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Abstract

We prove that the maximum number of intersecting pairs spheres between two sets of polydisperse sphere packings
is linear in the worst case. This observation is the basis for a new collision detection algorithm. Our new approach
guarantees a linear worst case running time for arbitrary 3D objects. Additionally, we present a parallelization
of our new algorithm that runs in constant time, even in the worst case. Consequently, it is perfectly suited for
all time-critical environments that allow only a fixed time budget for finding collision. Our implementation using
CUDA shows collision detection at haptic rates for complex objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms

1. Introduction

Collision detection is a fundamental problem that arises in
all tasks involving the simulated motion of objects that are
not allowed to penetrate one another. For instance, it is re-
quired in interactive physically-based real-time simulations
that are widely used in computer graphics [BV91], computer
games [BEW∗98], virtual reality [ES99] or virtual assem-
bly tasks [KKLL95], but also applications in robotics where
collision detection helps to avoid obstacles [CG98] and self-
collisions between parts of a robot [KNK∗02]. Moreover,
it is required for path planning [LaV04], molecular dock-
ing tasks [Tur89] and multi-axis NC-machining [IEH∗05] to
name but a few.

In most of these applications, collision detection is the
computational bottleneck. The main reason for this is its in-
herent complexity: consider two objects in a polygonal sur-
face representation, each of them is modelled by n polygons.
A brute-force approach for a collision detection algorithm
could be to simply test each polygon of one object against
each polygon of the other object. This results in a complexity
of O(n2). In practice, a quadratic running-time of the colli-
sion detection for complex objects consisting of millions of
polygons is not an option. Usually, bounding volume hier-
archies (BVHs) are used as the standard acceleration data
structure for collision detection: they provide output sensi-
tive queries and they try to prune parts of the objects that can
not overlap as early as possible. In many cases, this leads to
acceptable running times.

However, it is easy to describe and construct polyhedra
that will lead to a quadratic number of intersections among
the polygons. Note, that the polyhedron depicted in Figure 1
is not particularly pathological. Consequently, each collision
detection algorithm, including all polygon-based BVHs, that
is able to compute all pairs of colliding polygons has a
quadratic worst case running time.

Unfortunately, it is hard to foresee situations when this
happens in advance in interactive applications. In computer
games or VR, this may result in a few dropped frames and,
thus, in a short stuttering of the simulation. However, there
exist applications where hard real-time constraints are a ne-
cessity. For instance, in robotics and, especially, in haptics,
where often simulation frequencies of 1 kHz are required,
such a stuttering can damage the expensive hardware or in-
jure people. Hence, there is a need for time-critical collision
detection algorithms that are able to guarantee to absolutely
never exceed a certain time budget even in the worst case.

In this paper, we present a new collision detection algo-
rithm with a sequential running time that is only linear in
the worst case; furthermore, its parallel time is constant in
the worst case while using only a linear number of proces-
sors. The main idea is to avoid the polygonal object repre-
sentation that leads to the quadratic complexity; instead, we
represent the object by a volumetric sphere packing (see Fig-
ure 1). In this context, running times are, therefore, measured
in the number of spheres, which is related to the volumetric
approximation of the sphere packing.
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Figure 1: Left: the intersection of two Chazelle polyhedra is a worst case for polygon-based collision detection algorithms. It
has a quadratic complexity. Right: our algorithm is based on space-filling, polydisperse sphere packings for arbitrary objects
and, thus, independent of the object’s surface complexity.

More precisely, we use a set of non-overlapping spheres
that are all located inside of the object. We allow differ-
ent radii of the spheres. This supports space-filling sphere-
packings. This data structure has several advantages: first,
it is independent of the object’s representation and can be
used for almost all surface descriptions (polygonal, NURBS,
point clouds, CSG,...). Second, it is also independent of the
object’s geometric complexity. Consequently, it provides the
user with a natural choice between speed and accuracy. The
only pre-condition is that the objects have to be watertight
so that they can be filled with spheres.

In addition to the linear running time, our algorithm (to
be presented in Section 4) has a number of other bene-
fits: for instance, it does not require any complicated pre-
processing steps. Hence, it is, in principle, also suitable for
deformable objects. Moreover, our algorithm does not sim-
ply check whether a pair of objects collides or not, but it
also approximates their penetration volume. This penetration
measure is known to be “the most complicated yet accurate
method” [FL01, Sec. 5.1] to define the extent of intersec-
tion. It can be directly used to compute repelling forces for
haptics or physically-based simulations.

