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Abstract— This paper presents an estimator to obtain the
posture of a moving skeleton, i.e. all relative orientations of the
skeleton’s bodies that are connected via a common joint. The
estimator uses inertial sensor data only, the relative orientation
around all axes is obtained without magnetometers. Instead,
the accelerations of the skeleton’s motion provide information
about the otherwise missing degree of freedom. The method
also yields the orientation of the skeleton as a whole except for
the heading.

In addition, a technique to decouple the estimation rate from
the sensor sampling rate is introduced. The estimator both with
and without rate decoupling is evaluated against ground truth
data and yields relative orientations about 5 degrees off ground
truth while the skeleton moves.

I. INTRODUCTION

Motion Capturing is a very popular technique to record
and analyse the postures of humans over time. It appears
in various fields of science, engineering and art. While the
most visible application certainly is determining the postures
of actors to animate characters for movies, it is also used in
technically much more constrained environments.

In contrast to character animation, where postures are
typically recorded by observing markers attached to the
human with cameras, medical and job-safety applications
are usually constrained to worn sensors. For instance, the
CUELA[1] system to assess the musculoskeletal load of
manual workers, uses both worn inertial and mechanical
sensors to determine the worker’s postures. The system is
relatively heavy weight (3kg) and not suitable for daily use
by the worker.

Vignais et. al. developed a system [2] primarily relying on
inertial sensors and magnetometers to determine the posture
of a human, who has the sensors strapped on to his limbs.
The usage of magnetometers though precludes using their
system in environments with constantly changing magnetic
fields.

To get closer to universal, unobtrusive applicability of
posture estimation of manual workers, the sensors need to be
small, possibly integrated into the worker’s cloths, such as
for example in [3], and should, in contrast to [3], not rely on
the environment’s magnetic field. Roetenberg et al. [4] appear
to be quite successful in eliminating the magnetometer, but
being a commercial product, they do not clearly say how
they accomplish this.

*This work is funded by the BMBF project SIRKA (16SV6238K).
1Felix Wenk is with the German Research Center for Artificial Intelli-

gence, Bremen, Germany. Felix.Wenk@dfki.de
2Udo Frese is with both the Department of Mathematics and Com-

puter Science, University of Bremen, Bremen, Germany and the Ger-
man Research Center for Artificial Intelligence, Bremen, Germany
Udo.Frese@dfki.de

Y

X

acceleration

r1

Fig. 1. Top-down view on two bodies (rectangles) connected over a
joint (circle), each equipped with an accelerometer (filled rectangles).
The acceleration is measured by both sensors on different axes. This is
the key idea how complete relative orientation can be recovered without
magnetometers.

The project SIRKA1, which this work is part of, aims for
building such miniature sensors (20mm×20mm×3mm) to
integrate them into the worker’s usual clothing and use them
to estimate their postures without magnetometers.

The main contribution of this paper is an algorithm to esti-
mate the relative poses of the bodies of a human skeleton, i.e.
the human’s posture, from inertial sensor data only, without
other sensors such as magnetometers. In addition we present
a technique to implement this algorithm on computationally
constrained devices by decoupling the estimation from the
sampling rate of the sensors.

The remainder of this paper is organized as follows. In the
following Section II we explain how to obtain the posture of
a skeleton from orientation estimates and most importantly
our method to obtain those orientation estimates. Decoupling
estimation rate from sampling rate is discussed in Section III.
Our method is evaluated using the components we intend
to build the sensor suit with. The results are presented in
Section IV and are the basis for the conclusions drawn in
the last Section V.

II. RELATIVE ORIENTATION ESTIMATION

A. Obtaining Posture from Orientation Estimates

To estimate the posture of a skeleton, the relative poses of
the skeleton’s bodies that are connected via joints need to be
estimated. To do so, it suffices to determine for each joint of
the skeleton the orientation of the body succeeding the joint
relative to the body preceding the joint (or vice versa).

