
A Fast Untestability Proof for SAT-based ATPG
Daniel Tille Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany

{tille,drechsle}@informatik.uni-bremen.de

Abstract—Automatic Test Pattern Generation (ATPG) based on
Boolean satisfiability (SAT) has been shown to be a beneficial
complement to traditional ATPG techniques. SAT solvers work on
instances given in Conjunctive Normal Form (CNF). The required
transformation of the ATPG problem into CNF is one main part
of SAT-based ATPG and needs a significant portion of the overall
run time. Solving the SAT instance is the other main part. Here,
the time needed is often negligible – especially for easy-to-classify
untestable faults.

This paper presents a preprocessing technique that speeds up
the classification of untestable faults by accelerating the SAT
instance generation. This increases the robustness of the entire
ATPG process. The efficiency of the proposed method is shown
by experiments on large industrial designs.

I. INTRODUCTION

The continuous growth of today’s circuit designs requires
a constant improvement of state-of-the-art Electronic Design
Automation (EDA) tools. The post-production test is a vital
step in the design flow. It ensures the functional correctness
of a circuit. To guarantee high quality production, this step is
very important.

In practice, a fault model is usually used to abstract from
the physical defects. To test the circuit for correctness with
respect to the fault model applied, test patterns have to be
computed. If there exists a test pattern for a particular fault
F , then F is called testable; otherwise F is called untestable.

In this work, the stuck-at fault model is used. To generate a
test pattern for a stuck-at fault, there exist many sophisticated
algorithms. The D-algorithm [13] was the first algorithm that
traversed the search space by backtracking. Improvements
concerning decision strategies and propagation/justification
were given in PODEM [6] and FAN [5]. Further algorithms
are Socrates [14] and Hannibal [8]. All these algorithms have
in common that they directly work on the circuit structure.

In contrast, there also exist approaches based on Boolean
satisfiability (SAT) [9], [16], [17], [3]. SAT-based methods
proved to be highly advantageous in particular for hard-to-
solve problem instances. Nowadays, SAT-based ATPG is a
promising complement to the classical algorithms.

Since most modern SAT solvers (e.g. [11], [12], [7], [4])
work on an instance representation in Conjunctive Normal
Form (CNF), a new SAT instance has to be generated for each
fault1. In [18], [10], it was shown that the run time needed for

1In preliminary studies, we also experimented with a circuit SAT solver,
but did not consistently observe improvements in run time or memory use for
ATPG.

instance generation is a significant part of the overall run time
and often even dominates it. Especially CNFs of untestable
faults can mostly be solved very easily, because in industrial
circuits the reason for the conflict is often bounded locally.
In those cases, building the entire SAT instance is a large
overhead.

With the growth of the industrial designs, the number
of untestable faults increases considerably. Today’s circuits
contain hundreds of thousands of untestable faults. On the
one hand, the relative number of untestable faults with respect
to the total number of faults, i.e. the fault coverage, have
kept unchanged over the last years. On the other hand, all
untestable fault (after fault collapsing) have to be addressed
explicitly where testable faults could be classified by using a
fault simulator. Therefore it may happen that more untestable
faults than testable faults are addressed during ATPG although
only a small number of all faults are untestable.

As a result, avoiding the above mentioned overhead for
untestable faults can improve the robustness of the overall
SAT-based ATPG process.

This paper presents a preprocessing method with the objec-
tive to accelerate the SAT instance generation by only building
partial CNFs. During a detailed motivation it is shown that the
technique is only useful for easy-to-classify untestable faults.
Those faults occur frequently in industrial designs where
restrictions to the primary inputs have to be applied.

However, due to the incremental manner of the technique,
using the preprocess does not slow down the ATPG process
for other circuits. As a result, the overall robustness can be
increased.

This work is structured as follows: in the next section a
brief overview on SAT-based ATPG is given. In Section III
the motivation is presented in more detail. A preprocessing
technique is discussed in Section IV. Experimental results
and conclusions are given in Section V and Section VI,
respectively.