In Section 3 we will start with a theoretic proof that there
are at most O(n) overlapping pairs of spheres if two sets
of polydisperse sphere packings collide. This guarantees a
linear worst case complexity. In Section 4 we use this ob-
servation do define an algorithm with linear worst case run-
ning time based on hierarchical grids. Additionally, we show
that the construction of the hierarchical grid, as well as the
traversal, can be easily parallelized. This results in an, al-
most, constant time parallel algorithm. More precisely, the
running time depends only on the sizes of the spheres, but
not on their quantity.

Finally, we have implemented our algorithm using
NVIDIA’s CUDA. Our results show that our new collision
detection algorithm can answer collision queries for com-

plex objects at haptic rates in less than 1 msec in the worst
case while still providing continuous forces and torques.

2. Related Work

Today, there exist many different algorithms and data
structures for collision detection. Often BVHs based on
spheres [Hub96, Qui94], AABBs [PML95, vdB98] and their
memory optimized derivative called BoxTree [Zac02], k-
DOPs [KHM∗98,Zac98], a generalization of AABBs, OBBs
[GLM96, ASC∗06] or convex hull trees [EL01] are used
to accelerate collision queries. Also hierarchies on sphere
packings has been proven to be very efficient in practice
when used for collision detection [WZ09]. The authors in-
cluded a time-critical version, but this is not able to guaran-
tee a continuity of forces and torques.

Several attempts has been made to port BVH-based col-
lision detection to the GPU. For instance Govindaraju et al.
[GKJ∗05a] used chromatic decompositions of a meshes to
check for collisions between non-adjacent primitives. Greß
et al. [GGK06] used the stencil buffer to generate BVHs for
deformable objects in real-time. Lauterbach et al. [LMM10]
presented a fast GPU-based OBB trees construction.

Usually, the stackless processors on the GPU are not very
well suited for a BVH traversal. Therefore, some algorithms
have been developed for collision detection on the GPU that
avoid BVHs completely. The first GPU-based approaches re-
lied on the fixed-function graphics pipeline and used image
space techniques. For instance, Knott and Pai [KP03] imple-
mented a ray-casting algorithm based on frame buffer oper-
ations to detect static interferences between polyhedral ob-
jects. Heidelberger et al. [HTG04] described an algorithm
for computation of layered depth images using depth and
stencil buffers.

Later, the fixed function pipeline has been replaced by
programmable vertex and fragment processors. This also
changed the GPU collision detection algorithms: for exam-
ple, Zhang and Kim [ZK07] performed massively-parallel
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pairwise intersection tests of AABBs in a fragment shader.
Kolb et al. [KLRS04] used shaders for the simulation of
large particle systems, including collisions between the par-
ticles. Today, GPU processors are freely programmable via
APIs such as OpenCL or CUDA. This further improved
the flexibility of GPU-based collision detection algorithms,
like the approach by Pan and Manocha [PM12] that uses
clustering and collision-packet traversal or a method based
on linear complementary programming for convex objects
[Kip07]. Morvan et al. [MRS08] presented an algorithm for
proximity queries between a closed rigid object and an ar-
bitrary mesh using distance fields. Mainzer and Zachmann
[MZ13] developed a method based on parallel sorting and
fuzzy clustering. Faure et al. [FBAF08] computed an ap-
proximation of the intersection volume from layered depth
images on the GPU. Their approach supports deformable ob-
jects and was later extended to continuous forces [AFC∗10].

However, all polygon-based approaches have a quadratic
worst-case running time. The running time of the image
space algorithms depends on the image resolution. More-
over, it is often impossible to guarantee a certain force and
torque quality for these approaches.

A known constant time method has been developed espe-
cially for 6-DOF haptic rendering – the Voxmap pointshell
(VPS) algorithm [MPT99]. The main idea is to divide the
virtual environment into a dynamic object, that is allowed to
move freely through the virtual space and static objects that
are fixed in the world. The static environment is discretized
into a set of voxels, whereas the dynamic object is described
by a set of points that represents its surface. During query
time, for each of these points it is determined with a simple
boolean test, whether it is located in a filled volume element
or not. Many extension for the classical VPS algorithms have
been proposed [MPT05, MPT06, PH05, RPP∗01]. However,
none of these extensions was able to overcome the huge
memory-footprint of the voxmap and the need for different
data structures for moving and fixed objects. Additionally,
the resulting forces are very noisy [WMS∗10].