If the positions r1, r2 ∈ R3 of the joint connecting two
bodies 1 and 2 are known relative to both bodies’ origins,
then the pose of body 2 relative to body 1, represented by
the homogenous coordinate transform T1←2 ∈ SE(3), can be

1http://www-cps.hb.dfki.de/research/projects/SIRKA



calculated by chaining the homogenous coordinate transform

T1←2 =

[
I3 r1

0 1

] [
Q1←2 0

0 1

] [
I3 −r2

0 1

]
, (1)

where I3 is the (3× 3) identity matrix and Q1←2 ∈ SO(3)
the orientation of body 2 relative to body 1.

This extends to all such pairs of bodies of the skeleton,
so to get the posture, only the relative orientations need
to be estimated. If one also wants to know the skeleton’s
orientation as a whole, it suffices to estimate the orientation
of a single body of the skeleton in world coordinates.
Obtaining a global position requires further methods, e.g.
step tracking, which are not considered here.

B. Relative Orientation Estimation without Magnetometers
Usually the orientation of a rigid body is estimated using

a Kalman Filter [5], as for instance in [6], which integrates
measurements from an IMU and a magnetometer, both
attached to the rigid body. The gyrometer measurements are
integrated to follow short-term orientation changes and the
accelerometer and magnetometer measurements to correct
long term errors.

The measurement model of the accelerometer is based on
the assumption that on long-term average negative gravity
is measured. Because gravity always points to the earth’s
center, this allows to determine the orientation except for the
angle around the direction of gravity. This angle, the heading,
is conventionally determined using the magnetometer.

To get rid of the magnetometer, known accelerations with
directions different from the vertical, i.e. the direction of
gravity, are needed. For this, there need to be accelerations,
i.e. if the body is not moving at all, there’s no way to
get heading information out of the accelerometer. Even if
the single rigid body accelerates, the acceleration is still
unknown. But if a system of at least two rigid bodies, that
are both equipped with IMUs and are connected over a
joint, accelerates, then, of course, both IMUs measure the
same acceleration except for the motion along the degrees
of freedom of their common joint.

Given that the system of rigid bodies does not rotate,
the acceleration, exerted onto the system and measured by
each IMU along different axes, determines their relative
orientation, as in Fig. 1.

Note that there is still no heading information for the
system of rigid bodies as a whole, i.e. it is not determined
whether the system faces North or East. Their relative orien-
tation, though, is now determined except for the angle around
the direction of the acceleration, which may be different
from the vertical. Given that the acceleration changes di-
rection over time, the complete relative orientation becomes
observable over time. Also note that, if one is interested in
the posture of a skeleton only and not in the heading of the
skeleton as a whole, the relative orientations of the skeleton’s
bodies are sufficient.

C. Measurement Model
If the bodies do rotate, the situation is slightly more

complicated due to the accelerations induced by the rotation.

The accelerations induced by rotation are different at the two
accelerometers, because they are separated by a displacement
which acts as an additional lever arm. To account for
this, we calculate, for each rigid body of the skeleton, the
accelerations virtual accelerometers positioned exactly at the
joint locations would measure. For two bodies connected
by a joint, the virtual accelerometers at the joint experience
the same acceleration because they are at the same location,
independent of the angular velocities the bodies may have.

Calculating the acceleration of a virtual accelerometer
from a real accelerometer includes calculating the tangential
acceleration atangential over the displacement r from the
real accelerometer to the joint, which is the cross-product
atangential = ω̇ × r. The angular acceleration ω̇ is not
measured directly. To avoid numerically differentiating the
noisy gyroscope signals to obtain ω̇, we formulate the
measurement model in terms of velocity. I.e. instead of
differentiating the gyrometer measurement, we integrate the
(real) accelerometer measurements.

