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Abstract— Non-linear optimization on constraint graphs has
recently been applied very successfully in a variety of SLAM
backends. We combine this technique with a principled way
of handling non-Euclidean spaces, 3D orientations in partic-
ular, based on manifolds to build a generic and very flex-
ible framework, the Manifold Toolkit for Matlab (MTKM).
We show that MTKM makes it particularly easy to solve
non-trivial multi-sensor calibration problems while remaining
generic enough to handle a very different class of problems,
namely SLAM, as well: After an introductory example on single
camera calibration we apply MTKM to calibration of stereo
vision and IMU w.r.t. the kinematic chain of a service robot,
RGB-D and accelerometer calibration of a Microsoft Kinect,
stereo calibration on a Nao soccer robot, and several SLAM
benchmark data sets illustrating MTKM’s versatility. MTKM
and all presented examples are available as open source from
http://openslam.org/MTK.html.

I. INTRODUCTION

Considering the simultaneous localization and mapping

(SLAM) problem [30] as a non-linear least squares problem

represented as a graph where nodes correspond to robot poses

or landmarks and edges to non-linear constraints between

them was originally proposed by Lu and Milios [24] and later

formalized as GraphSLAM by Thrun et al. [31]. Recently,

it was shown that, given this problem formulation, offline

SLAM can be solved by finding the maximum likelihood

graph through non-linear numerical optimization [7, 27, 12].

Although a generalization to graphs of constraints between

arbitrary random variables is possible, use of this method has

largely been limited to the SLAM community.

In this paper, we aim to make the technique accessible to

a wider audience. We have developed a Matlab framework,

the Manifold Toolkit for Matlab (MTKM), that allows for the

rapid specification of constraint graph problems which can

then be solved using non-linear optimization. In MTKM, ran-

dom variables and constraint measurements are represented

as manifolds which conveniently includes vectors (Rn),

orientations (SO(2), SO(3)) and arbitrary compounds, i.e.

Cartesian products, of these. Using the ⊞-method (“boxplus-

method”; [14]), a local, minimal vector view of these more

complex topological structures is generated so that a stan-

dard non-linear optimization algorithm such as Levenberg-

Marquardt can be applied with only minor modification while

the underlying global parameterization is singularity free.

We intentionally choose a pure Matlab implementation

trading computational performance for ease of use and porta-
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Fig. 1. Diverse problems solved with MTKM (top left to bottom right):
Hand–eye, stereo and IMU calibration on a humanoid service robot, vertical
stereo calibration on a humanoid soccer robot, 3D pose adjustment on the
parking garage data set [21], and RGB-D and accelerometer calibration.

bility. This focus results in short, easy to read user code that

maps to the mathematical formulation as closely as possible.

We show how this makes the framework particularly well-

suited to multi-sensor calibration. Standard calibration tools

only exist for widely-used robot-agnostic sensor setups.

Today’s robotic systems, however, increasingly rely on a

combination of a wide variety of sensors in increasingly

complex configurations. Perception and manipulation tasks in

particular require precise cross-calibration of all sensors. We

apply MTKM to several calibration examples, most notably

to multi-sensor calibration on a humanoid service robot.

We also show that the same framework is able to process

several established SLAM benchmark data sets with ac-

ceptable, although not real-time capable, computation times,

producing results equivalent to state-of-the-art SLAM algo-

rithms. However, it is not our goal to present yet another

SLAM framework. Our contribution is to integrate the ⊞-

method with Matlab’s type system and to make least squares

optimization on manifolds available to a Matlab user base

and to show how MTKM makes it particularly easy to solve

multi-sensor calibration problems while retaining a broad

genericity so that a different class of problems, SLAM, can

also be handled.

Further, we find that MTKM brings about a high degree of

flexibility, e.g. to modify the sensor setup to be calibrated or

to add additional sensory input to SLAM. In calibration tasks,

this is particularly important since calibration is usually not

the research focus and rather a matter of getting it done



quickly. In SLAM, it facilitates cheap, rapid experimentation.

The remainder of this paper is structured as follows.

Section II discusses related work. Section III introduces the

general mathematical graph optimization framework and its

implementation in MTKM. Sections IV, V and VI apply

MTKM to an introductory calibration example, to multi-

sensor calibration and to SLAM, respectively.