Due to the inherent quadratic complexity of polygon-
based collision detection, most authors simply do not include
a theoretic running time analysis, but they use benchmarks
to compare the speed of their algorithms [OL03, CRM02,
GKJ∗05b, TWZ07]. Actually, the literature about the theo-
retic running time of collision detection algorithms is rela-
tively sparse compared to large number of real implementa-
tions. Usually, some constraints about the shape or the mo-
tion of the objects was made.

One of the first theoretic results was presented by Dobkin
and Kirkpatrick [DK85]. They have shown that the dis-
tance of two convex polytopes can be determined in time
O(log2 n), where n is the number of faces of the objects.
For two general polytopes whose motion is restricted to
fixed algebraic trajectories, Schömer and Thiel [ST95] have
shown that there is an O(n

5
3 +ε) algorithm for rotational

movements. For a more flexible motion that still has to
be along fixed known trajectories they presented an o(n2)
algorithm [ST96]. Suri et al. [SHH98] proved that for n
convex, well-shaped polytopes (with respect to aspect ratio
and scale factor), all intersections can be computed in time
O((n+ k) log2 n), where k is the number of intersecting ob-
ject pairs.

Also some results about the expected running time of
BVH-based algorithms has been published: under mild co-
herence assumptions, Vemuri et al. [VCC98] showed linear
expected time complexity for the CD between n convex ob-
jects. Weller et al. [WKZ06] presented a model to estimate
the expected running time of the simultaneous traversal of
two binary BVHs. They showed an average running time of
O(n) or even in O(logn) for realistic cases, depending on
the overlap of the root bounding volumes and the diminish-
ing factor.

3. Theoretic Background

In this section, we will prove the theoretic basis of our
new linear time collision detection method. As mentioned
in the introduction, we do not use the object’s surface rep-
resentation, like most other collision detection algorithms
do, but we represent the volume of an object by a poly-
disperse sphere packing. Actually, our proof does not rely
on an optimized sphere packing, we simply require a valid
sphere packing. This means, the only pre-condition is that
the spheres in such a sphere packing are not allowed to in-
tersect each other. All spheres may have different radii.

Theorem 3.1 The maximum number of intersecting pairs of
spheres of two polydisperse sphere packings with n spheres
is in O(n).

Let A and B be two objects with polydisperse sphere
packings SA and SB, respectively, for each of these objects.
We define n = max{|SA|, |SB|}, the maximum number of
spheres. We claim that the maximum number of overlapping
pairs of spheres between SA and SB is in O(n). Note, if all
spheres had the same radius, such a proof would be trivial.
However, due to the Kepler conjecture, the maximum den-
sity for sphere packings of equally sized spheres is always
smaller than 75%. This would result in large errors for the
penetration volume. On the other hand, polydisperse sphere
packings, like the Apollonian sphere packing, are known to
be space-filling. Moreover, they allow a better density with
a smaller amount of spheres. Therefore, we decided to use
polydisperse sphere packings instead of equally sized sphere
packings. However, in this case, the proof is not trivial any-
more because a large number of small spheres of SA can in-
tersect a single large sphere in SB (see Figure 2).

In order to prove our theorem, we first consider a single
sphere: Let ri be the radius of a sphere si. First, we claim
that a single sphere si ∈ SA can intersect at most a constant
number of spheres s j ∈ SB, where only those spheres s j ∈ SB
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Figure 2: Left: the intersection between the red and the blue sphere packing has a worst case complexity of O(n), even if many
small red spheres intersect the large blue sphere on the right side. Right: The diameter of the blue sphere equals the length of
the cell. In the worst case, the sphere can intersect four cells (red) in 2D in its neighbourhood (In 3D, this will be eight cells).

are considered that have at least the same radius as si, this
means ri ≥ r j. We will prove this claim later.