For the bodies 1 and 2, which are part of a skeleton, are
connected over a common joint and have relative orientation
Q1←2 ∈ SO(3)

v1 + ω1 × r1 = Q1←2 (v2 + ω2 × r2) , (2)

where v are the velocities integrated from the accelerometer
measurements, ω are the angular velocities measured by the
gyrometers and r are the (constant and known) displacement
vectors from the IMUs to the joint location.

D. Orientation Estimation Kalman Filter

To implement the above, we use an Extended Kalman
Filter [7, chapter 5] estimating the orientations of each
body, where (2) replaces the magnetometer measurement
model. Since body velocities are needed for (2), they join
the bodies’ orientations in the estimator state, such that the
filter estimates the parameters of the Gaussian distribution
N (X,Σ) with

X =
[
X(1)T · · ·X(N)T

]T
with X(k) =

[
q(k)T v(k)T

]T
(3)

where v(k) is the kth body’s velocity in world coordinates,
N is the number of bodies of the skeleton and q(k) ∈ R3 is
the scaled-axis vector parameterizing the orientation Q(k) =
Rot(q(k)) = exp([q(k)]×) ∈ SO(3) of body k in world-
coordinates. [q]× turns q into the cross product matrix such
that [q]×w = q×w. Euler angles could be used alternatively.

Two successive filter states Xi and Xi−1 are related by the
the IMU measurements over the sampling time δt according
to the dynamic model

X̄i = f(Xi−1, ui) =
[
f ′(X

(k)
i−1, u

(k)
i )
]N
k=1

(4)

with the dynamic input u(k)
i = [ω

(k)T

i a
(k)T

i ] consisting of
the gyrometer and accelerometer measurements of the IMU
attached to body k. f ′ updates the components of the state



concerning body k

f ′(X
(k)
i−1, u

(k)
i ) =

aRot
(

Rot
(
q

(k)
i−1

)
Rot

(
ω

(k)
i δt

))
v

(k)
i−1 +

(
Rot

(
q

(k)
i

)
a

(k)
i + g

)
δt

 .
(5)

Here, g is the gravitational acceleration and aRot the inverse
operation to Rot. To update the covariance, we assemble
from the noise densities, σω and σa, the input’s covariance

Σu =

Σu′ 0
. . .

0 Σu′

 , Σu′ =

[
I3σ

2
w/δt 0
0 I3σ

2
a/δt

]
(6)

and propagate it through the linearization of f with respect
to the state, A = ∂f

∂Xi−1
, and the dynamic input, B = ∂f

∂ui
:

Σ̄i = AΣi−1A
T +BΣuB

T (7)

To compensate for accumulating drift, the measurement
model of a classical orientation estimator expects the ac-
celerometer to measure negative gravity plus noise, i.e.
−Rot(q)T g+δ, δ ∼ N (0,Σδ). As we have done in previous
research [8], augmenting the state and dynamic model with
the velocity as in (3) and (5) and using 0 = v + δ, δ ∼
N (0, I3σ

2
δ ) as a probabilistic prior also yields an orientation

estimator.
To correct the relative orientations, we use (2) for all body

pairs connected over a joint as a probabilistic prior. Let there
be M joints. For each joint 1 ≤ j ≤M , let p(j) be the body
preceding and s(j) succeeding the joint. Then the difference
of the velocities determined by the IMUs on the bodies at
joint j is(

vs(j) +Qs(j)ψs(j)
)
−
(
vp(j) +Qp(j)ψp(j)

)
= Jj (8)

with ψ(l) = ω(l) × rl for l = p(j), s(j). Because the joint
can not have two different velocities at the same time, we
have for all 1 ≤ j ≤M

Jj + ε = 0 with ε ∼ N (0, I3σ
2
ε ). (9)

Since (9) refers to a physical property and not to an assump-
tion as to the system’s motion, σ2

ε is much smaller than σ2
δ .