II. RELATED WORK

A. Calibration

Today’s robots are equipped with an increasing number of

different types of sensors often including imaging sensors,

ranging sensors, kinematic sensors and inertial measurement

units (IMU). Calibration of individual sensors is well studied

for cameras [32, 35, 11], IMUs [18, 15], and range imag-

ing [9, 8]. Cross-calibrating multiple sensors for sensor data

fusion is more difficult. Approaches exist for vision/IMU

calibration [23, 25], and calibrating sensors on a robot to its

manipulators [28]. In this work, we go one step further and

jointly calibrate vision sensors, an IMU and their relation to

a humanoid’s kinematic chain using the proposed MTKM

framework which handles rotations in a non-singular way

and exploits the sparsity of the problem automatically. This

is contrary to other published calibration routines which often

use axis-angle representation for 3D rotations and fill relevant

Jacobian blocks manually [1, 5]. The contribution, however,

is not this specific kind of calibration but a general frame-

work to implement calibration tasks easily. Also, practice

showed that the optimization part is often re-implemented for

every new problem. We factor this out enabling maximum

code re-use.

B. Representing 3D Orientations

When working with 3D orientations a conflict arises: On

the one hand, a singularity-free representation (e.g. unit

quaternions or orthonormal R3×3 matrices) is desirable. On

the other hand, sensor fusion algorithms typically oper-

ate on Euclidean vector spaces R
n. However, no globally

singularity-free representation of SO(3) with just three pa-

rameters exists.

It was proposed by Ude [33, 34] for least squares opti-

mization and by Kraft [20] for Kalman filtering to use the

quaternion exponential map to get a local, minimal (3 pa-

rameters) representation and accumulate global results in the

original unit quaternion form. Both authors note the relation

to more general properties of manifolds but use algorithms

specifically modified to operate on the particular quaternion

parameterization. In earlier work [14], we proposed two

operators ⊞ and ⊟ to decouple the sensor fusion algorithm

from the concrete random variable or state representation. In

condensed form, this ⊞-method is introduced in III-A.

C. Graph-Based SLAM

Lu and Milios [24] originally proposed the graph formula-

tion of the SLAM problem in 2D. Efficient means of solving

it, however, became available much later. Olson et al. [27]

propose a method resembling stochastic gradient descent.

TORO [10] extends this by using relative poses in a tree for

improved performance and by supporting 2D and 3D poses.

Meanwhile,
√

SAM [7] further improved performance by

exploiting the sparsity of the 2D SLAM problem through

incremental, sparse QR decomposition. This was generalized

with the iSAM framework [16] processing arbitrary con-

straints given an implementation of a common C++ interface.

Allowing for the latter while also ensuring a mathemat-

ically sound representation of states and constraint mea-

surements was first achieved by SLoM [12] by means of

an early version of the ⊞-method [14]. SLoM extracts the

sparsity pattern and relies on CSparse [6] for efficient, sparse

Cholesky factorization delivering computational performance

equivalent to or better than some more problem-specific

approaches [13]. MTKM differs from SLoM in that it is

implemented in pure, object-oriented Matlab while SLoM

makes heavy use of C++ macros and in that the problem

specification (constraint graph) is cleanly separated from the

optimization algorithm in MTKM, i.e. the user can easily

replace the default solver.

More recently, work on graph-based SLAM has focused on

improving the computational performance of problem spe-

cific SLAM algorithms [19] or general frameworks [21, 17].

III. GRAPH OPTIMIZATION WITH THE

MANIFOLD TOOLKIT FOR MATLAB (MTKM)

This section introduces the mathematical graph optimiza-

tion framework and its implementation in MTKM. We gen-

eralize from robot poses and landmarks or camera poses and

parameters to arbitrary random variables to be estimated.

A. Manifolds and the ⊞-Method

In earlier work [14], we proposed a principled solution

to handling non-Euclidean spaces (e.g. 3D orientations) in

sensor fusion algorithms, the ⊞-method, which we discuss

here in a condensed, largely informal form to keep the

present paper self-contained. For details and proofs see [14].

The key idea behind the ⊞-method is to represent random

variables and measurements as manifolds and to exploit the

fact that “manifolds are locally homeomorphic to R
n, i.e.

[. . . ] we can establish a bijective mapping from a local neigh-

borhood in an n-manifold S to R
n [via] two encapsulation

operators ⊞ (“boxplus”) and ⊟ (“boxminus”)”[14]:

⊞ : S × R
n → S, (1)

⊟ : S × S → R
n. (2)

These two operators create a local, vectorized view of the

globally more complex structure of the manifold. “The

operation y = x⊞δ adds a small perturbation vector δ ∈ R
n

to x ∈ S . The inverse operation δ = y ⊟ x determines

the perturbation δ which yields y when ⊞-added to x”[14].