We use this observation to define pairs of intersecting
spheres with at least the same radius for each individual
sphere si ∈ SA as

I≥AB(si) = {(si,s j) : s j ∈ SB∧ si∩ s j 6=∅∧ r j ≥ ri}

where ri denotes the radius of si and r j the radius of s j. As-
suming the claim from above is true, we get for each sphere
|I≥AB(si)| ≤ k for some constant k. Analogously, we can de-
fine such sets I>BA(s j) of intersecting spheres for sphere pack-
ing SB. The only difference is that we allow only those inter-
secting spheres of SA with strictly larger radius. This avoids
double counting of sphere pairs with the same radius. Obvi-
ously, the union of all these sets⋃

si∈SA

I≥AB(si)∪
⋃

s j∈SB

I>BA(s j)

contains all pairs of intersecting spheres between SA and SB:
if a sphere si ∈ SA intersects a sphere s j ∈ SB with a smaller
radius, this will be counted in I>BA(s j) and vice versa.

From the initial assumption we get |I≥AB(si)| ≤ c, which is
also true for I>BA(s j), Moreover we have |SA| ≤ n and |SB| ≤
n by definition. Combining this delivers

∑
si∈SA

I≥AB(si)≤ kn

and also

∑
s j∈SB

I>BA(s j)≤ kn

. This two inequalities guarantee a total number of intersect-
ing sphere pairs that does not exceed O(n), even in the worst
case.

It remains to prove the initial claim:

Lemma 3.2 A single sphere s with radius r intersects at most
a constant number of spheres that have at least the same ra-
dius.

Let I be the set of intersecting spheres. The radius ri of
each sphere si ∈ I has at least the same radius as s, this
means, ri ≥ r. W.l.o.g. we can assume that ri = r for all
si ∈ S; In other words, we assume that all spheres have the
same radius. If some sphere si has a larger radius ri > r,
we can simply replace it by a sphere sr

i with radius r. To
do that, we place sr

i at the center inside si and move it on
a straight line between the centers of si and s towards s un-
til it first intersects s. Because si also intersects s due to the
pre-condition and ri > r, sr

i has to be completely inside si.
Consequently, replacing larger spheres does not change the
total number of intersecting spheres.

All spheres si ∈ I intersect s and all have the same radius
r. Therefore, the centers of si ∈ I have a distance of at least
2r from the center of s. This means, they all have to be com-
pletely inside a sphere of radius 3r and the center of s. Ob-
viously, only a constant number of non-overlapping spheres
with radius r fits completely inside a sphere of radius 3r.

The constant is closely related to the kissing number
[BL11], but it is not exactly the same. The kissing num-
ber is defined as the number of non-overlapping equivalent
spheres that can be arranged such that they touch, but do not
intersect, another equivalent sphere. This problem is still an
active field of research, especially for higher dimensions. In
our case, we can simply argue with the spheres’ radius and
their volume to prove the constant. This is also a simple up-
per bound for the kissing number. Note, that all our theorems
and proofs hold for any dimension, even though we apply it
only to 3D collision detection in this paper. However, the
constant highly depends on the dimension, ie, higher dimen-
sions lead to larger constants.
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(a) Sphere packing (b) Hierarchy level 1 (c) Hierarchy level 2 (d) Hierarchy level 3

Figure 3: Spheres of the sphere packing are assigned to different uniform grids in a grid hierarchy, depending on their radius.

The proof of the lemma finishes the proof of the Theorem
3.1. In the next section we will use these observations to
achieve an algorithms with linear running time.

4. Our Approach

Due to Theorem 3.1, the total number of intersecting pairs of
spheres is linear for two polydisperse sphere packings. Con-
sequently, a linear collision check is possible in principle.
The next question is: how can we realize this? Fortunately,
the proof of the theorem already gives a first hint: basically,
for each sphere we have to check only spheres with larger
radius. However, checking naively all sphere with larger ra-
dius still results in a quadratic running time. To avoid this,
we have to constrain the number of spheres to be visited to a
constant number.

4.1. Basic Algorithms

If all spheres were of uniform size, a uniform grid would
fullfill all requirements: first, it would allow a fast localiza-
tion of the query sphere. Second, a cell in a grid naturally
bounds the number of spheres that are located inside such a
cell. However, in our setting, we have a polydisperse sphere
packing and all spheres are allowed to have different radii.
In order to still benefit from the advantages of a uniform grid
data structure, we propose to use a hierarchy of grids.