Over time, this determines all relative orientations of the
skeleton’s body, but leaves the angle around the vertical of
the skeleton as a whole undetermined, because no sensor
provides information about the global heading. To prevent
he corresponding covariance components from growing un-
boundedly, we add pseudo-information. We arbitrarily pick
body 1 and assume that its angle around the vertical is zero,
which is equivalent to the scaled-axis parameterization of
the orientation being in the horizontal plane, i.e. q(1)

z ∼
N (0, σ2

z). Choosing σz to be very large causes the estimate
to slowly drift back to zero while still following short-term
gyrometer measurements.

In summary, the ‘prior model’ for the Kalman Filter’s
correction step is

h(X,Ω) =
[
vT1···N JT1...M q

(1)
z

]
+ ζ, ζ ∼ N (0,Σζ)

(10)

with measurements covariance

Σζ = diag
( Ntimes︷ ︸︸ ︷
σ2
δ · · ·σ2

δ

Mtimes︷ ︸︸ ︷
σ2
ε · · ·σ2

ε σ
2
z

)
and the stacked current angular velocities Ω =[
ωT1 · · ·ωTN

]T
, which are required to calculate the Js.

Using the linearizations of h,

HX =
∂

∂X
h HΩ =

∂

∂Ω
h (11)

the correction of the state X̄ and covariance Σ̄ is almost the
standard linear Kalman Filter correction step:

K = Σ̄HT
X

[
HXΣ̄HT

X +HΩσ
2
ωδtH

T
Ω + Σζ

]−1
(12)

X = X̄ +K(0− h(X̄)) (13)
Σ = Σ̄−KHXΣ̄ (14)

In (12), HΩσ
2
ωδtH

T
Ω enters the covariance, because h de-

pends on the measured angular velocities. Also, (12) implies
that the state, the orientations in particular, are not correlated
with the current angular velocities. This obviously is an ap-
proximation, which becomes better, the more measurements
are integrated between two correction steps.

E. Singularity-free Kalman Filter Implementation

The parameterizations of the orientations in our state in (3)
suffer from singularities. To cure that, we use the �-theory
introduced in [9], which provides the operators � : SO(3)×
R3 → SO(3) and � : SO(3)× SO(3)→ R3 to apply small,
vectorially represented changes to manifold elements. This
practically means that we can use

Q1 � δq = Q1 Rot (δq) , Q2 �Q1 = aRot
(
QT1 Q2

)
(15)

with Q1, Q2 ∈ SO(3), δq ∈ R3 to use rotation matrices and
parameterize only their changes. Then (3) and (5) become

X =
[
X(1)T · · ·X(N)T

]T
with X(k) =

[
Q(k)T v(k)T

]T
(16)

f ′(X
(k)
i−1, u

(k)
i ) =

 Q
(k)
i−1 Rot

(
ω

(k)
i δt

)
v

(k)
i−1 +

(
Q

(k)
i a

(k)
i + g

)
δt

 . (17)

� and � are extended to the state component wise by

[Q(i)v(i)]Ni=1� [δq(i)δv(i)]Ni=1 = [Q(i)�δq(i), v(i) +δv(i)]Ni=1

[Q
(i)
2 v

(i)
2 ]Ni=1 � [Q

(i)
1 v

(i)
1 ]Ni=1 = [Q

(i)
2 �Q

(i)
1 , v

(i)
2 − v

(i)
1 ]Ni=1.

That said, the linearization of the measurement model
from (11) can be calculated by

∂

∂X
h(X,Ω) ≡ HX =

∂

∂δx
h(X � δx,Ω). (18)

The new dynamic model linearizations, needed in (7), are

∂f

∂Xi−1
≡ A =

∂

∂δx
(f(Xi−1 � δx, ui) � f(Xi−1, ui)) .

