equation
We plug (15) into the overall cost functional

J(x,u) = Xy QRN (16)
no+N—1
+ Z ig;ann + 2ig;snun + uz;Rnun
n=ngo

as described in [16], [17] for the discrete finite horizon length
N =TTy, and starting at step ng = to/7s. We now derive
the optimal control for step n as the one minimizing

T /~ aT -
X Q. S X T 5 _
Jn = " o " " +Xx P 1Xn41- (17)
n u, Sn R, u,, n+1+ n+lin+
The symmetric positive semidefinite matrix P = 0 is the
accumulated weight as solution of the discrete algebraic
Riccati equation. For X, 1 we can insert the dynamics (12),
this leads to
J = (in)T Q.+AlP,. 1A, ST+ATP, 1B, (in)
n\un S,+BIP,1A, R,+BIP, 1B, Un /*
(18)

Minimizing (18) with respect to u yields the optimal control

w, = = (R + BIP,y1B.) ' (Su+ BIPusiAn) %,

n

K,
B (19)
which defines the feedback gain matrix K. Plugging the
result into (18) for u}, and making use of the fact that the

cost at step n is also given by J,, = X! P,,%,, leads to
P,=Q,+AlP, 1A, + (S + AlP,1B,) K,. (20)

We see that P and K can be computed recursively. For the
last step n = N the weight is Py = Qu. Moreover, we
would like to mention that in the case of S = 0, (19) and
(20) go over to standard LQR equations.

VI. TASK LEVEL OPTIMAL CONTROL

So far we showed optimal control with the iterated LQR
and described the kinematics and dynamics for our robotic
system. Now, we define the task fulfilled by the controller
and hence the cost functions to achieve this task.

The task can be divided into two jobs. First, waiting for
a ball intersecting with the workspace and moving towards
the intersection point (desired position) pq to hit the ball at
the right time ¢4, with velocity vq. This needs to be very
precise, as our goal is to hit the ball back to an opponent
player. The second job is to move the robots head back to
its initial upright position and wait for new balls. The back
movement finished at a heuristically given time ¢,. Both jobs
are combined to one task of discrete horizon NV and mapped
to discrete cost functions. This gives whole controllability
to the controller to decide the best way to reach the goal
and still react on disturbances from outside. Planning beyond
tq prevents reaching an unrecoverable state, e.g. regarding
joint limits, at tq. For better readability all costs are given
as continuous functions, using (7) and (13) to (15) to get the
discrete costs, w denotes the weight.

Cost functions penalizes the state and the control. We can
use them to get the state to a desired state x4 or to stay at
that state. For both jobs of the task, i.e. go and hit the ball
or go to initial position, we insert a vibration reduction.

A. Vibration Reduction

Due to the elasticity between motor and joint, the system
oscillates in the spring (q — 0). We avoid resonance by
penalizing spring motions with a vibration cost

COStuin (X, 1) = Wi (q(t) - 9(7:))2 1)

B. Desired Cartesian Position

To hit the ball we define a cost function that penalizes a
deviation from the desired Cartesian position at that time.
The state can be translated to a Cartesian position by the
kinematics (2). Thus, the position cost is

costp(x,t) = {0 Vi ta (22)

wp (frin(a(ta)) — pd)2 otherwise

C. Desired Cartesian Velocity

The actual velocity can be computed by the state x and
the kinematics as

_ 8fkin(q) o 8fkin(Q) .
T ot oq 4

We can penalize the desired Cartesian velocity equally to the
Cartesian position with

fvel (X)

(23)

0 Vit # tq
wy (fear(x(ta)) = va)®

D. Return to Initial Position

costy (x,t) = { (24)

otherwise

To accomplish the task after hitting the ball, we need
to return the robot’s head to its initial position, i.e. q, =
(0 o O)T and g, = (0 0 O)Tm/s. Hence, we penalize
deviations of position and velocity to its initials by

0 for t <t <t
wpr (@) + 2¢%(t)) for t =t, <t,
wpr Q2 () + wy ¢ (t) for t, <t <t

(25)
where t, = to + 1. The second condition is an advanced
notice for the controller instructing it that it has to go back
to initial state eventually. Here we use the same weighting
factor for position and velocity. The last condition enforces
home position and velocity after ¢,.

cost,(x,t) =

E. Motor Torque

Our goal is to hit a ball with lowest energy needed for the
rebound. This leads to a cost function that penalizes the input
torque for minimizing heat dissipation of the DC-motor, and
evenly distributes it over time. So we have

cost,(u,t) = u’ (H)wyu(t). (26)

VII. CONSTRAINTS

By now our controller is able to handle the task using
the predefined cost functions. But it does not know any
restrictions given by the physical system. Now we specify
soft constraints using cost functions. First, we consider the
restrictions given by the robot itself, i.e. joint limitations.
Afterwards, we get to limitations given by the motor.