More precisely, let S be a polydisperse sphere packing and
smin ∈ S the sphere with minimum radius rmin. We simply set
the smallest possible cell size cmin in the hierarchical grid as
cmin = 2rmin, ie, the diameter of the minimum sphere cor-
responds to the size of the minimum cell. We construct the
higher levels in the grid hierarchy by successively doubling
the length of the cells. Consequently, we assign each sphere
si ∈ S with radius ri to a level so that the cell size is at most
the diameter of the sphere, but at least its radius. Hence,
each sphere is assigned to a level li with

2li · cmin ≤ ri < 2li+1 · cmin.

This binning of the spheres has two advantages: First, it en-
sures that a sphere in hierarchy level li can intersect only

spheres whose centers are located in direct neighbour cells
on the same hierarchy level. If the center of a sphere s in
level li with a diameter of at most 2li+1 is farther away from
a cell c, it cannot intersect any sphere whose center is in c.

Second, it limits the maximum number of spheres that fits
into a cell to a relatively small constant: In order to construct
our hierarchical grid data structure, we simply compute the
level li and assign a pointer to each cell on this level that is
intersected by the spheres. Due to the choice of the cell size,
this can be at most eight cells – the cell where the center of
si is located in, and at most seven of its neighbour cells (see
Figure 2).

During query time, we want to check which pairs of
spheres from two different sphere packings SA and SB col-
lide. To do that, we again have to locate the appropriate hi-
erarchy level li for each sphere si ∈ SA, but this time in the
hierarchical grid of SB. In order to get colliding spheres of
SB, we initially check all those spheres of SB that are as-
signed to cells that are intersected by si on that level. Again,
the number of intersected cells can be at most eight, with the
same argument as above.

In order to get also collisions with larger spheres, we
simply ascend in the hierarchy. This means, we compute
the cells that are occupied by si in the hierarchy levels
li + 1 . . . lmax, where lmax denotes the maximum level. lmax
depends only on the maximum sphere size in SB. In each of
these cells we have to test si for collisions with all spheres
inside these cells. Obviously, this can be at most eight cells
for each level.

Actually, locating the discrete grid coordinates for a
sphere can be done in constant time. Each cell is filled with
at most a constant number of spheres. Consequently, we get
a constant query time for a single cell. Each sphere intersects
at most eight cells in all hierarchy levels that have at least the
diameter of the sphere.

In the worst case, we have to check 8 · lmax cells for a
single query sphere. However, lmax depends only on the size
of the spheres in the sphere packing, not on the number of
spheres. More precisely lmax = log2(

rmax
rmin

). Hence, we get a
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(a) Cow (b) Armadillo (c) Pig

Figure 4: Our test scenes. The triangle count ranges from 20k for the pig up to 1.4 Millions for the armadillos scene. We tested
each scene with different sphere resolutions.

constant running time for each sphere. † The overall running
time for n spheres is linear.

Obviously, we find all colliding spheres in SB with at least
the same radius for any sphere si ∈ SA. However, there may
be spheres in SB with a smaller radius than a sphere si ∈ SA
that collide with si. In order to find also these collisions, we
do not only check SA against SB, but also the opposite direc-
tion, ie, SB against SA with the same algorithm. This delivers
us the missing colliding sphere pairs automatically. Note that
we do not check any pair of spheres twice, because in each
direction we test only against spheres with at least the same
radius.‡ However, this does not change the asymptotic linear
running time, even if we have other values for rmax and rmin.

Summarizing, the use of hierarchical grids allows a con-
stant number of spheres in each grid cell, and a localization
in constant time. This guarantees a constant query time for
each sphere and, thus, a linear total worst case running time
of the whole algorithm. Note that also the construction of the
hierarchical grid takes only constant time for each sphere.
Consequently, we also get a linear running time for the con-
struction.

† In fact, rmax
rmin

is constant only if the sizes of the spheres do not
change during the simulation. Obviously this is true for rigid objects.
If we also allow deformable objects, we either can move existing
spheres without changing their sizes to fit the deformed object, or
we can re-compute or re-size the spheres. Actually, a combination of
moving and re-sizing would be more flexible. However, in this case,
the ratio between the smallest and the largest sphere may change
and rmax

rmin
is not constant anymore. However, the running-time is still

independent of the number of the spheres and consequently, we still
get an “almost” constant running-time even in case of deformable
objects.
‡ More precisely, we have to replace this test for “at least the same
radius” by “strictly larger radius” in one direction to avoid double
checks between spheres with the same radius.