(19)
B is calculated analogously. Finally we need to use � to
correct the state in (13), such that it becomes

X = X̄ �K(0− h(X̄)). (20)



III. DECOUPLING ESTIMATION AND SAMPLING RATE

Our algorithm, whose correction step ((12) to (14)) is com-
putationally expensive due to the high dimensionality, is to
be eventually run on an embedded device. For our application
the required estimation rate, the expensive calculation needs
to be executed with, is much lower than the sampling rate
of the sensors.

So it is desirable to decouple those rates, i.e. update only
every nth sample, while still using every sensor sample to
mitigate the information loss. We accumulate per IMU the
angular velocity measurements to a relative orientation and
the acceleration measurements to a relative velocity at the
sensor’s sampling rate. The accumulation period is δT =
δt1 +· · ·+δtn, because we use irregular sampling (otherwise
this would be δT = nδt). Instead of the raw sensor data, we
use the accumulates in the dynamic model of the estimator
to update the state.

Accumulating IMU data is similar to accumulating a driv-
ing robot’s odometry as a homogenous coordinate transform.
Such a robot pose at step j is the matrix product of the pose
from the previous step, T0←j−1, and the odometry increment
Tj−1←j : T0←j = T0←j−1Tj−1←j .

In analogy, we represent an IMU accumulate at step j−1
with the accumulated orientation Q and velocity v by

M0←j−1 =

[
Q0←j−1 v0←j−1

0 1

]
. (21)

An IMU increment is calculated from one sensor sample as

Mj−1←j =

[
Rot (ωδt) Rot( 1

2ωδt)aδt
0 1

]
. (22)

It is used to calculate the IMU accumulate at step j:

M0←j = M0←j−1Mj−1←j (23)

The relative accumulate over an arbitrary number of samples,
n, can be recovered from two accumulates using the inverse
of M.

M
(k)
j−n←j = M

(k)−1

0←j−nM
(k)
0←j =

[
Qj−n←j vj−n←j

0 1

]
(24)

=

[
Q

(k)T

0←j−nQ0←j Q
(k)T

0←j−n

(
v

(k)
0←j − v

(k)
0←j−n

)
0 1

]
Note that in floating point v potentially overflows, so it
must be represented by a number allowed to overflow, e.g.
fixed point, and the difference in (24) must be taken before
applying the rotation.

To use accumulates, the dynamic model from (17) is
adjusted as follows. The dynamic input concerning body k
is now u

(k)
i = M

(k)
j−n←j and the update function of the body

k’s components is

X̄
(k)
i = f ′(X

(k)
i−1, u

(k)
i )

=

[
Q

(k)
i−1Q

(k)
j−n←j

v
(k)
i−1 +Q

(k)
i−1v

(k)
j−n←j + gδT

]
. (25)

A. Accumulate Covariance

Because we changed the dynamic input u(k)
i , we also

need to change the dynamic input’s covariance. It would be
possible to accumulate the covariance of the accumulated
orientation and velocity. Reconstructing the covariance of
u

(k)
i , or equivalently Mj−n←j , from the covariances of
M0←j−n and M0←j would involve multiplying a potentially
overflowing quantity, corrupting the result. Instead, we ap-
proximate the covariance of u(k)

i directly. To this end, we
assume that the uncertainty of u(k)

i originates uniformly from
each point in time over the accumulation period δT and that
there were a constant angular velocity and acceleration.

The uncertainty in the accelerometer obviously leads to
an uncertainty in the velocity component of u(k)

i . Over the
accumulation interval, this is

aΣu′i =

[
0 0
0 I3σ

2
aδT

]
(26)

The contribution due to the uncertainty of the gyrometer is
a little trickier. At τ , the gyro noise both adds uncertainty
to the final orientation and rotates the velocity accumulated
after τ . Thus, at τ , we have the additional uncertainty

ρ(τ) = σω

[
I3

[−v(1− τ
δT )]×

]
(27)

where v is the accumulated velocity. Integrating ρ(τ)ρ(τ)T

over the accumulation period yields the covariance contribu-
tion due to the gyrometer uncertainty:

