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Abstract 

 
This paper assesses message missing failures in a 

FlexRay-based network. The assessment is based on 
about 35680 bit-flip fault injections inside different 
parts of the FlexRay communication controller; the 
parts are: controller host interface, protocol operation 
control, coding and decoding unit, media access 
control and clock synchronization process. To do this, 
a FlexRay communication controller is modeled by 
Verilog HDL at the behavioral level. This HDL model 
of the controller is exploited to setup a FlexRay-based 
network composed of four nodes. The results of fault 
injection show that about 35% of faults led to the 
message missing failures. The controller host interface 
and the clock synchronization process of the FlexRay 
were the most sensitive parts to the message missing 
failures. The coding and decoding unit of the FlexRay 
was the least sensitive part to these failures.  
 
1. Introduction 
 

Safety in distributed systems such as automotive 
systems and avionics is of decisive importance due to 
system failures which may threat human life. In a 
distributed system, each node consists of three parts 
[1]: 1) I/O part, 2) host part, and 3) communication 
controller.  

In general, communication activities can be 
triggered either dynamically, in response to an event 
(event-triggered), or statically, at predetermined 
moments in time (time-triggered). Examples of time-
triggered protocols are the SAFEbus, SPIDER, and 
Time-Triggered Protocol (TTP). The main drawback of 
the time-triggered protocols is their lack of flexibility 
[2]. Examples of event-triggered protocols are the 
Byteflight introduced by BMW Company for 
automotive applications, CAN, LonWorks and 

Profibus. The main drawback of the event-triggered 
protocols is their lack of predictability. A large 
consortium of automotive manufacturers and suppliers 
has proposed a hybrid type of protocol, namely, the 
FlexRay communication protocol [3]. The FlexRay 
allows the sharing of the bus among event-triggered 
and time-triggered messages, thus offering the 
advantages of both protocols. It is reported that the 
FlexRay will very likely become the de-facto standard 
for in-vehicle communications [2] [4]. The FlexRay 
defines a communication cycle (bus cycle) as the 
combination of a time-triggered (or static) window, an 
event-triggered (or dynamic) window, a symbol 
window and a network idle time (NIT) window. The 
time-triggered window is similar to TTP, and employs 
a time-division multiple-access (TDMA) mechanism. 
The event-triggered window of the FlexRay protocol is 
similar to Byteflight protocol and uses a flexible 
TDMA (FTDMA) bus access method. The symbol 
window is a communication period in which a symbol 
can be transmitted on the network. The NIT window is 
a communication-free period that specifies the end of 
each communication cycle.  

The importance of safety in critical distributed 
applications signals to pay specific attention to the 
reliability of communication protocols. One way to 
assess the reliability of communication protocols is by 
fault injection. In [5], a simulation-based fault injection 
has been used for the assessment of message missings 
in the CAN protocol. Effects of masquerade failures 
have been investigated using a simulation-based fault 
injection in the CAN protocol [6]. Evaluation of TTP/C 
communication controller by heavy-ion fault injection 
(hardware-based fault injection) has been performed in 
[7]. The purpose of the experiments in that paper was 
to validate the fail silence property of the TTP/C by 
injecting faults in a single node. The relationship 
between the number of nodes in a cluster and the 
slightly-off-specification (SOS) failures has been 
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assessed using heavy-ion fault injection [8]. In [9], the 
TTP/C protocol with bus and star topologies has been 
investigated using SWIFI fault injection. Here, the 
effects of the SOS failures in the bus and star 
topologies with respect to the start of frame 
transmission have been studied. In [10] [11], a generic 
tool was developed for monitoring and diagnosis of a 
FlexRay-based system as well as for a CAN-based 
system. This tool has been used by the FlexRay 
consortium to perform extended fault injection for 
evaluating of the FlexRay communication protocol. 
One important limitation of this tool is that faults 
cannot be injected inside different parts of the FlexRay 
protocol. 

