
Assessment of Message Missing Failures in FlexRay-Based Networks*

* This work was partially supported by a grant from Iran
 Telecommunication Research Center (ITRC).

Vahid Lari, Mehdi Dehbashi, Seyed Ghassem Miremadi, Navid Farazmand

Sharif University of Technology
{Lari, Dehbashi, Farazmand}@ce.sharif.edu

Miremadi@sharif.edu

Abstract

This paper assesses message missing failures in a

FlexRay-based network. The assessment is based on
about 35680 bit-flip fault injections inside different
parts of the FlexRay communication controller; the
parts are: controller host interface, protocol operation
control, coding and decoding unit, media access
control and clock synchronization process. To do this,
a FlexRay communication controller is modeled by
Verilog HDL at the behavioral level. This HDL model
of the controller is exploited to setup a FlexRay-based
network composed of four nodes. The results of fault
injection show that about 35% of faults led to the
message missing failures. The controller host interface
and the clock synchronization process of the FlexRay
were the most sensitive parts to the message missing
failures. The coding and decoding unit of the FlexRay
was the least sensitive part to these failures.

1. Introduction

Safety in distributed systems such as automotive
systems and avionics is of decisive importance due to
system failures which may threat human life. In a
distributed system, each node consists of three parts
[1]: 1) I/O part, 2) host part, and 3) communication
controller.

In general, communication activities can be
triggered either dynamically, in response to an event
(event-triggered), or statically, at predetermined
moments in time (time-triggered). Examples of time-
triggered protocols are the SAFEbus, SPIDER, and
Time-Triggered Protocol (TTP). The main drawback of
the time-triggered protocols is their lack of flexibility
[2]. Examples of event-triggered protocols are the
Byteflight introduced by BMW Company for
automotive applications, CAN, LonWorks and

Profibus. The main drawback of the event-triggered
protocols is their lack of predictability. A large
consortium of automotive manufacturers and suppliers
has proposed a hybrid type of protocol, namely, the
FlexRay communication protocol [3]. The FlexRay
allows the sharing of the bus among event-triggered
and time-triggered messages, thus offering the
advantages of both protocols. It is reported that the
FlexRay will very likely become the de-facto standard
for in-vehicle communications [2] [4]. The FlexRay
defines a communication cycle (bus cycle) as the
combination of a time-triggered (or static) window, an
event-triggered (or dynamic) window, a symbol
window and a network idle time (NIT) window. The
time-triggered window is similar to TTP, and employs
a time-division multiple-access (TDMA) mechanism.
The event-triggered window of the FlexRay protocol is
similar to Byteflight protocol and uses a flexible
TDMA (FTDMA) bus access method. The symbol
window is a communication period in which a symbol
can be transmitted on the network. The NIT window is
a communication-free period that specifies the end of
each communication cycle.

The importance of safety in critical distributed
applications signals to pay specific attention to the
reliability of communication protocols. One way to
assess the reliability of communication protocols is by
fault injection. In [5], a simulation-based fault injection
has been used for the assessment of message missings
in the CAN protocol. Effects of masquerade failures
have been investigated using a simulation-based fault
injection in the CAN protocol [6]. Evaluation of TTP/C
communication controller by heavy-ion fault injection
(hardware-based fault injection) has been performed in
[7]. The purpose of the experiments in that paper was
to validate the fail silence property of the TTP/C by
injecting faults in a single node. The relationship
between the number of nodes in a cluster and the
slightly-off-specification (SOS) failures has been

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.6

191

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.6

191

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.6

191

assessed using heavy-ion fault injection [8]. In [9], the
TTP/C protocol with bus and star topologies has been
investigated using SWIFI fault injection. Here, the
effects of the SOS failures in the bus and star
topologies with respect to the start of frame
transmission have been studied. In [10] [11], a generic
tool was developed for monitoring and diagnosis of a
FlexRay-based system as well as for a CAN-based
system. This tool has been used by the FlexRay
consortium to perform extended fault injection for
evaluating of the FlexRay communication protocol.
One important limitation of this tool is that faults
cannot be injected inside different parts of the FlexRay
protocol.

