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Abstract

Determining the equivalence of reversible circuits de-
signed to meet a common specification is considered. The
circuits’ primary inputs and outputs must be in pure logic
states but the circuits may include elementary quantum
gates in addition to reversible logic gates. The specifica-
tion can include don’t-cares arising from constant inputs,
garbage outputs, and total or partial don’t-cares in the un-
derlying target function. The paper explores well-known
techniques from irreversible equivalence checking and how
they can be applied in the domain of reversible circuits. Two
approaches are considered. The first employs decision dia-
gram techniques and the second uses Boolean satisfiability.
Experimental results show that for both methods, circuits
with up to 27,000 gates, as well as adders with more than
100 inputs and outputs, are handled in under three minutes
with reasonable memory requirements.

1. Introduction

Reversible, including quantum, circuits are constructed
as a cascade of gates with no feedback or fanout [12]. These
circuits usually realize a reversible function in which a de-
sired irreversible target function has been embedded. The
embedding is not unique and most often requires the addi-
tion of constant inputs and/or garbage outputs. These inputs
and outputs lead to don’t-care conditions in the reversible
specification. In addition, there can be don’t-care conditions
in the original target function. The problem we address is
whether two given circuits are equivalent with respect to
the target functionality regardless of how they behave for
the don’t-care conditions.

In this paper, we present two approaches to this equiv-
alence checking problem. The common specification can
be completely or incompletely specified. The circuits can
be composed of reversible gates and elementary quantum
gates, and can thus assume multiple internal values, but we

constrain the primary inputs and outputs of the circuits to
assume pure (non-quantum) logic states.

Our research builds on well-known proof techniques
for formal verification of irreversible circuits: decision di-
agrams and (Boolean) satisfiability. The first approach
employs Quantum Multiple-valued Decision Diagrams
(QMDDs) [8, 9] and involves the manipulation of the uni-
tary matrices describing the circuits and additional matrices
specifying the total or partial don’t-cares.

The second approach is based on Boolean satisfiability
(SAT). It is shown that the equivalence checking problem
can be transformed to a SAT instance including constant in-
puts and garbage outputs. Additional constraints are added
to deal with total and partial don’t-cares.

Experiments on a large set of benchmarks show that both
approaches are very efficient. Circuits with up to 27,000
gates, as well as adders with more than 100 inputs and out-
puts, are handled in less than three minutes with reasonable
memory requirements.

For both methods, related work is discussed in the re-
spective sections. Decision diagram approaches for the re-
lated problem of equivalence checking for quantum circuits
can be found in [15, 20]. But that work does not address the
incompletely-specied situation.

The remainder of this paper is structured as follows.
Section 2 provides the necessary background. The cir-
cuit equivalence problem is defined in Section 3 and the
QMDD and SAT based approaches are presented in Sec-
tions 4 and 5. Experimental results are given in Section 6
and the paper concludes with suggestions for further re-
search.

2. Background

2.1. Reversible Functions and Circuits

A logic function is reversible if it maps each input as-
signment to a unique output assignment. Such a function
must have the same number of input and output variables

Please note: Methods introduced in this paper are availabe at www.revkit.org.



X := {x1, . . . , xn}. A circuit realizing a reversible func-
tion is a cascade of reversible gates.

Definition. A reversible gate has the form g(C, T ), where
C = {xi1 , . . . , xik

} ⊂ X is the set of control lines, and
T = {xj1 , . . . , xjl

} ⊂ X is the set of target lines. C may
be empty. The gate operation is applied to target lines iff all
control lines meet the required control conditions. Control
lines and unconnected lines always pass through the gate
unaltered.

Common reversible gates include:

• A multiple control Toffoli gate (MCT) [14] with
target line xj maps (x1, x2, . . . , xj , . . . , xn) to
(x1, x2, . . . , xi1xi2 · · ·xik

⊕ xj , . . . , xn).