This paper assesses the message missing failures by 
injecting 35680 bit-flip faults inside different parts of 
the FlexRay protocol. The assessment is based on 
faults which disturb the message sending and message 
receiving in a FlexRay-based network. To do this, a 
FlexRay communication controller is modeled by 
Verilog HDL at the behavioral level. This HDL model 
of the controller is exploited to setup a FlexRay-based 
network composed of four nodes. The results of fault 
injection can be divided into two main categories: 1) 
the faults resulting in the message missing failures in 
the FlexRay network are assessed. Here, the message 
missing failures that occurred in time-triggered and 
event-triggered window of the FlexRay communication 
cycle are evaluated. Also, the sensitive points of the 
FlexRay protocol to the message missing failures are 
identified; 2) the faults resulting in the three kinds of 
errors, namely, content errors, syntax errors and 
boundary violation errors are characterized. Here, the 
most sensitive and the less sensitive points of the 
FlexRay protocol to faults are identified.  

This paper is organized in five sections. Section 2 
presents the message missing failures and error models 
found in the FlexRay protocol. The experimental setup 
is given in section 3, and the results are presented in 
section 4. The last section concludes the work. 
 
2. Error model and message missing failure 
 

Error models: The FlexRay protocol has different 
mechanisms for detecting errors in the controller. At 
the end of each time slot, frame and symbol process 
(FSP) part checks the presence of any error in that slot 
and informs the host about it. This protocol defines 
three main errors that can occur in each slot: Syntax 
error, content error and boundary violation error. The 
syntax error denotes the presence of a syntactic error in 
a time slot, the content error denotes the presence of an 
error in content of a received frame and boundary 

violation error denotes whether a boundary violation 
occurred at boundary of the corresponding slot. 

Message missing failures: Faults can disturb 
sending or receiving of a message in a node of a 
distributed system and cause a message to be missed. 
In this paper the message missing failures are assessed 
in two aspects: 

1- Because of a fault in the communication 
controller of the sender node, it does not send its 
message. 

2- Because of a fault in the communication 
controller of the sender node, it sends its message 
incorrectly on the network, thus, the message 
won't be accepted in receiver nodes. 

 In this experiment we assumed that the host is fast 
enough to generate the messages for sending, and to 
read the messages from communication controller. 
Meanwhile, the number of generated messages by the 
host is exactly equal to the number of the IDs that has 
been allocated to that host.  
 
3. Experimental setup 
 

In order to perform an experiment on the FlexRay 
controller a network consisting of nodes that have this 
controller should be set up. So, a model of FlexRay 
controller has been implemented at behavioral level 
according to the FlexRay protocol specification [3]. 
This controller has been implemented by hardware 
description language, Verilog, and Modelsim 6.1 
simulator. This FlexRay controller has been tested 
according to the FlexRay protocol conformance test 
specification [12]. 

The implemented controller has usual capabilities of 
FlexRay protocol such as sending and receiving the 
static and dynamic frames and symbols. This controller 
according to the specifications in [3] has six parts to 
perform its functions: controller host interface (CHI), 
protocol operation control (POC), clock 
synchronization process (CSP), frame and symbol 
process (FSP), media access control (MAC), coding 
and decoding (CODEC). In addition, instead of a real 

Figure 1. Experimental setup 
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application, a data generator is implemented to 
generate static frames with fixed length and dynamic 
frames with variable length at the start of the 
communication cycles.  

After that, a cluster is formed consisting of 4 nodes 
with single bus topology. Any node is allowed to send 
and receive frames on communication channel. As 
depicted in figure 1, faults are injected in node 2 and 
their effects are observed in node 4. After each fault 
injection, the results in node 4 will be saved. Each node 
on this network consists of three main parts: Host that 
generates the frames, a controller host interface (CHI) 
and at lowest part there is communication controller 
(CC). In this experiment, faults are injected in five 
parts of the communication controller of the node 2, 
including CHI, POC, CSP, MAC and CODEC. The 
FSP part checks the correct timing of received frames 
with respect to the TDMA scheme, applies further 
syntactical tests to received frames, and checks the 
semantic correctness of received frames [3]. Thus, for 
the reason that the FSP part doesn’t have any role in 
transmitting frames and error propagation to other 
nodes, there is no fault injection in the FSP part. The 
effects of fault injection are observed in 
communication controller of the node 4 by FSP part.  
 