This paper assesses the message missing failures by
injecting 35680 bit-flip faults inside different parts of
the FlexRay protocol. The assessment is based on
faults which disturb the message sending and message
receiving in a FlexRay-based network. To do this, a
FlexRay communication controller is modeled by
Verilog HDL at the behavioral level. This HDL model
of the controller is exploited to setup a FlexRay-based
network composed of four nodes. The results of fault
injection can be divided into two main categories: 1)
the faults resulting in the message missing failures in
the FlexRay network are assessed. Here, the message
missing failures that occurred in time-triggered and
event-triggered window of the FlexRay communication
cycle are evaluated. Also, the sensitive points of the
FlexRay protocol to the message missing failures are
identified; 2) the faults resulting in the three kinds of
errors, namely, content errors, syntax errors and
boundary violation errors are characterized. Here, the
most sensitive and the less sensitive points of the
FlexRay protocol to faults are identified.

This paper is organized in five sections. Section 2
presents the message missing failures and error models
found in the FlexRay protocol. The experimental setup
is given in section 3, and the results are presented in
section 4. The last section concludes the work.

2. Error model and message missing failure

Error models: The FlexRay protocol has different
mechanisms for detecting errors in the controller. At
the end of each time slot, frame and symbol process
(FSP) part checks the presence of any error in that slot
and informs the host about it. This protocol defines
three main errors that can occur in each slot: Syntax
error, content error and boundary violation error. The
syntax error denotes the presence of a syntactic error in
a time slot, the content error denotes the presence of an
error in content of a received frame and boundary

violation error denotes whether a boundary violation
occurred at boundary of the corresponding slot.

Message missing failures: Faults can disturb
sending or receiving of a message in a node of a
distributed system and cause a message to be missed.
In this paper the message missing failures are assessed
in two aspects:

1- Because of a fault in the communication
controller of the sender node, it does not send its
message.

2- Because of a fault in the communication
controller of the sender node, it sends its message
incorrectly on the network, thus, the message
won't be accepted in receiver nodes.

 In this experiment we assumed that the host is fast
enough to generate the messages for sending, and to
read the messages from communication controller.
Meanwhile, the number of generated messages by the
host is exactly equal to the number of the IDs that has
been allocated to that host.

3. Experimental setup

In order to perform an experiment on the FlexRay
controller a network consisting of nodes that have this
controller should be set up. So, a model of FlexRay
controller has been implemented at behavioral level
according to the FlexRay protocol specification [3].
This controller has been implemented by hardware
description language, Verilog, and Modelsim 6.1
simulator. This FlexRay controller has been tested
according to the FlexRay protocol conformance test
specification [12].

The implemented controller has usual capabilities of
FlexRay protocol such as sending and receiving the
static and dynamic frames and symbols. This controller
according to the specifications in [3] has six parts to
perform its functions: controller host interface (CHI),
protocol operation control (POC), clock
synchronization process (CSP), frame and symbol
process (FSP), media access control (MAC), coding
and decoding (CODEC). In addition, instead of a real

Figure 1. Experimental setup

192192192

application, a data generator is implemented to
generate static frames with fixed length and dynamic
frames with variable length at the start of the
communication cycles.

After that, a cluster is formed consisting of 4 nodes
with single bus topology. Any node is allowed to send
and receive frames on communication channel. As
depicted in figure 1, faults are injected in node 2 and
their effects are observed in node 4. After each fault
injection, the results in node 4 will be saved. Each node
on this network consists of three main parts: Host that
generates the frames, a controller host interface (CHI)
and at lowest part there is communication controller
(CC). In this experiment, faults are injected in five
parts of the communication controller of the node 2,
including CHI, POC, CSP, MAC and CODEC. The
FSP part checks the correct timing of received frames
with respect to the TDMA scheme, applies further
syntactical tests to received frames, and checks the
semantic correctness of received frames [3]. Thus, for
the reason that the FSP part doesn’t have any role in
transmitting frames and error propagation to other
nodes, there is no fault injection in the FSP part. The
effects of fault injection are observed in
communication controller of the node 4 by FSP part.