• A multiple control Fredkin gate (MCF) [4] has two tar-
get lines xj1 and xj2 . The gate interchanges the values
of the target lines iff the conjunction of all control lines
evaluates to 1.

• A Peres gate (P) [13] has a control line xi, a target
line xj1 and a line xj2 that serves as both a control and
a target. It maps (x1, x2, . . . , xj1 , . . . , xj2 . . . , xn) to
(x1, x2, . . . , xixj2 ⊕ xj1 , . . . , xi ⊕ xj2 , . . . , xn).

Quantum logic is inherently reversible [12] and ma-
nipulates qubits rather than pure logic values. The state
of a qubit for two pure logic states can be expressed as
|Ψ〉 = α|0〉 + β|1〉, where |0〉 and |1〉 denote pure logic
states 0 and 1, respectively, and α and β are complex num-
bers such that |α|2 + |β|2 = 1.

In this work, we consider the following elementary
quantum gates [12]:

• Inverter (NOT): A single qubit is inverted.

• Controlled-NOT (CNOT): The target qubit is inverted
if the control qubit is 1.

• Controlled-V gate: The operation of this gate is ex-
plained in Example 2. The V operation is also known
as a square root of NOT, since two consecutive V op-
eration are equivalent to an inversion.

• Controlled-V+ gate: The V+ gate performs the inverse
operation of the V gate and is also a square root of
NOT.

Example 1. Figure 1 shows a Toffoli realization of a full
adder and a second realization using elementary quantum
gates.

2.2. QMDDs

Quantum Multiple-valued Decision Diagrams (QMDD)
[8, 9] provide for the representation and manipulation of
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Figure 2. QMDD for single V gate

rn × rn complex-valued matrices including the unitary ma-
trices required to represent n-line quantum gates and cir-
cuits with r pure logic states. The QMDD structure is based
on partitioning an rn × rn matrix M into r2 submatrices,
each of dimension rn−1 × rn−1 as shown in Equation 1. A
formal definition of QMDD can be found in [8, 9]. In the
following, we present the concepts by way of the following
example of a single V gate.

M =

⎡
⎣

M0 M1 · · · Mr−1
Mr Mr+1 · · · M2r−2

.

.

.

.

.

.
. . .

.

.

.
M

r2−r
M

r2−r+1 · · · M
r2−1

⎤
⎦ (1)

Example 2. Figure 2(a) shows a V gate in a 3-line circuit.
The unitary matrix describing the behaviour of this gate is
given in Equation 2 where v = 1+i

2 and v+ = 1−i
2 . The

QMDD for this matrix is given in Figure 2(b). The edges
from each nonterminal vertex point to four submatrices in-
dexed 0,1,2,3 from left to right. Each edge has a complex-
valued weight. For clarity, edges with weight 0 are indi-
cated as stubs. In fact, they point to the terminal vertex.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 v v+ 0 0
0 0 0 0 v+ v 0 0
0 0 0 0 0 0 v v+

0 0 0 0 0 0 v+ v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The key features of QMDD are evident in this example.
There is a single terminal vertex with value 1 and as noted



each edge has a complex-valued weight. Each nontermi-
nal vertex implements a matrix partitioning. For example,
the top vertex in Figure 2(b) implements the partitioning
shown in Equation 2. The nonterminal vertices lower in the
diagram represent similar partitioning of the resultant sub-
matrices. Representation of common submatrices is shared.
To ensure the uniqueness of the representation, edges with
weight 0 must point to the terminal vertex and normaliza-
tion is applied to nonterminal vertices so that the lowest
indexed ej with nonzero weight has weight 1. For more
details, we refer the reader to [8, 9].

Since QMDD involve multiple edges from vertices and
are applicable to both binary and multiple-valued problems,
the QMDD package is not built using a standard decision
diagram package, but the implementation employs well-
known decision diagram techniques. A recent and very
effective enhancement has been to add a computed table
which stores the QMDD for recently handled gates. This
avoids duplication of effort since the same gates often oc-
cur repeatedly in a circuit and quite often in close proximity
in the cascade.