Since the reference point x can be chosen arbitrarily, the

entire manifold can be covered even though at each point in

time only a local, mapped neighborhood of it is visible via

⊞ and ⊟.

More formally, for a ⊞ that is smooth in its second

operand and a ⊟ that is smooth in its first operand, we call



(S,⊞,⊟, V ⊂ R
n) a ⊞-manifold “if the following axioms

hold for every x ∈ S” [14]:

x⊞ 0 = x (3a)

∀y ∈ S : x⊞ (y ⊟ x) = y (3b)

∀δ ∈ V : (x⊞ δ) ⊟ x = δ (3c)

∀δ1, δ2 ∈ R
n : ‖(x⊞ δ1)⊟ (x⊞ δ2)‖ ≤ ‖δ1 − δ2‖ . (3d)

Thus, 0 is the neutral element w.r.t. ⊞ (3a), δ 7→ x ⊞ δ is

surjective (3b), and within the local neighborhood defined

by V the parameterization used by ⊞ is unique, i.e. here

δ 7→ x⊞δ is injective (3c). E.g. for orientations, V is chosen

such that ‖δ‖ < π since otherwise (3c) might be violated due

to wraparounds. Finally, (3d) induces a metric [14].

Further, we lift the notion of a Gaussian distribution onto

⊞-manifolds by defining [14]

N (µ,Σ) := µ⊞N (0,Σ), (4)

“where µ ∈ S is a an element of the ⊞-manifold but

Σ ∈ R
n×n a matrix as for regular Gaussians”[14]. This

also means that the parameterization of ⊞/⊟ defines the

interpretation of covariance matrices.

The other important property we exploit is the fact that the

Cartesian product of manifolds yields another manifold. For

two (and by induction arbitrary numbers of) ⊞-manifolds, we

get the compound ⊞-manifold S = S1×S2 with component-

wise ⊞/⊟-operators [14]:

(x1, x2)⊞
[

δ1
δ2

]

:= (x1 ⊞S1
δ1, x2 ⊞S2

δ2) (5)

(y1, y2)⊟ (x1, x2) :=
[

y1⊟S1
x1

y2⊟S2
x2

]

. (6)

We use this to construct compound ⊞-manifolds from a set

of ⊞-manifold primitives and to create stacked vectors of

random variables as discussed below.

For the purposes of this paper, the most relevant ⊞-

manifold primitives are R
n with trivial operators ⊞ := + and

⊟ := −, 2D orientations (SO(2)) represented as an angle

and ⊞/⊟-operators which simply respect the wraparound at

±π, and 3D orientations (SO(3)) either as unit quaternions,

or, as will be assumed in the following, as orthonormal

matrices R
3×3 with ⊞/⊟-operators implemented by means

of the matrix exponential [14]

x⊞ δ = x exp δ y ⊟ x = log
(

x−1y
)

, (7)

i.e. δ defines the axis and the angle ‖δ‖ of a relative rotation

(Rodriguez formula). Other Lie groups can be handled anal-

ogously using their respective exponential maps. Rigid body

transforms in 2D and 3D are treated as compounds SE(2) :=
R

2 × SO(2) and SE(3) := R
3 × SO(3), respectively.

In the following, we assume both random variables and

measurements to be ⊞-manifolds so that a generic algorithm

can modify and compare them using ⊞ and ⊟, respectively,

as if they were flat vectors without any knowledge of the

global, possibly non-Euclidean structure of the ⊞-manifold

which is automatically enforced by ⊞/⊟.

B. Constraint Graphs and Least Squares on ⊞-Manifolds

Given a set of random variables x1,...,n to be estimated, the

constraint graph is defined by the set of constraints m1,...,m

between them where each constraint

mi = (zi,Σi, fi, Yi = {xj | dep(zi, xj)}) (8)

consists of a measurement zi with covariance Σi and a

measurement function fi, which given a set of dependent

random variables Yi computes the expected measurement ẑi.
In both SLAM and calibration problems it is common to

assume all measurement errors to be normally distributed,

i.e.
fi(Yi)⊟ zi ∼ N (0, Σi) . (9)

We first normalize each constraint given the Cholesky de-

composition of its covariance LiL
T
i = Σi since [12]

L−1

i (fi(Yi)⊟ zi) ∼ N (0, I) , (10)

i.e. multiplied by L−1

i all measurement errors can be treated

as identically distributed with identity covariance. We further

define the stacked vector X of random variables

X = (x1, . . . , xn)
T (11)

and the stacked error function F

F (X) =







L−1

1
(f1(Y1)⊟ z1)

...