4. Experimental results

In this assessment, each experiment lasts for 3
communication cycles, in cycle 1 the faults are
injected, and in cycles 1 through 3 the effects of fault
injection are assessed. The results of fault injections are
divided into two categories: 1) error propagation
evaluation, and 2) message missing failure assessment.
Following, these two categories will be discussed.

Error propagation evaluation: As discussed, the
FlexRay protocol has defined three main error models
that can occur in this protocol; these error models
include syntax error, content error and boundary
violation error. After the fault injection into node 2 in
network, we investigate received errors in node 4.
Table 1 contains the results of this experiment. As it
shows, the fault injections in CSP part causes most
content errors and boundary violation errors; the fault
injections in CHI part causes most syntax errors.

Message missing failure assessment: In the first
part the errors propagation in a FlexRay-based network
were evaluated. These errors have potential ability to
generate failures in the network. In this part, the
message missing failure is assessed as the result of the
fault injection. So, the messages that has been sent by
node 2, is checked. This node has two slot IDs in static
window and two slot IDs in dynamic window, and

message transmission in dynamic window is done
randomly (it can be occurred or not). As each
experiment lasts 3 communication cycles, this node
sends totally 9 messages during each experiment (6
messages for static window and 3 messages for
dynamic window).

 For assessing this failure some counters are used.
For instance, we use a counter for counting the sent
messages in node 2, and a counter for counting the
received messages from node 2 in node 4. So, by
knowing the number of generated messages in node 2
and the number of sent messages in node 2 and the
number of valid received messages in node 4, we can
investigate the message missing rate in this network.

Table 2 shows the message missing rate after fault
injections in the FlexRay parts. As it illustrates, the
fault injections in CSP, CHI and POC lead to most
message missing failures. As expected from the errors
propagation results, the results of message missing
failures in CSP and CHI are usual but the results of
POC are unusual. In spite of its low error propagation,
this part causes high message missing rate. It is because
of the modes changing that occur after injecting the
faults in this part. As this part controls the operation of
other parts, any fault that injected in this part can
change the operating mode of other parts of the node,
whereas it doesn't generate errors.

In Figure 2 the message missing failures in static
window are shown. Like table 2, fault injection in CSP,

Table 1. Effect of fault injection in FlexRay parts

FlexRay
Parts

No. of
Faults

Syntax Errors Content Errors Boundary
Violation Errors

% # % # %
CODEC 9300 457 4.91 2 0.02 164 1.76

MAC 4100 175 4.26 53 1.29 159 3.87
CSP 12480 2939 23.54 1724 13.81 2994 23.99
POC 2800 13 0.46 0 0.00 0 0.00
CHI 7000 1745 24.92 204 2.91 635 9.07

All Parts 35680 5329 14.93 1983 5.55 3952 11.07

Table 2. Message missing failures in FlexRay
network

FlexRay
part

No. of
faults

No. of
experiments

including failure
Total

messages

Missed
messages

% # %
CODEC 9300 634 6.81 73700 3033 7.27

MAC 4100 996 24.29 36900 4046 10.96
CSP 12480 6444 51.63 112320 29412 26.19
POC 2800 1013 36.17 25200 5466 21.69
CHI 7000 3658 52.25 63000 14807 23.50

All parts 35680 12745 35.72 311120 56764 18.25

193193193

CHI and POC part of the FlexRay cause most failures.
The message missing failure in dynamic window is
shown in Figure 3. Also in dynamic window CSP, CHI
and POC generates most message missing failures but
its rate is less than static window.