4. Experimental results 
 
In this assessment, each experiment lasts for 3 
communication cycles, in cycle 1 the faults are 
injected, and in cycles 1 through 3 the effects of fault 
injection are assessed. The results of fault injections are 
divided into two categories: 1) error propagation 
evaluation, and 2) message missing failure assessment. 
Following, these two categories will be discussed. 

Error propagation evaluation: As discussed, the 
FlexRay protocol has defined three main error models 
that can occur in this protocol; these error models 
include syntax error, content error and boundary 
violation error. After the fault injection into node 2 in 
network, we investigate received errors in node 4.  
Table 1 contains the results of this experiment. As it 
shows, the fault injections in CSP part causes most 
content errors and boundary violation errors; the fault 
injections in CHI part causes most syntax errors. 

Message missing failure assessment: In the first 
part the errors propagation in a FlexRay-based network 
were evaluated. These errors have potential ability to 
generate failures in the network. In this part, the 
message missing failure is assessed as the result of the 
fault injection. So, the messages that has been sent by 
node 2, is checked. This node has two slot IDs in static 
window and two slot IDs in dynamic window, and  

message transmission in dynamic window is done 
randomly (it can be occurred or not). As each 
experiment lasts 3 communication cycles, this node 
sends totally 9 messages during each experiment (6 
messages for static window and 3 messages for 
dynamic window). 

 For assessing this failure some counters are used. 
For instance, we use a counter for counting the sent 
messages in node 2, and a counter for counting the 
received messages from node 2 in node 4. So, by 
knowing the number of generated messages in node 2 
and the number of sent messages in node 2 and the 
number of valid received messages in node 4, we can 
investigate the message missing rate in this network. 

Table 2 shows the message missing rate after fault 
injections in the FlexRay parts. As it illustrates, the 
fault injections in CSP, CHI and POC lead to most 
message missing failures. As expected from the errors 
propagation results, the results of message missing 
failures in CSP and CHI are usual but the results of 
POC are unusual. In spite of its low error propagation, 
this part causes high message missing rate. It is because 
of the modes changing that occur after injecting the 
faults in this part. As this part controls the operation of 
other parts, any fault that injected in this part can 
change the operating mode of other parts of the node, 
whereas it doesn't generate errors.  

In Figure 2 the message missing failures in static 
window are shown. Like table 2, fault injection in CSP, 

 
Table 1. Effect of fault injection in FlexRay parts 

 

FlexRay 
Parts 

No. of 
Faults 

Syntax Errors Content Errors Boundary 
Violation Errors 

# % # % # % 
CODEC 9300 457 4.91 2 0.02 164 1.76 

MAC 4100 175 4.26 53 1.29 159 3.87 
CSP 12480 2939 23.54 1724 13.81 2994 23.99 
POC 2800 13 0.46 0 0.00 0 0.00 
CHI 7000 1745 24.92 204 2.91 635 9.07 

All Parts 35680 5329 14.93 1983 5.55 3952 11.07 
 

Table 2. Message missing failures in FlexRay 
network 

 

FlexRay 
part 

No. of 
faults 

No. of 
experiments 

including failure 
Total 

messages  

Missed 
messages 

# % # % 
CODEC 9300 634 6.81 73700 3033 7.27 

MAC 4100 996 24.29 36900 4046 10.96 
CSP 12480 6444 51.63 112320 29412 26.19 
POC 2800 1013 36.17 25200 5466 21.69 
CHI 7000 3658 52.25 63000 14807 23.50 

All parts 35680 12745 35.72 311120 56764 18.25 
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CHI and POC part of the FlexRay cause most failures. 
The message missing failure in dynamic window is 
shown in Figure 3. Also in dynamic window CSP, CHI 
and POC generates most message missing failures but 
its rate is less than static window.  
 