L−1

m (fm(Ym)⊟ zm)






. (12)

Note that each Yi in (12) relates to a subset of all xj only.

If this subset is small for most constraints, as is the case for

SLAM in particular, the problem is naturally sparse.

It is straight forward to show [14] from (3) that the

maximum likelihood solution can be determined by solving

the least squares problem

X̂ = argmin
X

1

2
‖F (X)‖2 (13)

using any adequate non-linear least squares optimization

algorithm [3] such as Gauss-Newton or, for rank deficient

problems, Levenberg-Marquardt with only one modification:

vector addition and subtraction must be replaced by ⊞ and ⊟,

respectively, when working with ⊞-manifold variables [14].

C. The Manifold Toolkit for Matlab: The ⊞-Method in

Matlab

A key challenge in developing MTKM was the integration

of manifold primitives and compounds with the Matlab type

system through its object oriented programming extensions.

To keep code using manifolds very concise manifold

objects are designed to look like a vector as much as possible

from the outside. The operators + and − are overloaded to

perform ⊞ and ⊟ after checking for semantic validity as

per the signatures in (1) and (2). size and length are

overloaded to return the degrees of freedom (DOF) of the

⊞-parameterization.

Manifold primitives are the basic building block and

implement the respective ⊞/⊟-operations as specified in

III-A. R
n is represented as the class Rn which takes its



dimensionality as a constructor parameter and holds the

contained vector as the member .vec. SO(2) is handled

by SO2 encapsulating an angle .phi; SO(3) by SO3 with

a rotation matrix .Q. Although SE(2) and SE(3) could

be represented as compounds we also provide specialized

implementations for added performance (due to less indirec-

tion) and convenience. Compared to SO2 and SO3, SE2 and

SE3 add a 2D or 3D position vector .pos and the methods

transform() to get the 3 × 3 or 4 × 4 homogeneous

transformation matrix mapping a point from local to parent

coordinates, and tolocal(v) and fromlocal(v) to

convert a vector from the parent coordinate system to local

coordinates and vice versa.

Compound manifolds are created by the function

make_compound based on a list specifying the member

name and type of each sub-manifold plus, optionally, their

dimensionality, e.g. for a 3D pose:

pose_t = mtk.make_compound(’position’, @mtk.Rn, 3,

’orientation’, @mtk.SO3);

The returned handle can then be used in place of a

class constructor to instantiate objects. Compounds come

with an auto-generated implementation of ⊞ and ⊟ and

a method idxOf(’submanifoldname’) which deter-

mines the start of a sub-manifold component in the stacked

δ. This is required to, e.g. populate covariance matrices

programmatically.

D. The Manifold Toolkit for Matlab: Least Squares

The primary goal behind MTKM was to get all the tedious

book-keeping details normally involved with least squares

optimization out of the user’s way. So, what are these?

MTKM provides the manifold primitives and a mechanism

to construct compound manifolds as discussed above. In

particular, this means that singularities in the representation

of orientations are not an issue and that data structures and

common operations on these are bundled together.

The OptimizationProblem class handles the prob-

lem description. Unknown random variables and constraints

between them are added using the add_random_var()

and add_measurement() methods as discussed in the

examples below. From these, a stacked vector X of random

variables with appropriate ⊞ and ⊟ implementation, the

stacked error function F and the numerical approximation1

of its Jacobian J is computed automatically. The complex

index management machinery involved in this is hidden

entirely from the user. The sparsity of the problem is

exploited in that only blocks of J are considered where

measurements (columns) are dependent on the corresponding

random variable (row). All other blocks are known to be zero.

Any non-linear optimization algorithm that uses the error

function and the Jacobian to inspect the local behavior of the

problem and compares and adjusts intermediate solutions can

be applied as the solver. Existing solvers can be re-used as

long as they only invoke the supported manifold operations

1MTKM does not currently compute the Jacobian analytically as the user
would need to specify analytical derivatives of each measurement function.
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Fig. 2. Results of the single camera calibration: World points projected
into the image using the resulting parameters (left). The camera’s relation to
the checkerboard as estimated in the extrinsic parameters (right). For better
presentation, only a subset of the total of 18 camera poses is plotted.