A. State Constraints

We want the state x to remain in the constrained state set
X C X for all time steps n. This could be done by extending
the quadratic cost function)’cgf’n)’(n in (20) by a linearized
state constraint matrix H such that Hx < 1, where 1 is the
constraint level, as in [5]. However, while P has constant
size, H may grow with the number of steps.

Instead the basic LQR algorithm is adapted to fulfill the
constraints, by adding a barrier function into the cost such
that costs are increasing, the nearer the state is to constraints.
Therefore, the limitation or constraint cost is

costyim (X, 1) = hit (%,) Wiimhiim (X, 1),
Piim (X, 1) = [diag(qlim)fl (at) — (Ic)]%)

where qui, is the constrained limitation, q. is the center

point of the lower and upper boundary limit — here a zero

vector, and 7, influences the steepness of the cost. The higher

v, 1s chosen, the more the cost converges to a hard barrier,

increasing rapidly beyond the limitation point Qjjy,-
Summing up all state costs yields

27
(28)

cost (X, t) = costyip (X, t) + costym(X,t)

29
+ cost, (X, t) + costy (X, t) + costp (X, 1). 29)

B. Input Constraints

Another physical limitation regards the commanded motor
torques for the DC-motors. Hence, we have to fulfill that the
control input u is in set U C /. For command constraints we
can do the same implementation as for states, i.e. a barrier
function for commands

costylim (ll, t) = hfﬁm (ll, t)wuahulim(uv t), (30)
hatim (0, t) = (diag(ulim)_lu(t))% , (31)

with «, 7,, and uy, the penalization of exceeding the
barrier, the gradient influence on the barrier function, and
the upper and lower bound of constraints on the command
respectively. Beyond the command limitation the costs are
increasing rapidly. As a remark (30) leads to a nonlinear
h-entry in (7) which in turn leads to a constant term in the
linearized h in (14) and a u-linear term in (15) which requires
the S part of (15) as it binds to the 1 in X.

C. Damping

The price for not having constraints in the LQR-core
is that the barrier functions make the costs much more
nonlinear. We experienced that this leads to oscillations

over the nonlinear iterations (Fig. 2). We therefore penalize
control change between iterations by adding a damping term

COStamp (U, 1) = wyd (u(t) — uy(t))?, (32)

Algorithm 1: Infinite Task on PC side.

1 get initial state x(0) from microcontroller

2 initialize A, B around linearization point x(0)

3Set K=0

4 while co do

5 wait for camera update

6 remove first Ny, elements of K and append N
times Kn_1

7 update state x(0) from microcontroller
8 compute desired head center tq, vq, pq from ball
trajectory

9 predict system behavior [A, B, %, u,] using Eq. (3)
and (9)-(12)

10 | quadratize cost Q,R, S for X, u, with

Eq. (21)-(32), (13)—(15)

1 compute gain K with Eq. (19) and (20)

12 transfer gain matrix to microcontroller

13 end

where 0 is the damping factor. Note that this does not change
the optimum itself, because after convergence u = u,, but
reduces the change in each iteration helping convergence,
similar to the Levenberg-Marquardt method [18].

Adding up all command costs gives

cost(u,t) = cost,(u,t) + costiim(u, t) + costamp(u,t).
(33)

VIII. CHAINED IMPLEMENTATION

The controller consists of two distributed stages, a nonlin-
ear stage and a linear stage. The linear stage shall be running
on a microcontroller with a sampling rate of 1 kHz. It updates
the actual state x,, and computes the optimal control value
u, = K, x, using the feedback gain matrix, which was
computed at the nonlinear stage of the controller.

The nonlinear stage runs on a computer with a much
lower update rate, of 50Hz, due to the camera update,
where the ball detection takes place. Thus, we use the new
information of the ball tracking and put that information into
our controller, together with the actual system state x given
by the microcontroller. To get the new feedback gain, we first
predict the system states for the horizon length N together
with the gain values from the previous iteration. The system
is then linearized by (9) and discretized into the time-variant
system (12). The feedback gain results from a backward
recursion from horizon length N + ng down to n = ng
using (20) and (19). The new feedback gain is transferred
to the microcontroller for linear control. This iteration is
summarized in Algorithm 1 and in Fig. 2. Every 20ms
one iteration of the linearized optimization is conducted, so
the process of convergence to the nonlinear optimum runs
parallel to the updates by the tracker and the robot’s motion.

This scheme has desirable properties: The controller reacts
immediately (1 ms) to disturbances in a linearized optimal
way, because an optimal K,, not an optimal u,, has been
computed.