II. PREVIOUS WORK

To make the paper self-contained, this section presents a
short overview on SAT-based ATPG. First, a general expla-
nation is given. Afterwards, the generation of a CNF for a
specific fault is illustrated. Finally, a run time analysis provides
further insight.



output cone

transitive fanin

fault location

Fig. 1. Extraction of the influenced circuit parts

A. SAT-based ATPG

To create a test pattern for a stuck-at fault, an assignment
to the inputs has to be found that guarantees at least one
different output value between the faulty circuit and the
faultless circuit. While classical algorithms work directly on
the circuit structure to find such an assignment, in SAT-based
ATPG the question whether there exists a test pattern for a
particular fault F is encoded into a Boolean formula. This
formula is satisfiable if, and only if, F is testable. Then, a
SAT solver proves either satisfiability or unsatisfiability of the
formula. A test pattern – if it exists – can be derived directly
from the satisfying assignment.

Modern SAT solvers work on instances represented in
Conjunctive Normal Form (CNF). A CNF is a conjunction
of clauses, a clause is a disjunction of literals and a literal is
the positive or negative occurrence of a Boolean variable. A
SAT instance is satisfied if all clauses are satisfied; a clause is
satisfied if at least one of its literals is satisfied; a positive or a
negative literal is satisfied if the respective variable is assigned
positively or negatively, respectively.

How to transform an ATPG problem into a SAT instance is
explained in the following.

B. Circuit-to-CNF Conversion

Consider the schematically depicted circuit in Figure 1.
Here, a brief overview on the circuit-to-CNF conversion is
given.

After the fault location has been marked, the fault site’s out-
put cone is traversed by a depth first search. This determines
all Primary Outputs (POs) that may be influenced by the fault,
i.e. all POs where a difference between the faulty circuit and
the faultless circuit could be observed. The transitive fanin of
these POs influences the detection of the fault and must be
marked, too. To generate the SAT instance for the given fault,
this part of the circuit has to be considered.

As introduced in [16], two Boolean variables gc and gf are
assigned to each gate g in order to represent the gate’s value
in the correct circuit and in the faulty circuit, respectively.
A gate’s CNF is generated by building its characteristic

function [19]. The conjunction of all CNFs results in the CNF
for the circuit.

To find a difference between the correct circuit and the
faulty circuit, an additional Boolean variable gd is assigned
to each gate. If the variable gd is true, the gate’s values in
both circuits differ. Therefore, the constraint

gd = 1→ gc 6= gf

is added to the CNF in form of the two clauses

(gd + gc + gf ) · (gd + gc + gf ).

To compute a test pattern for a fault, there must be a path
from the fault site to an output, where the assignment of each
variable gd is true. Following the notation in [16], this path
is called a D-chain. Therefore, if a gate is on a D-chain,
one successor must be on a D-chain as well. This property
– encoded by the constraint

gd →
n∨

i=1

hi
d,

where the gates h1, . . . , hn denote the successors of gate g –
is also added to the CNF. Moreover, the variable gf

d , where
the gate gf represents the faulty gate, is set to true in order
to inject a difference at the fault site.

As a result, the SAT instance generated this way is satisfi-
able if, and only if, a D-chain exists, i.e. the SAT instance is
satisfiable if, and only if, the fault is testable.

Finally, as described earlier, this CNF is given to a SAT
solver. After the classification, it is completely discarded.
Therefore, the circuit-to-CNF conversion has to be done for
each single target fault.

C. Run Time Analysis

To judge the effort of the repeatedly performed instance
generation step with respect to the overall algorithm, we made
a detailed run time analysis [18]. State-of-the-art SAT-based
ATPG algorithms were applied to a set of industrial circuits.

Figure 2 gives a brief overview on this analysis on four
circuits. The two basic steps – SAT instance generation
and solving – are compared with respect to their run time.
Moreover, the classification result was included into this com-
parison. It is distinguished between testable faults (denoted
by ‘+’) and untestable faults (denoted by ‘×’). Moreover, the
dashed lines indicate where both run times are equal. Thus it
can easily be seen which part requires more run times.

It can be observed that:
• surprisingly, the generation time exceeds often the solving

time.
• the solving time of testable instances exceeds mostly the

solving time of untestable instances significantly.
Furthermore, it can be seen that there are two classes

of untestable faults: easy-to-classify and hard-to-classify
untestable faults.



(a) (b)

(c) (d)

Fig. 2. Run time comparison for individual target

Easy-to-classify untestable faults can often be classified very
quickly. They have their origin often in local redundancy or in
restrictions to the primary inputs. Examples are shown in all
four diagrams in Figure 2: the untestable faults placed exactly
on the x-axis. It can be seen that once a SAT instance is built
up, the SAT solver proofs unsatisfiability immediately. The
instance generation is the bottleneck for those faults.