(III-C). Checks such as isnumeric or other attempts to

access the parameters as a vector need to be adapted. In a

case study with marquardt from the immoptibox [26],

we have found that this mainly affects input validation and

sanity checks but not the core algorithm (see bundled patch).

MTKM itself comes with text-book-style Levenberg-

Marquardt [29] and Gauss-Newton implementations and with

examples of common measurement functions (e.g. pinhole

projection, 2D and 3D pose relations, 2D landmarks).

IV. INTRODUCTORY CALIBRATION EXAMPLE

In this section, we illustrate the use of MTKM in an in-

troductory example by performing single camera calibration,

i.e. finding the maximum likelihood estimate of the camera’s

pin-hole model (intrinsic) parameters, often including radial

distortion. Therefore, a calibration target whose 3D geometry

is known a priori is observed by the camera from different

perspectives and the image error of observed vs. projected

(via the pin-hole model) target points is minimized.

However, the camera poses relative to the target points are

not known in advance. Thus, the 3D transformation between

the target coordinate system and the camera coordinate

system at each observing pose, the extrinsic parameters,

must also be estimated in addition to the intrinsic ones.

The projection itself establishes the constraints between

these random variables. Using MTKM, this is captured as

a measurement function

function z= project_point(intrinsic,x2world,x2cam,p_world)

world2cam = x2cam.transform() * inv(x2world.transform());

p_cam = world2cam * [p_world;1]; % Transform to cam coords

% Project onto the image plane

z = pinhole(intrinsic.focal_length.vec, intrinsic.offset.

vec, intrinsic.distortion.vec, p_cam(1:3));

taking as arguments: the intrinsic camera parameters as

a compound, two SE3 transformations, and the point in

world coordinates to be projected. The two transformations

are successive steps of the 3D transformation world2cam

from world coordinates (defined by the calibration target)

to camera coordinates enabling use for problems which

also estimate an intermediate transformation, e.g. stereo-

calibration. For single camera calibration x2cam is the

identity. The body of the function computes world2cam to



Listing 1. Single camera calibration script
load_data;

% define custom manifold compound type

intrinsic_t = mtk.make_compound(’focal_length’, @mtk.Rn,1,

’offset’, @mtk.Rn,2,

’distortion’, @mtk.Rn,1);

% compute initial intrinsic and extrinsic parameters

compute_initial_parameters;

% create optimization problem

o = mtk.OptimizationProblem();

% add intrinsic parameters

intrinsic_id = o.add_random_var(intrinsic);

cam2world_id_for_img = cell(num_images);

for i=1:num_images % for each calibration image

p_img = Z{i}; p_world = M{i}; % get measurements

% add extrinsic parameter (camera pose)

cam2world_id_for_img{i} = o.add_random_var(

cam2world_for_img{i,1});

% add measurements (checkerboard corner points)

for j=1:size(p_img,2)

o.add_measurement(p_img(:, j), @project_point, {

intrinsic_id, cam2world_id_for_img{i}}, {mtk.

SE3(eye(4)), p_world(:, j)}, Sigma);

end;

end

[X] = nrlm(@o.fun, o.X0); % solve problem

transform p_world into camera coordinates, projects it into

the image using the function pinhole (implementing the

well-known pin-hole model) and finally returns the function’s

result in z.

The main script for single camera calibration us-

ing MTKM is given in Listing 1. First, data is

loaded and a custom manifold type intrinsic_t

is created (SE3 is pre-defined). The problem specific

compute_initial_parameters script instantiates all

random variables and assigns initial parameters to them

in this case via Zhang’s method [35]. The parameters to

be estimated are added to an OptimzationProblem

instance using .add_random_var(), which returns an

ID. As all measurements depend on the intrinsic parameter

its random variable is added right away. While iterating

over num_images checkerboard images, the corresponding

extrinsic random variables are added to the optimization

problem. Single measurements of the corners on the pattern

are added in a nested loop using .add_measurement()

taking the following arguments (cf. (8)): The actual mea-

surement p_img, a handle to the measurement function

project_point, a cell array containing the IDs of all

dependent random variables and another cell array containing

arbitrary user data (in our case the identity transformation

and the checkerboard point in the world p_world), and the

associated uncertainty of the measurement Sigma. The cell

array entries are passed to the measurement function each

time it is evaluated. The IDs are automatically mapped to

the current value of the corresponding random variable by

the framework. User data is passed unmodified as constants.