4.2. Parallelization

All operations of the basic collision detection algorithm de-
scribed above are formulated individually per sphere. In
other words, we process each sphere si ∈ SA independently
from all other spheres. Consequently, the algorithm can be
trivially parallelized. The basic call for a collision check be-
tween two sphere packings can be described as follows:

Algorithm 1: checkCollisions( SpherePacking SA,
SpherePacking SB )

In parallel forall spheres si ∈ SA do
checkCollisions( si, SB)

In parallel forall spheres s j ∈ SB do
checkCollisions( s j, SA)

We simply check all spheres si ∈ SA in parallel against the
sphere packing SB and vice versa. In the kernel, we have to
ascend the hierarchy and check all cells that are intersected
by si in the respective hierarchy level:

Algorithm 2: collisionKernel( Sphere si, SpherePacking
SB )
Get hierarchy level li for si

forall hierarchy levels: li · · · lmax do
forall cells ck ∩ si 6=∅ do

forall spheres s j ∈ ck do
if ri ≤ r j then

computeOverlapVolume(si, s j)

All observations with respect to the running time from
above still hold: each sphere intersects at most eight cells in
each level and each cell is occupied by a constant number of
spheres from the sphere packing that we want to test. Con-
sequently, we get the same constant running time for each
sphere. If we have O(n) processors for the parallel compu-
tation, this results in a constant worst case running time for
the whole collision detection algorithm.

Note that also the construction of the hierarchical grid can
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Figure 5: Left: the times for single parallel collision queries over time in the cow scene. We tested this scene for different sphere
resolutions, ranging from 4k to 60k spheres. Right: The worst case collision query time for our three test scenes.

be easily parallelized: all spheres can be assigned indepen-
dently to their cells in the grid hierarchy. Hence, we get a
linear parallel construction time for our data structure too.

4.3. Implementation Details

The hierarchical grid is a nice concept to basically prove the
theoretic aspects of our algorithm. In practice, uniform grids
have serious drawbacks. For instance, we have to maintain a
grid of potentially infinite size to cover all cases. Even if we
would know the size of the world in advance, uniform grids
still have a very huge memory consumption. Moreover, most
of the cells in a large grid will probably never be occupied
by a sphere. Therefore, we decided to use a more memory
efficient data representation than explicitly storing a constant
number of uniform grids.

Actually, we can reduce the large memory footprint by
using hierarchical hash tables instead, without affecting the
constant running time. In detail, we applied the DJB2 hash-
ing function described by Eitz and Lixu [EL07]:

Algorithm 3: calcDJB2HashValue( x, y, z, l )
hash = 5381
hash = hash · 33 + x
hash = hash · 33 + y
hash = hash · 33 + z
hash = hash · 33 + l
return hash mod m;

where m is the size of the hash table. We used chaining
with a fixed size for each bucket. Actually, the size of a
bucket can be derived from the constant number of spheres
that fits into a cell. This results in the necessity of exclu-
sive writes to the buckets in the hash table for the parallel
construction. However, there are at most a constant number

of these atomic operations for each bucket. In case of rigid
objects, it would be possible to choose a perfect hash func-
tion in advance. We decided to use the more flexible DJB2
hashing. In our experiments we did not notice a notable num-
ber of hash collisions during the construction. Using hashing
instead of explicit grids does not change the running time
analysis from the previous sections provided that no unusual
amount of hash collisions occur. Hence, we still get a con-
stant running time for the construction as well as for the col-
lision test.

5. Results

We have implemented the massively parallel version of our
algorithm prototypically using NVIDIAs CUDA. The test-
ing environment consists of a PC running Windows 7 with
a NVIDIA GTX680 graphics card with 4 GByte of mem-
ory. All sphere packings were generated with Protosphere
[WZ10] that computes a predefined number of spheres for
arbitrary objects using a greedy approach. We used a fixed
hash table size of 16 MByte. The bucket size was set to 24.
Usually, this allows at least a single hash table collision. Ac-
tually, it is complicated to determine the exact number of
spheres that can intersect a cell in the worst case. Moreover,
such a worst case is almost improbable. Therefore, we sim-
ply used the kissing number, which is 12 in 3D, as a heuris-
tic. In our experiments, this was sufficient to avoid overflow
of the buckets.