Hard-to-classify faults are contrary. Although the time
needed to generate the instance is often quite small, the solving
process is time-consuming. Examples can be seen on or near
the y-axis in Figure 2(c) and in Figure 2(d).

For more details about this run time analysis we refer
to [18].

III. MOTIVATION

This section gives the motivation for a preprocess, that is
able to accelerate the SAT-based ATPG for untestable faults.

Following the observations in Section II-C, untestability is
often proven in almost no time, i.e. unsatisfiability of the
respective SAT instance is shown in a few propagation steps
only. In this case, the conflict occurs due to a contradiction in
the circuit. Figure 3 gives an example.

In the circuit C, depicted in Figure 3(a), a stuck-at 1 fault
is modeled on signal line c. Obviously, the fault is untestable,
since it is impossible to inject a difference (signal b has to be
set to 0) and to propagate it (signal b has to be set to 1) at the
same time.

Figure 3(b) shows the SAT instance φC , describing this
particular fault. The notation follows Section II-B. The correct
and the faulty circuit are modeled by clauses ω1, . . . , ω6 and
ω7, . . . , ω9, respectively. The D-chain constraints are given by
clauses ω10, . . . , ω14. Clauses ω15 and ω16 contain exactly one

c

sa−1
a

b d

(a) Circuit C

ω1 : (cc + ac + bc)
ω2 : (cc + ac)
ω3 : (cc + bc)
ω4 : (dc + bc + cc)
ω5 : (dc + bc)
ω6 : (dc + cc)
ω7 : (df + bc + cf )
ω8 : (df + bc)
ω9 : (df + cf )
ω10 : (dd + dc + df )
ω11 : (dd + dc + df )
ω12 : (cd + cc + cf )
ω13 : (cd + cc + cf )
ω14 : (cd + dd)
ω15 : (cf )
ω16 : (cd)

(b) CNF φC

Fig. 3. Example for an untestable fault

literal. Such clauses are called unit clauses and they are used to
set a variable to a certain value. In this example, they represent
the injection of the fault and the injection of the difference at
the fault site, respectively.

Due to the unit clauses ω15 and ω16, a SAT solving
algorithm can propagate within the CNF2. This propagation
will lead to the two clauses ω′3 = (bc) and ω′5 = (bc), i.e. the
variable bc has to be assigned positively as well as negatively.
This is a conflict that makes the CNF unsatisfiable. Therefore,
analog to the circuit-based algorithm, the fault is proven to be
untestable by a directly implied contradiction.

In both classical ATPG and SAT-based ATPG, this con-
tradiction is bounded locally. Even if the circuit C is a
subcircuit of a large design, denoted by C ′, the conflict occurs
immediately. Let φC′ be the CNF that describes C ′. Since φC′

contains φC as unsatisfiable core3, the SAT instance is proven
to be unsatisfiable just by a few propagation steps.

Those unsatisfiable cores can be found frequently in SAT-
based ATPG for industrial designs. With the growing design
sizes, this number even increases. However, the reason for
untestability may not occur as directly as shown in the
example, but rather due to restrictions to the primary inputs.
The fast classification can be made thus easily anyway.

In both cases, a SAT instance describing an untestable fault

2For details on how to effectively solve a SAT problem see e.g. [2].
3A CNF χ is called unsatisfiable core of an unsatisfiable CNF χ′ if χ is

a sub-CNF of χ′ that is already unsatisfiable.



output cone
bounded

fault location

transitive fanin

Fig. 4. Extraction of circuit parts in a preprocessing step

is generated completely, although only an instance describing
an unsatisfiable core, i.e. describing the subcircuit, would be
sufficient to classify the fault. As mentioned in Section II-C,
the run time for generating an instance is a significant part
of the overall run time. Building a complete instance where a
partial one is sufficient is, therefore, an avoidable overhead.

A technique to overcome this drawback, is proposed in the
next section.

IV. PREPROCESSING METHOD

As mentioned in the previous section, untestable faults in
industrial designs are often easy to classify since the reason for
the untestability is bounded locally. During preliminary studies
it turned out that most untestable faults (about 90%, more
detailed information is given in Section V) can be classified
by considering a smaller part of the circuit during the circuit-
to-CNF conversion than shown in Figure 1.