ωΣu′i =

∫ δT

0

ρ(τ)ρ(τ)T dτ (28)

= σ2
ω

[
I3δT [v]×

δT
2

[v]T×
δT
2 [v]T×[v]×

δT
3

]
(29)

The covariance of u(k)
i is the sum of the two contributions

Σu′ = ωΣu′i+aΣu′i = δT

[
I3σ

2
ω σ2

ω[v]×
1
2

σ2
ω[v]T×

1
2 σ2

ω[v]T×[v]×
1
3 + I3σ

2
a

]
(30)

The remainder of the covariance propagation through the
decoupled dynamic model is analogous to (6) and (7), the
correction step remains unchanged.

IV. EXPERIMENTS AND RESULTS

To evaluate our algorithm, we built a model skeleton of
three rigid bodies connected by two ball-and-socket joints.
For ground truth data, we used a commercial tracking
system2 to observe markers which have been screwed on the
rigid bodies. On each body, we mounted one of our SIRKA
IMU boards using double-faced tape. Fig. 2 pictures the
setup. The displacement vectors to the joints were measured
manually. Since accelerometer and gyrometer bias are not
part of the estimator state, both have been calibrated in
advance. They could be included in the estimator state for
long-term stability. To provide the motion the orientations

2ARTtrack/Dtrack2 from A.R.T. GmbH



Fig. 2. The model skeleton used during the experiments. Spherical markers
to be observed by the camera system are mounted on three bodies connected
by ball-and-socket joints, each also carrying one SIRKA sensor board.

are to be determined from, the skeleton arm was picked up
from the ground and moved around for a few seconds.

Due to the SIRKA architecture, the sensors do not operate
at a constant sampling frequency and are not electrically
synchronized with the camera tracking system. They are
synchronized among each other, though. Each sensor board is
equipped with a Bosch BMX055 IMU and a microcontroller
sharing a data bus with the other sensor boards.

We have synchronized with the ground truth by correlating
angular velocity norms from the gyroscope and the camera
tracking system.

Both without and with rate decoupling, we tested for two
properties. First, for a single body, the estimated orientation
should be approximately the orientation observed by the
tracking system, except for the unobservable angle around
the vertical axis. Second, after the skeleton arm started to
be moved, the estimates of the two relative orientations
between pairs of connected bodies should be approximately
the relative orientations observed using the camera tracking
system.

To check the absolute orientation, we took both the esti-
mate from IMU data, IQ2, and the ground truth orientation
from the camera system, AQ2, and factored each rotation
matrix into the part around the vertical axis, Q2z

, and around
the horizontal axis, Q2xy , such that

IQ2 = IQ2z

IQ2xy
and AQ2 = AQ2z

AQ2xy . (31)

Since there is no sensor information going into IQ2z
, IQ2z

and AQ2z may differ arbitrarily. IQ2xy and AQ2xy should
be approximately the same.

The relative orientations were computed over the connect-
ing joints, both from IMU and ground truth,

IQ1←2 = IQT1
IQ2,

IQ2←3 = IQT2
IQ3,

AQ1←2 = AQT1
AQ2,

AQ2←3 = AQT2
AQ3. (32)

A. Results without rate decoupling

We first calculated the quantities from (31) and (32) using
the estimator without rate decoupling, obtaining estimates for
each IMU measurement. This took the highly unoptimized
MATLAB implementation of the estimator 633 seconds.
Each estimate was associated with the ground truth datum
closest in time according to the previously calculated time
delay.
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Fig. 3. Orientation error without rate decoupling. The red graph shows the
error around the world-horizontal axis, the blue graph the error around the
vertical axis. The latter is coincidental and depends on the motion, because
there’s no sensor information available about his axis.