Once all measurements have been added, the automat-

ically generated stacked error function and initial stacked

random variable vector are available as @o.fun and o.X0,

respectively, which are then passed to nrlm, the Levenberg-

Marquardt solver bundled with MTKM.

The data set used for validating this example contains

18 images of a camera (1616 × 1220 px) observing a

checkerboard pattern from different poses. Calibration results

are presented in Fig. 2. The rms residual is about (0.26, 0.29)
px. Convergence was achieved in 10 iterations and, due to

passing each observed target point individually, 542.83s. A

modified measurement function operating on all target points

of a checkerboard image at once (see project_points

Fig. 3. DLR’s humanoid Rollin’ Justin catches a ball (left). CAD drawing
of DLR’s Rollin’ Justin’s head showing the stereo camera setup and the
orange-boxed IMU (right). Images courtesy of DLR Institute of Robotics
and Mechatronics. Used with permission.

below) gets this down to 6.34s (same number of iterations).

For comparison, the special-purpose camera calibration rou-

tine by [5] needs 3.34s on the same data set (all timings on

a Xeon W3520 2.67GHz/32bit Linux/Matlab R2008b).

V. MULTI-SENSOR CROSS CALIBRATION

A. Rollin’ Justin

The proposed toolkit is also used in a more sophisticated

setup to cross-calibrate vision and inertial (IMU) sensors, and

their relation to a robot’s kinematic chain. This calibration

routine is part of DLR’s humanoid Rollin’ Justin [4] effort in

catching two pitched balls each with one arm. Fig. 3 shows

the robot catching a ball and illustrates its sensor setup. For

further details on the setup please refer to [2].

Measurements for the calibration procedure are acquired

in two steps. First, both cameras observe the corners of

a horizontally aligned checkerboard pattern while the iner-

tial sensor measures gravity in its coordinate system. This

allows us to calibrate both camera’s intrinsic parameters,

their transformation (stereo) and the rotation between inertial

sensor and cameras (translation is measured manually). Two

measurement functions map this relation between parameters

and measurements. The first, project_points, is simply

an extension of project_point to project multiple world

points. The second measurement function

function z = g_world2g_imu(cam2world, cam2imu)

z = cam2imu.Q * inv(cam2world.Q) * [.0 .0 -9.81]’;



Listing 2. Rollin’ Justin ball catching calibration script
% load p_img_l, p_world_l. p_img_r, p_world_r, g_imu,

% p_lhand_img_[l,r], p_rhand_img_[l,r]

load_data;

intrinsic_t = mtk.make_compound(’focal_length’, @mtk.Rn,1,

’offset’, @mtk.Rn,2,

’distortion’, @mtk.Rn,1);

% create and init i_left, i_right, left2right, left2imu,

% left2head, p_hand_l, p_hand_r, left2world_for_img

compute_initial_parameters;

o = mtk.OptimizationProblem();

% add intrinsic parameters

i_left_id = o.add_random_var(i_left);

i_right_id = o.add_random_var(i_right);

% add transformations

left2right_id = o.add_random_var(left2right);

left2imu_id = o.add_random_var(left2imu);

left2head_id = o.add_random_var(left2head);

% add marker positions on hand

p_hand_l_id = o.add_random_var(p_hand_l);

p_hand_r_id = o.add_random_var(p_hand_r);

left2world_id_for_img = cell(num_images);

for i=1:num_images

% add extrinsic parameter for every image to problem

left2world_id_for_img{i} = o.add_random_var(

left2world_for_img{i});

o.add_measurement(p_img_l{i}(:), @project_points, {

i_left_id, left2world_id_for_img{i}}, {mtk.SE3(

eye(4)), p_world_l{i}(:)}, Sigma_chk);

o.add_measurement(p_img_r{i}(:), @project_points, {

i_right_id, left2world_id_for_img{i},

left2right_id}, {p_world_r{i}(:)}, Sigma_chk);

if (g_imu{i}(1) ˜= -1) % test for valid IMU

measurement

o.add_measurement(g_imu{i}(:), @g_world2g_imu, {

left2world_id_for_img{i}, left2imu_id}, {},

Sigma_g);

end;

end

for i=1:size(p_lhand_img_l, 1) % add left arm measurements

o.add_measurement(p_lhand_img_l(i,:)’, @project_marker

, {i_left_id, left2head_id, p_hand_l_id}, {mtk.