5. Conclusions

This paper assessed the error propagation and its
effects of message missing failures in a FlexRay-based
network. The assessment was based on about 35680
bit-flip fault injections inside different parts of the
FlexRay communication. To do this, a FlexRay
communication controller was modeled by Verilog
HDL at the behavioral level. This HDL model of the
controller was exploited to setup a FlexRay-based
network composed of four nodes. The results of fault
injection can be divided into two categories. In the first
category, the percentages of faults resulting in the three
kinds of errors, namely, content errors, syntax errors
and boundary violation errors are characterized. Then
in second category, by considering the error
propagation results, the message missing failures that
occur in the network were assessed. The results showed
about 20% of messages that were sent in static window
led to message missing failures and about 13% of
messages that were sent in dynamic window led to
message missing failures. The dependencies of fault

locations (FlexRay parts) to this failure were also
assessed. The results showed that the controller host
interface and the clock synchronization process of the
FlexRay were most sensitive to the message missing
failures. The coding and decoding unit of the FlexRay
was least sensitive to this failure.

6. References

[1] H. Kopetz, “A Comparison of CAN and TTP,” Vienna
University of Technology, Real-Time System Group, Research
Report 23,1998.

[2] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing
Analysis of the FlexRay Communication Protocol,” Proc. of the 18th
Euromicro Conference on Real-Time System, July 2006, pp. 203-
216.

[3] FlexRay Consortium, “FlexRay Communications System -
Protocol Specification,” v2.1 Revision A, December 2005.

[4] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
Automotive Communication Systems,” Proc. of the IEEE, June
2005, vol. 93, no. 6.

 [5] H. Salmani, and S. G.Miremadi, “Assessment of Message
Missing Failures in CAN-based Systems,” Proc. of the Parallel and
Distributed Computing and Networks, 2005, pp. 387-392.

[6] H. Salmani, and S. G. Miremadi “Contribution of Controller
Area Networks Controllers to Masquerade Failures,” Proc. of the
11th Pacific Rim International Symposium on Dependable
Computing, 2005, pp. 310- 316.

[7] H. Sivencrona, P. Johannessen, M. Persson, and J. Torin,
“Heavy-ion Fault Injections in the Time-triggered Communication
Protocol,” Proc. of the Latin American Symposium on Dependable
Computing, 2003, pp. 69-80.

[8] H. Sivencrona, M. Persson, and J. Torin, “Using Heavy-Ion Fault
Injection to Evaluate Fault Tolerance with Respect to Cluster Size in
a Time-Triggered Communication Systems,” Proc. of the IEEE
International Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS-06), April 2003, pp. 171-176.

[9] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin, “Evaluation
of Fault Handling of the Time-Triggered Architecture with Bus and
Star Topology,” Proc. of the International Conference on
Dependable Systems and Networks, June 2003, pp. 123-133.

[10] R. Pallierer, M.Horauer, M. Zauner, A. Steininger, E.
Armengaud, and F. Rothensteiner, “A Generic Tool for Systematic
Tests in Embedded Automotive Communication Systems,” Proc. of
the Embedded World Conference, 2005.

[11] E. Armengaud, F. Rothensteiner, A. Steininger, and M.
Horauer, “A Method for Bit Level Test and Diagnosis of
Communication Services,” Proc. of the IEEE Workshop on Design
& Diagnostics of Electronic Circuits & Systems, 2005.

[12] FlexRay Consortium, “FlexRay Communications System -
Protocol Conformance Test Specification,” v2.1, December 2005.

0

5

10

15
20

25

30

35

CODEC MAC CSP POC CHI All Parts

FlexRay parts

M
es

sa
ge

 m
is

si
ng

 fa
ilu

re
s

(%
)

Figure 2. Message missing failures in
static window

0

5

10

15

20

CODEC MAC CSP POC CHI All Parts

FlexRay parts

M
es

sa
ge

 m
is

si
ng

 fa
ilu

re
s

(%
)

Figure 3. Message missing failures in
dynamic window

194194194