TABLE I
COST FUNCTION PARAMETERS USED IN THE SIMULATIONS.

Factor Value Factor ~ Value Factor Value
wy 5 x 1082 w 5x 107 L N 1000
2 rad? p 1 rad?
Wyr 1 il Wpr 50 el Nup 20
2
Wyib 10 'rZT Wlim 20 # Yz 8
170
dlim (40)deg ! 5 5 100

Timels]

Fig. 3. Comparison between constraints inactive (left), constraints on states
active (middle), and constraints active (right). Dashed lines show the limits.
Blue, green, and red denote yaw, pitch, and roll axis respectively in joint
position, joint velocity and command from top to bottom.

IX. SIMULATION EXPERIMENTS

In this section we evaluate the behavior of our algorithm
and show the principle of soft constraints in few examples.
We obtained the weights heuristically by observation of
each cost and choosing the weight so costs are comparable
(Tab. I). The horizon length is chosen with respect to ball
flight times which are between 0.4s and 0.9s and we gave
a little offset to it to have the return to the initial position in
mind.

A. Constraint Behavior

First, we compare the controller to the same con-
troller with no constraint or partial constraints activated.
Fig. 3 shows this behavior. The desired position pg =
(—0.4762 0.3813 1.6617)Tm and the velocity vq =

(—1.9868 —3.0933 0.3526)Tm/s have to be reached at
the times tq = [1.025, 3.025,5.025] s. We have chosen this
position as it is only reachable by turning the first Axis.

The left region shows inactive constraints and joint angles
above the physical limit. Without constraints the controller
can move Axis two and three to all points on the sphere,
thus Axis three goes above its limit. Additionally, we see
two commands exceed the limits during return motion. The
peak is as the spring between joint and motor has to be
tightened so that the joint follows the motor.

0 0.2 0.4 0.6 0.8 1
Time[s]

Fig. 4. Limitations of soft constraint approach. The desired position is at
the edge of the reachable state space X with high velocity pointing towards
the outside. In an attempt to fulfill the impossible task the controller exceeds
the soft constraints. Horizontal dashed lines are limitations, vertical dashed
line denotes the desired time. Blue, green, and red denote yaw, pitch, and
roll axis respectively in joint position, joint velocity and command from top
to bottom.

In the center region we activated the state constraints. The
controller chooses another way to reach the goal position
meeting joint limits. Moreover, we see a use of the redundant
yaw Axis one, as this is the only choice to make to stay in
the constraint set. Therefore, it actively uses the redundant
Axis one, which in the left region is only moved passively
with ~ 0 torque. Still a hard peak is seen at the command
which exceeds the limits too.

The right region shows active constraints on states and
commands. The commands and the joint angles stay in their
constraint set. Axes two and three are hard at the limit of
their constraints. Moreover, the commands limits are clearly
met. Note that these constraints need the damping (32) to
converge.

B. Limitations of Soft Constraints

In the next example we show the limitations of the
soft constraint approach. The desired position is pgq =
(0.3447 0.5785 1.5971)Tm with the velocity vq =

(—1.2284 4.6929 —3.8378)Tm/s. Both are on the edge
of the constraint set and the desired time t4 = 0.39 s to reach
the goal is very short, such that the controller needs to adapt
fast to the situation and act hard (c.f. Fig. 4). Moreover, the
controller tries to fulfill this impossible task. From time 0.1s
to 0.2s the controller engages and the nonlinear iterations
are visible in commands discontinuities every N, = 20ms,
which are caused by discontinuities of the gains after an
iteration. Afterwards, the strategy to get to the goal is found.
Here, the soft constraints get visible. The controller has to
find a compromise between cost of reaching the goal and
fulfilling the constraints. After the targeted time, costs for
desired state are off, so the controller violates the command
constraints to get back fast into the state constraint set.
Both violations are explained by the soft limit we have. The

0 5 10 15 20 25 30
Timels]

Fig. 5. Example of intended use. Balls should be hit to the front of the
robot. The supplemented video moves the robot with this behavior and
shows the accuracy of getting to a position with desired speed at desired
times (dashed vertical lines). Note how the system actively uses redundancy
in yaw Axis 1 to avoid joint limits of Axes 2 and 3. Blue, green, and red
denote yaw, pitch, and roll axis respectively in joint position, joint velocity
and command from top to bottom.

rationale is that soft limits need some margin to hard limits
and the latter need to be monitored to abandon motion in
this case. Such a margin is, however, actually desirable to
be able to react on disturbances.