This part is determined as follows. As in the normal circuit-
to-CNF conversion – described in Section II-B – the fault
site’s output cone is traversed by a depth first search towards
the primary outputs. However, since the contradiction in easy-
to-classify faults can often be found near the fault site, this
traversal terminates after reaching a certain depth in the circuit.
Evaluations show that considering all fanout gates with a depth
of two is sufficient. That means, after traversing the Fanout
Free Region (FFR) including the fault site and all directly
successing FFRs, the search algorithm is stopped.

Since restrictions to the primary inputs often result in
untestability, the transitive fanins of all fanout gates deter-
mined as described above are transformed into CNF. Finally,
all restrictions to the primary inputs are added to the SAT
instance.

Figure 4 presents an illustration. It can be seen that the
circuit part, considered during circuit-to-CNF conversion, is
significantly smaller than using the traditional method (illus-
trated in Figure 1). Even if the fault site is located near the
primary outputs, mostly there is a considerable difference with
respect to the size.

The observations made thus far offer the opportunity of ap-
plying a preprocessing step. Instead of building the entire SAT

Algorithm 1 Pseudo code of the SAT-based ATPG process
using the preprocessing step

1: list<gate> fanouts;
2: list<gate> POs;
3: CNF cnf;
4: SAT_Solver solver;
5: fanouts=bounded_dfs();
6: for all g ∈ fanouts do
7: cnf.add(g.transitive_fanin);
8: end for
9: solver.set_timeout(small);

10: state=solver.solve();
11: if state == UNSAT then
12: return UNSAT;
13: else
14: solver.clear_assignments();
15: POs=dfs();
16: for all g ∈ POs do
17: cnf.add(g.transitive_fanin);
18: end for
19: solver.set_timeout(normal);
20: state=solver.solve();
21: return state;
22: end if

instance as shown Figure 1 only a subcircuit is transformed
into CNF (as shown in Figure 4). This partial SAT instance is
given to the SAT solver. If the considered fault is untestable,
this CNF may be sufficient to classify the fault correctly.

Since the objective is to accelerate the instance generation
step of easy-to-classify untestable faults, the timeout limit of
the SAT solver can be very small. If the CNF is not proven to
be unsatisfiable immediately, it is unlikely that a classification
can be given at all.

If the CNF is proven to be unsatisfiable, the fault is
proven to be untestable. Due to the smaller size, the instance
generation process can be accelerated. In this context, the
partial SAT instance is an unsatisfiable core of the complete
SAT instance, that is generated using the traditional method.

Otherwise, if this CNF is satisfiable or the SAT solver aborts
with a timeout, no fault classification can be given. Then, the
entire SAT instance has to be built up. All variable assignments
in the SAT solver are cleared and the partial CNF is augmented
by the missing part of the entire CNF. The already generated
CNF as well as the learned information gathered during the
first solving process are kept. Afterwards, the SAT solver
is started with the normal timeout limit. This procedure is
generally known as Incremental SAT [15].

Algorithm 1 summarizes the presented methodology. First,
the fanout gates with a depth of two are calculated by
a bounded depth first search algorithm (line 5). Then the
transitive fanins of those gates are converted into CNF (lines 6-
8). Afterwards, the SAT solver is started with a small timeout
limit. If the SAT instance is unsatisfiable, the fault is classified



as untestable and the algorithm terminates (line 12).
Otherwise, all assignments to the SAT variables are cleared

and the primary outputs structurally influenced by the fault
site are computed by the depth first search algorithm (line 14
and 15, respectively). The fanin cones of those POs are added
to the partial CNF (lines 16-18). This SAT instance is solved
with normal timeout limit. The result (satisfiable, unsatisfiable
or timeout) gives the classification result (testable, untestable
or aborted, respectively).

V. EXPERIMENTAL RESULTS

In this section, experimental results are given. The prepro-
cessing approach, described in the last section, was imple-
mented as a prototype into the ATPG tool of NXP Semicon-
ductors. MiniSat [4] was used to solve the SAT instances.
All experiments were carried out on an Intel Xeon System
(3.4 GHz, 32 GByte, Linux).