SE3(eye(4)), lhand2head{i,1}}, Sigma_hand);

o.add_measurement(p_lhand_img_r(i,:)’, @project_marker

, {i_right_id, left2head_id, p_hand_l_id,

left2right_id}, {lhand2head{i,1}}, Sigma_hand);

end;

for i=1:size(p_rhand_img_l, 1) % add right arm

measurements

o.add_measurement(p_rhand_img_l(i,:)’, @project_marker

, {i_left_id, left2head_id, p_hand_r_id}, {mtk.

SE3(eye(4)), rhand2head{i,1}}, Sigma_hand);

o.add_measurement(p_rhand_img_r(i,:)’, @project_marker

, {i_right_id, left2head_id, p_hand_r_id,

left2right_id}, {rhand2head{i,1}}, Sigma_hand);

end;

[X] = nrlm(@o.fun, o.X0); % solve problem

rotates the gravity (0, 0, −9.81)T from the world coor-

dinate system (perpendicular to the leveled checkerboard)

into the camera coordinate system using the inverse of the

extrinsic rotation cam2world.Q and from there into the

inertial sensor coordinate system using the sought parameter

cam2inertial.Q.

In the second step, both cameras observe a marker attached

to the robot’s left and right hand in different kinematic con-

figurations of arm and head (see Fig. 4), enabling calibration

of the transformation between the left camera coordinate sys-

tem and the last head link of the kinematic chain. Therefore,

the third measurement function

function z = project_marker(intrinsic, left2head, p_hand,

left2cam, hand2head)

left2hand = mtk.SE3(inv(hand2head.transform()) * left2head

.transform());

z = project_point(intrinsic, left2hand, left2cam, p_hand);

performs a projection of a single point p_hand on the hand

into the image. For this, the intrinsic parameters are simply

passed to the function, while the extrinsic parameters are

combined from hand2head, which is precomputed from

forward kinematics, and the to be estimated left2head

transformation. To use a single measurement function for

both cameras, left2cam allows to define a transforma-

tion between the considered camera and the left camera,

that will be combined with the extrinsic transformation in

project_point.

Listing 2 shows the MTKM implementation of estimating

all parameters jointly using the introduced measurement

functions. The overall skeleton is the same as above; there

are just more measurements. Since the actual position of the

visual marker relative to the hand is not known a priori, two

3D points (one for each hand) are added to the problem.

We then add measurements in three separate loops. First,

checkerboard measurements of the left and right camera are

added. Note how the two extrinsic arguments of the mea-

surement function are used differently for the left and right

image to estimate extrinsic left2world_id_for_img

and stereo parameters left2right_id using only one

measurement function project_points. Additionally,

the corresponding IMU measurement is added for each

checkerboard image.

Visual marker measurements are added in two separate

loops, one for each arm. Again, only one measurement

function, project_marker, is used to handle both pro-

jections by setting the additional transformation parameter

left2cam differently for the left camera (eye(4)) and

for the right cameras (left2right_id (stereo)).

To validate the calibration method, 18 different poses

were recorded, including 9 with IMU measurements and a

horizontally placed checkerboard pattern. The rms residual

is about (0.25, 0.28) pixel for the corner measurement, and

about (0.029, 0.015, 0.02)m/s2 for the IMU’s accelerometer

measurement. Additionally, the robot observed 9 left arm

poses and 12 right arm poses (see Fig. 4 for two examples),

with a joint RMS of (1.39, 1.2) pixel. Convergence was

achieved in 8 iterations (26.5s).

B. Kinect and Nao Calibration

We use MTKM to calibrate a Microsoft Kinect (Fig. 1), es-

timating pin-hole parameters of RGB and infrared (IR) cam-

eras and their relation (stereo) by observing a checkerboard

(Fig. 5, left and middle). As the board’s depth is implicitly
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Fig. 4. Two different arm configurations observed by the head cameras
using a visual marker (left). Corresponding calibration result for the config-
urations as computed over all measurements (right). The illustration shows
all relevant frames, including both cameras, the IMU (above the cameras),
and their relation to the hand marker position through forward kinematics.