We used a simple artificial benchmark scenario: one ob-
ject is fixed while a rotating copy of it is translated by half
of the distance of its bounding box. This results in light
to heavy penetrations. In practice, eg, in physically-based
simulations, usually only much smaller penetrations are al-
lowed. However, in this benchmark we tried to stress our
algorithm.

We tested our algorithm with different objects and differ-
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ent densities for the sphere packings. The number of spheres
was ranging from 4000 up to 60000 spheres (see Figure 4).
This means a filling rate of about 85 – 95% of the object’s
volumes. Our results show that our algorithm can compute
collision checks in about 1 msec with a reasonable accuracy,
ie, density of the spheres (see Figure 5). Moreover, we get
a constant running-time for all filling rates, almost indepen-
dent of the object’s configuration. We only get small peaks
in cases of penetrations, because theses cases require a little
more work that non-penetration cases: for instance we have
to ascend the hierarchy, compute sphere-sphere overlap vol-
umes, etc. Hence, in case of colliding spheres the query time
slightly increases.

However, although if the query time for a specific sphere
resolution is constant, the constant factor seems to depend
linearly on the number of spheres (see Figure 5). Actually,
our proof implies a constant running time, independent of
the sphere resolution. This seems to hold only for up to
20000 spheres. The reason for this observation is relatively
simple: our theoretic considerations require O(n) processors.
In the real world benchmark, the processors of our graphics
card seem to be fully loaded by 20000 spheres. However, this
border can be easily increased with upcoming GPU genera-
tions with more parallel processors or by simply using more
GPUs.

The forces and torques are exactly the same as for the non
time-critical version of the Inner Sphere Trees [WZ09], be-
cause we get exactly the same pairs of intersecting spheres
and the same overlap volumes. This guarantees a continuous
and noise-free signal for the collision response. Also the ap-
proximation error is the same as for the Inner Sphere Trees.

Moreover, the construction of the hierarchical grid takes
only a fraction of a millisecond (see Figure 6). Basically, this
qualifies it for online usage and thus, will enable us to apply
it to deformable objects in the future.

5.1. Conclusions and Future Work

We have presented a new massively parallel algorithm that
enables collision detection in constant time. Our algorithm
does not simply check whether or not two objects collide, but
it approximates their penetration volume – the best method
to define the extent of interpenetration. This guarantees al-
most noise-free continuous forces and torques for both di-
rection and magnitude. Collision queries can be answered at
rates of 1 kHz, which makes it suitable for haptic render-
ing. Additionally, the running time is independent of the ob-
jects’ geometric complexity and their surface representation.
Our algorithm allows a simple choice between accuracy and
speed. The memory consumption is low compared to other
linear time algorithms like VPS and it is very easy to imple-
ment. The foundation of our new algorithm is our theoretic
worst case analysis. We have shown that the number of in-
tersecting pairs of spheres for two sphere packings is linear
in the worst case.
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Figure 6: The parallel construction time in the worst case
for the hierarchical grid in our scenarios for different sphere
resolutions.

Our novel approach opens up several avenues for future
work. For instance, our recent implementation is not opti-
mized yet. We are confident that a better, more “hierarchy
compatible” hashing function would be able to increase the
performance significantly. Moreover, such a hashing func-
tion should be locality-preserving in order to better utilize
cashing. Probably Morton codes in combination with closed
hashing and a reduced cell size could be an option. An in-
teresting question is the analytical determination of exact er-
ror bounds. This could lead to an optimal number of inner
spheres with well-defined errors.

Finally, our approach is restricted to rigid objects until
now. On the other hand, the bounding-volume-less constant
time construction of the hierarchical grid makes it perfectly
suited for deformable objects. However, a simple rebuild of
the sphere packing will be too slow. Therefore, we plan to
combine our approach with a new deformation scheme in the
future. The so called Sphere-Spring-Systems are an exten-
sion of the classic mass spring systems. The main difference
is the replacement of the dimensionless mass points by vol-
umetric spheres. This approach will also solve the missing
volume preservation of mass spring systems automatically.
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