C. Example of Intended Ball Playing

Finally, we show how the robot acts when playing ball
games. Therefore, a sequence of desired positions, velocities
and times roughly corresponding to balls from positive x are
chosen. The result is shown in Fig. 5 and in the supplemented
video. Note that the head is removed in the video as the
position and velocity are given for the center of the head
from precomputation. It can be seen, that the goal is reached
accurately and the desired velocity vector (marked as green
arrow with fixed length) fits to the rod movement. Moreover
we would argue, that the motion shows “sporty elegance”
and this is because it is obtained from an optimization.

X. CONCLUSION AND FUTURE WORK

We have shown an LQR algorithm with soft constraints
given by cost functionals. This brings the advantage of finite
and fixed computational times. This approach works on
nonlinear dynamics and non quadratic-cost functions. How-
ever, the solution entails the linearization of the dynamics
— which includes an affine extension of the LQR- and the
quadratization of the cost functions. Moreover, the TLOC is
able to intelligently distribute commands over the axes by
making use of the redundant degree of freedom, which is
a result of the soft constraint approach. Restrictions of the
approach were shown in simulations.

Future work is to bring the controller to the real robot. This
includes monitoring hard limits, calibrating system properties
and developing an estimator for q and q from a head
mounted IMU.

ACKNOWLEDGMENT

This work has been supported by the Graduate School
SyDe, funded by the German Excellence Initiative within
the University of Bremen’s institutional strategy.

REFERENCES

[1] O. Birbach and U. Frese, “A precise tracking algorithm based on raw
detector responses and a physical motion model,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA
2013), Karlsruhe, Germany, 2013, pp. 4746—4751.

D. Schiithe and U. Frese, “Task level optimal control of a simulated

ball batting robot,” in ICINCO 2014 11th International Confer-

ence on Informatics in Control, Automation and Robotics, J. Filipe,

O. Gusikhin, K. Madani, and J. Sasiadek, Eds., vol. 2. SCITEPRESS,

2014, pp. 45-56.

A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive

control for optimal coordination of ramp metering and variable speed

limits,” Transportation Research Part C: Emerging Technologies,

vol. 13, no. 3, pp. 185-209, June 2005.

W. Li and E. Todorov, “Iterative linear quadratic regulator design for

nonlinear biological movement systems.” in /CINCO (1), 2004, pp.

222-229.

[5] P. Scokaert and J. Rawlings, “Constrained linear quadratic regulation,”
Automatic Control, IEEE Transactions on, vol. 43, no. 8, pp. 1163—
1169, Aug 1998.

[6] M. Zeilinger, M. Morari, and C. Jones, “Soft constrained model
predictive control with robust stability guarantees,” Automatic Control,
IEEE Transactions on, vol. 59, no. 5, pp. 1190-1202, May 2014.

[7]1 T. A. Johansen, I. Petersen, and O. Slupphaug, “Explicit sub-optimal
linear quadratic regulation with state and input constraints,” Automat-
ica, vol. 38, no. 7, pp. 1099-1111, 2002.

[8] J. B. Mare and J. A. D. Don, “Solution of the input-constrained lqr
problem using dynamic programming,” Systems & Control Letters,
vol. 56, no. 5, pp. 342 — 348, 2007.

[9] R. Goebel, “Stabilizing a linear system with Saturation Through
optimal control,” IEEE Transactions on Automatic Control, vol. 50,
no. 5, pp. 650-655, May 2005.

[10] J. Kober, K. Mulling, O. Kromer, C. H. Lampert, B. Scholkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, 2010, pp. 853-858.

[11] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-speed
batting motion using hybrid trajectory generator,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, May 2006, pp. 1762-1767.

[12] A. Albu-Schiffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control of
flexible joint robots,” The International Journal of Robotics Research,
vol. 26, no. 1, pp. 23-39, 2007.

[13] B. Siciliano and O. Khatib, Springer handbook of robotics.
2008.

[14] R. Featherstone, “Spatial_v2 (version 2),” June 2012. [Online].
Available: http://royfeatherstone.org/spatial/v2/notice.html

[15] J.Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg, “Lqg-based
planning, sensing, and control of steerable needles,” in Algorithmic
Foundations of Robotics IX, ser. Springer Tracts in Advanced Robotics,
D. Hsu, V. Isler, J.-C. Latombe, and M. Lin, Eds. Springer Berlin
Heidelberg, 2011, vol. 68, pp. 373-389.

[16] J. C. Willems, “Least squares stationary optimal control and the
algebraic Riccati equation,” Automatic Control, IEEE Transactions on,
vol. 16, no. 6, pp. 621-634, 1971.

[17] B. D. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. Courier Corporation, 2007.

[18] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery,
Numerical Recipes in C++: The Art of Scientific Computing (2nd
edn). Cambridge UP, 2002.

[2

—

[3

[t

[4

=

Springer,