Fig. 5. From left to right: RGB (already converted to grayscale), infra-
red (IR) and disparity image from a Kinect sensor observing the leveled
checkerboard. Used feature points are marked as red crosses.

estimated through the extrinsic parameters, the mapping from

depth to disparity is calibrated using well perceived points in

the disparity image (Fig. 5, right). Additionally, the Kinect

sensor contains an accelerometer, so the rotation from the

cameras to the accelerometer and the accelerometer’s scale

factor can be estimated when the checkerboard is leveled.

In another scenario, MTKM is used to calibrate the stereo

vision of the humanoid robot NAO (Fig. 1) for robot soccer.

In this robot, two cameras are aligned on a vertical base-line,

rotated by 43◦, one facing forward, the other down. Thus,

even a large checkerboard appears only partially in each cam-

era image at the same time, making the estimation difficult.

To keep the problem well-conditioned (mostly defining each

camera’s intrinsic parameters) we record separate (mono)

images of the full board in addition to the partial stereo

images. Compared to regular stereo calibration, the code

only needs to be extended by adding the extra cam2world

variables and checkerboard measurements. This underlines

MTKM’s flexibility as considerably less effort is spent inte-

grating additional measurements in contrast to [1] or [5].

VI. SLAM

Besides ease of use, the ability to use MTKM for a wide

range of problems was a second important goal. We show

this flexibility by solving benchmark data sets representing

three different classes of SLAM problems: For 2D pose

Fig. 6. 2D SLAM data sets before (top row) and after optimization with
MTKM (bottom row). From left to right: two selected SPA data sets [19];
the DLR Spatial Cognition data set [22].

Fig. 7. Synthetic sphere data set [10] before (“mednoise” variant; left) and
after optimization with MTKM (right).

adjustment we used selected samples from the SPA data set

collection ([19]; Fig. 6), for 2D feature-based SLAM the DLR

Spatial Cognition data set ([22]; Fig. 6), and for 3D (6DOF)

pose adjustment the synthetic sphere ([10]; Fig. 7) and the

parking garage ([21]; Fig. 1) data sets – each based on

the well-known measurement models for pose relations and

landmark measurements. The final RSS is nearly identical to

that of other frameworks, e.g. for the parking garage data set,

it is 1.26840 compared to 1.26837 (SLoM [12]) and 1.23869
(g2o [21]; slightly different parameterization of rotations).

Performance-wise, the size of the SLAM problems illustrates

that, although the algorithms behind MTKM can be fast, the

pure Matlab implementation needs to perform many small

operations in loops (as opposed to few but large, vectorized

operations which Matlab is optimized for) and is thus orders

of magnitude slower than comparable C++ code. E.g. on

the parking garage data set, MTKM needs 62s per Gauss-

Newton iteration, SLoM 135ms, and g2o 85ms/55ms (first

iteration/all subsequent iterations). A redesign of MTKM to

use SLoM wrapped as a MEX Matlab extension behind the

scenes has been considered but not investigated further as

the performance gain is doubtful if measurement functions

remain implemented in plain Matlab code and since it would

tie the user to the SLoM-provided optimizers.

We still find MTKM highly useful in a SLAM context

because of its flexibility in integrating new sensory data or

changing the way measurement functions use the data, and

since one can directly use Matlab facilities for analysis and

visualization of results. If computation time is an issue we

recommend prototyping with MTKM in Matlab and porting

this to C++ using SLoM once the system generally works.

VII. CONCLUSIONS

We have implemented the ⊞-method in Matlab and built

a framework for non-linear least squares optimization on



constraint graphs, the Manifold Toolkit for Matlab (MTKM).

We have shown that although this approach has its origins

in SLAM it is particularly well-suited to solving non-trivial

calibration problems. Using MTKM, even complex calibra-

tion tasks such as the calibration of DLR’s Rollin’ Justin

can be expressed so concisely that the code was printed in

full (apart from the computation of an initial guess). We

also showed that MTKM is general enough to handle SLAM

problems. We hope MTKM will prove useful to the robotics

community in getting calibration tasks done quickly and

facilitate experimentation with SLAM problems perhaps also

in teaching.
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[4] C. Borst, T. Wimböck, F. Schmidt, M. Fuchs, B. Brunner,
F. Zacharias, P. R. Giordano, R. Konietschke, W. Sepp,
S. Fuchs, C. Rink, A. Albu-Schäffer, and G. Hirzinger. Rollin’
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