Two benchmark sets have been considered: the publicly
available ITC’99 benchmarks [1] and industrial circuits, pro-
vided by NXP Semiconductors Germany GmbH, Hamburg,
Germany. The names of the NXP benchmarks indicate the
number of elements contained in a circuit, e.g. the circuit
p3852k consists of approximately 3.85 million elements.

Table I gives an overview on the overall run times of
the ATPG process. The circuit’s name is shown in the first
column. The second column presents the number of targets,
i.e. the number of faults after fault collapsing. The number of
untestable targets is given in the third column.

Two configurations have been considered. Results of the
traditional SAT-based ATPG, explained in [3], are given in
column Traditional. Column Improved presents the results of
the approach described in Section IV. For each method, the
total run time for the ATPG process and the number of aborts
are presented in column Time and column Abort, respectively.
In the traditional method, an abort occurs after 10 MiniSat
restarts. As explained in the last section, the preprocess needs
only a small timeout limit. The solving process of the partial
CNF is aborted after 2 MiniSat restarts. If a complete SAT
instance has to be built up, the solving process on that CNF is
aborted after 10 restart in total, i.e. the restart counter is not
reset after the preprocess. This guarantees that the preprocess
does not slow down the solving process significantly for
testable faults or hard-to-classify untestable faults.

Column Success rate gives the portion of untestable faults
that can be classified by the preprocess with respect to the
total number of untestable faults. It can be seen that for most
industrial circuits more that 90% of all untestable faults can
be classified correctly using the proposed preprocess.

The run time can be reduced on almost all industrial
designs. Only on circuits p77k and p99k a small slowdown
can be observed. On p2787k, on the other hand, there is an
acceleration by a factor of more than two.

As expected – since the proposed technique aims for ac-
celerating the SAT instance generation time of large industrial
designs – the influence on the ITC’99 benchmarks is quite

(a) (b)

(c) (d)

Fig. 5. Run time comparison for individual target using the preprocessing
step

small. For the same reason, the number of aborts changes only
slightly. While it is increased for circuits p456k and p462k,
it can be decreased for the designs named p2787k, p3327k
and p3852k. The differences can be explained by the changed
variable allocation process using the proposed technique. Since
different test patterns may be calculated, different faults are
targeted.

Figure 5 presents a run time analysis for ATPG runs
employing the preprocessing technique. Again, testable faults
are denoted by ‘+’ and untestable faults are denoted by ‘×’.
It can be seen clearly that the generation time of almost all
easy-to-classify untestable faults can be reduced significantly.
All clusters of untestable faults on the x-axis “disappeared”.

VI. CONCLUSION AND FUTURE WORK

The contribution of this paper is an incremental method
to speed-up SAT-based test pattern generation for untestable
faults in large industrial circuits. The bottleneck of classifying
easy-to-classify untestable faults – the SAT instance generation
– is accelerated. This is done by generating only a partial CNF
during a preprocess.

The experimental results confirm that the robustness of SAT-
based ATPG can be increased using the new technique. While
the impact on small circuits is slight, the overall run time of
the ATPG process for large industrial circuits, containing many
untestable faults, can be significantly reduced by a factor of
more than two.

It is focus of future work to combine the proposed method
with other incremental instance generation schemes.

ACKNOWLEDGEMENTS

This work was funded in part by DFG grant DR 287/15-1.



TABLE I
RUN TIMES FOR THE ATPG PROCESS

Traditional Improved
Circuit Targets Untest. Abort Time Success rate [%] Abort Time

b13 836 26 0 0:03m 76.9 0 0:03m
b14 22,700 156 0 0:56m 90.1 0 0:57m
b15 21,850 727 0 1:07m 41.9 0 1:04m
b17 76,493 1,958 0 2:54m 52.4 0 2:39m
b18 264,043 2,844 0 9:06m 85.4 0 9:03m
b20 45,461 319 0 2:14m 89.5 0 2:12m
b21 46,156 378 0 2:22m 90.9 0 2:17m
b22 67,540 344 0 2:48m 91.4 0 2:53m

p44k 64,105 2,385 0 49:21m 96.0 0 43:22m
p77k 163,310 9,181 0 0:27m 100.0 0 0:28m
p80k 197,834 124 0 6:33m 98.4 0 5:37m
p88k 147,742 2,640 0 2:14m 94.4 0 2:11m
p99k 162,019 2,141 0 1:35m 78.6 0 1:40m
p141k 267,948 13,815 0 3:02h 98.8 0 2:33h
p177k 268,176 13,840 0 2:37h 98.8 0 2:18h
p456k 740,660 35,396 14 47:23m 90.9 20 37:50m
p462k 673,465 132,249 0 1:10h 81.2 1 1:07h
p565k 1,025,273 28,287 0 6:25m 97.0 0 5:24m