For the orientation error, we plotted ez and exy , such that

ez = ‖qz‖ s.t. Rot(qz) = AQT2z

IQ2z
, (33)

exy = ‖qxy‖ s.t. Rot(qxy) = AQT2xy

IQ2xy
. (34)

The plot of Fig. 3 shows that the error around the vertical
(blue) is arbitrary and depends on the motion. The skeleton
arm rests on the ground for the first 50 seconds and while
it does so, the error around the vertical does not change.
The orientation error around the horizontal axis (red) is
reasonably low while the skeleton rests and increases slightly
as the skeleton is moved. The peaks appearing at around a
minute are probably due to bad synchronization.

To determine the posture, the relative orientations of the
bodies to each other are more interesting, and so are their
errors. We calculated the relative orientation errors for the
two joints analogously to (34), i.e. the errors about the first
and second joint are

eJoint1 = ‖q1←2‖ s.t. Rot(q1←2) = AQT1←2
IQ1←2 (35)

eJoint2 = ‖q1←2‖ s.t. Rot(q2←3) = AQT2←3
IQ2←3. (36)

The errors are plotted in Fig. 4. While the skeleton arm is
at rest, the orientation errors stay approximately constant.
As in Fig. 3, the beginning of the motion is visible. In the
first 10 seconds of movement, the orientation estimates for
both joints are particularly bad. After about 10 seconds the
estimator gets the orientation errors for both joints below
5 degrees. This rather long settle period may be caused by
linearization with the large angular error of 20◦.

B. Results with rate decoupling

To see how our rate decoupling technique affects the
estimates, we used the same measurement series to feed
three accumulators that implement (22) and (23). At every
(n = 10)th measurement, we used the current accumulate
M0←10k to update the estimator with rate decoupling to
obtain the kth estimate. Thus, the estimation frequency is 10
times lower than the sampling frequency. This took an again
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Fig. 4. Errors of the relative orientations over joint 1 (blue) and joint 2
(red). After 50 seconds, the skeleton arm starts moving, after 60 seconds
the orientation error drops considerably.
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Fig. 5. Orientation error with rate decoupling. The red graph shows the
error around the world-horizontal axis, the blue graph the error around the
vertical axis. The error is almost identical to the error of the estimator
without rate decoupling.

highly unoptimized MATLAB implementation 73 seconds,
i.e. it was 8.6 times faster.

Fig. 5 shows the the corresponding orientation error plot
which should be approximately the orientation error obtained
without rate decoupling. And indeed, Figs. 5 and 3 look
almost identical. The same is true for the more interesting
errors of the relative orientations over the two joints, plotted
in Fig. 6, which again looks almost identical to the plot of
the errors without rate decoupling, Fig. 5. So if the required
estimation rate is only 1

10 of the sampling rate, there seems
to be no obvious downside to using rate decoupling. To see
the relative orientations themselves instead of the errors w.r.t.
ground truth, watch the accompanying video.3

V. CONCLUSION

It appears that as long as the acceleration changes occa-
sionally, magnetometer data is not necessary to determine the
relative orientations of the skeleton’s bodies, i.e. its posture.

3http://www.informatik.uni-bremen.de/agebv/
downloads/videos/wenk_iros_15.mp4
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Fig. 6. Errors of the relative orientations estimated with rate decoupling
over joint 1 (blue) and joint 2 (red). The errors show the same characteristics
as the errors without rate decoupling plotted in Fig. 4.

Future research will include scaling our method from the
three-body model skeleton to a larger model of a human
skeleton and adding different priors – not all human joints
are best approximated by ball-and-socket joints – to the
correction step. Since all the sensors are supposed to be
integrated into clothing, we also need to evaluate how the
estimates will be affected by the sensors not being directly
strapped onto the individual bodies.

Moreover, an optimized implementation tailored to the
embedded hardware will replace the MATLAB program to
evaluate whether the algorithm needs further modification
for real-time estimation. We will also evaluate how much
the estimation rate may be reduced without affecting the
estimation quality of common human motion patterns.
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