5. Conclusions 
 

This paper assessed the error propagation and its 
effects of message missing failures in a FlexRay-based 
network. The assessment was based on about 35680 
bit-flip fault injections inside different parts of the 
FlexRay communication. To do this, a FlexRay 
communication controller was modeled by Verilog 
HDL at the behavioral level. This HDL model of the 
controller was exploited to setup a FlexRay-based 
network composed of four nodes. The results of fault 
injection can be divided into two categories. In the first 
category, the percentages of faults resulting in the three 
kinds of errors, namely, content errors, syntax errors 
and boundary violation errors are characterized. Then 
in second category, by considering the error 
propagation results, the message missing failures that 
occur in the network were assessed. The results showed 
about 20% of messages that were sent in static window 
led to message missing failures and about 13% of 
messages that were sent in dynamic window led to 
message missing failures. The dependencies of fault 

locations (FlexRay parts) to this failure were also 
assessed. The results showed that the controller host 
interface and the clock synchronization process of the 
FlexRay were most sensitive to the message missing 
failures. The coding and decoding unit of the FlexRay 
was least sensitive to this failure.  
 
6. References 
 
[1] H. Kopetz, “A Comparison of CAN and TTP,” Vienna 
University of Technology, Real-Time System Group, Research 
Report 23,1998. 
 
[2] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing 
Analysis of the FlexRay Communication Protocol,” Proc. of the 18th 
Euromicro Conference on Real-Time System, July 2006, pp. 203-
216.  
 
[3] FlexRay Consortium, “FlexRay Communications System - 
Protocol Specification,” v2.1 Revision A, December 2005. 
 
[4] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in 
Automotive Communication Systems,” Proc. of the IEEE, June 
2005, vol. 93, no. 6. 
 
 [5] H. Salmani, and S. G.Miremadi, “Assessment of Message 
Missing Failures in CAN-based Systems,” Proc. of the Parallel and 
Distributed Computing and Networks, 2005, pp. 387-392. 
 
[6] H. Salmani, and S. G. Miremadi “Contribution of Controller 
Area Networks Controllers to Masquerade Failures,” Proc. of the 
11th Pacific Rim International Symposium on Dependable 
Computing, 2005, pp. 310- 316. 
 
[7] H. Sivencrona, P. Johannessen, M. Persson, and J. Torin, 
“Heavy-ion Fault Injections in the Time-triggered Communication 
Protocol,” Proc. of the Latin American Symposium on Dependable 
Computing, 2003, pp. 69-80. 
 
[8] H. Sivencrona, M. Persson, and J. Torin, “Using Heavy-Ion Fault 
Injection to Evaluate Fault Tolerance with Respect to Cluster Size in 
a Time-Triggered Communication Systems,” Proc. of the IEEE 
International Workshop on Design and Diagnostics of Electronic 
Circuits and Systems (DDECS-06), April 2003, pp. 171-176. 
 
[9] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin, “Evaluation 
of Fault Handling of the Time-Triggered Architecture with Bus and 
Star Topology,” Proc. of the International Conference on 
Dependable Systems and Networks, June 2003, pp. 123-133.  
 
[10] R. Pallierer, M.Horauer, M. Zauner, A. Steininger, E. 
Armengaud, and F. Rothensteiner, “A Generic Tool for Systematic 
Tests in Embedded Automotive Communication Systems,” Proc. of 
the  Embedded World Conference, 2005. 
 
[11] E. Armengaud, F. Rothensteiner, A. Steininger, and M. 
Horauer, “A Method for Bit Level Test and Diagnosis of 
Communication Services,” Proc. of the IEEE Workshop on Design 
& Diagnostics of Electronic Circuits & Systems, 2005. 
 
[12] FlexRay Consortium, “FlexRay Communications System - 
Protocol Conformance Test Specification,” v2.1, December 2005. 

0

5

10

15
20

25

30

35

CODEC MAC CSP POC CHI All Parts

FlexRay parts

M
es

sa
ge

 m
is

si
ng

 fa
ilu

re
s 

(%
)

Figure 2. Message missing failures in 
static window 
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Figure 3. Message missing failures in 
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