p1330k 1,510,574 44,299 0 1:00h 95.9 0 42:14m
p2787k 2,395,388 651,868 15 15:15h 83.3 9 6:44h
p3327k 4,557,842 109,622 914 73:46h 89.1 903 71:01h
p3852k 5,507,779 164,988 849 39:01h 86.1 813 38:01h

Furthermore, the authors would like to thank Stephan Eg-
gersglüß from the University of Bremen, Germany, and René
Krenz-Bååth from Mentor Graphics, Hamburg, Germany, for
helpful discussions.

REFERENCES

[1] F. Corno, M. Sonza-Reorda, and G. Squillero. RT-level ITC 99
benchmarks and first ATPG results. In Proceedings of the IEEE
Design & Test of Computers, pages 44–53, 2000.

[2] M. Davis, G. Logeman, and D. Loveland. A machine program
for theorem proving. Communications of the ACM, 5(7):394–
397, 1962.

[3] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke,
J. Schloeffel, and D. Tille. On acceleration of SAT-based ATPG
for industrial designs. IEEE Transactions on Computer-Aided
Design for Circuits and Systems, 27(7):1329–1333, 2008.

[4] N. Eén and N. Sörensson. An extensible SAT solver. In
Proceedings of the International Conference on Theory and
Applications of Satisfiability Testing, volume 2919, pages 502–
518, 2004.

[5] H. Fujiwara and T. Shimono. On the acceleration of test genera-
tion algorithms. IEEE Transactions on Computers, 32(12):1137–
1144, 1983.

[6] P. Goel. An implicit enumeration algorithm to generate tests
for combinational logic. IEEE Transactions on Computers,
30(3):215–222, 1981.

[7] E. Goldberg and Y. Novikov. BerkMin: a fast and robust
SAT-solver. In Proceedings of Design, Automation and Test
in Europe, pages 142–149, 2002.

[8] W. Kunz. HANNIBAL: An efficient tool for logic verification
based on recursive learning. In Proceedings of the International
Conference on Computer-Aided Design, pages 538–543, 1993.

[9] T. Larrabee. Test pattern generation using Boolean satisfiability.
IEEE Transactions on Computer-Aided Design for Circuits and
Systems, 11(1):4–15, 1992.

[10] J. Marques-Silva and K. Sakallah. Robust search algorithms
for test pattern generation. In Proceedings of the International
Symposium on Fault-Tolerant Computing, pages 152–157, 1997.

[11] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of
the Design Automation Conference, pages 530–535, 2001.

[13] J. Roth. Diagnosis of automata failures: A calculus and a
method. IBM Journal of Research and Development, 10:278–
281, 1966.

[14] M. Schulz, E. Trischler, and T. Sarfert. SOCRATES: A highly
efficient automatic test pattern generation system. IEEE Trans-
actions on Computer-Aided Design for Circuits and Systems,
7(1):126–137, 1988.

[15] O. Shtrichman. Pruning techniques for the SAT-based bounded
model checking problem. In Proceedings of the Correct Hard-
ware Design and Verification Methods, volume 2144 of LNCS,
pages 58–70, 2001.

[16] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Com-
binational test generation using satisfiability. IEEE Transactions
on Computer-Aided Design for Circuits and Systems, 15:1167–
1176, 1996.

[17] P. Tafertshofer, A. Ganz, and K. Antreich. IGRAINE - an
implication graph based engine for fast implication, justification,
and propagation. IEEE Transactions on Computer-Aided Design
for Circuits and Systems, 19(8):907–927, 2000.

[18] D. Tille and R. Drechsler. Incremental SAT-instance generation
for SAT-based ATPG. In Proceedings of the IEEE Workshop on
Design and Diagnosis of Electronic Circuits and Systems, pages
68–73, 2008.

[19] G. Tseitin. On the complexity of derivation in the propositional
calculus. Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968.
English translation of this volume: Consultants Bureau, N.Y.,
1970, pp. 115–125.