2.3. Boolean Satisfiability

The Boolean satisfiability problem (SAT problem) is to
determine an assignment α to the variables of a Boolean
function h such that h evaluates to true or to prove that no
such assignment exists. Often, h is given in Conjunctive
Normal Form (CNF). A CNF consists of a conjunction of
clauses. A clause is a disjunction of literals and each literal
is a propositional variable or its negation.

Example 3. Let h = (x1+x2+x3)(x1+x2)(x2+x3). Then
x1 = 1, x2 = 1 and x3 = 0 is a satisfying assignment for h.
The value of x1 ensures that the first clause becomes 1 while
x2 ensures this for the second and x3 for the third clause.

SAT is one of the central NP-complete problems. In
fact, it was the first known NP-complete problem as was
proven by Cook in 1971 [2]. Despite this proven complex-
ity, there now exist SAT algorithms which solve many prac-
tical problem instances, i.e. a SAT instance can consist of
hundreds of thousands of variables, millions of clauses, and
tens of millions of literals. Most of today’s SAT solvers
are based on (backtracking) algorithms and use three essen-
tial procedures: (1) The decision heuristic assigns values to
free variables, (2) the propagation procedure determines im-
plications resulting from the last assignment(s) and (3) the
conflict analysis tries to resolve conflicts by backtracking
that occurs during the search. Advanced techniques such as
efficient Boolean constraint propagation [11] and conflict
analysis [6] are common in state-of-the-art SAT solvers (see
e.g. [3]) and lead to their effectiveness.

3. Problem Formulation

The goal of this work is to determine the equivalence of
two reversible circuits designed to realize the same target
functionality. We assume the two circuits have the same la-
bels for the primary inputs and outputs as the function spec-
ification. The problem of matching circuits with different
labels has already been considered in [10] and that work
can be applied to reversible circuits.

Consider a reversible circuit realizing an irreversible
function f . Four types of don’t-cares must be considered:

• Constant input: An input assigned to a fixed logic
value. All outputs are don’t-cares for all other assign-
ments to the input.

• Garbage output: An output where the value is a don’t-
care for all input assignments.

• Total don’t-care condition: The value of all outputs of
f are unspecified for a given assignment to the inputs.

• Partial don’t-care conditions: The value(s) of a proper
subset of the outputs of f are unspecified for a given
assignment to the inputs.

A specification with no don’t-care conditions is
completely-specified, otherwise it is incompletely-specified.
Total and partial don’t-cares are inherited from the irre-
versible function whereas constant input and garbage output
don’t-cares arise from embedding the irreversible function
in a reversible specification.

4. QMDD-based Equivalence Checking

In this section the QMDD-based approach for equiva-
lence checking of reversible circuits is presented. Details
on related work are provided at the end of this section.

4.1. The Completely-specified Case

Given a reversible circuit with gates G0G1 . . . Gk−1, the
matrix describing the circuit is given by M = Mk−1 ×
. . . × M1 × M0 where Mi is the matrix for gate Gi. The
construction of the Mi and the multiplication of matrices is
described in [8, 9].

For the completely-specified case, two reversible circuits
that realize the same function and adhere to the same vari-
able ordering have the same matrix description. Because of
the uniqueness of QMDD, it is sufficient to verify that the
top edges of the two QMDD point to the same vertex with
the same weight. A traversal of the QMDD is not required.
Note that sorting is required when the inputs are not aligned
in the two circuits and when the outputs are not aligned. In
the latter case, swap gates must be added to the output side
of one or both circuits, see [7, 16].



4.2. Constant Inputs, Garbage Outputs

A constant input means the input space is restricted to
those assignments containing that value, all others don’t oc-
cur. This means the circuit’s matrix description can be re-
duced. For clarity we consider r = 2, the extension to r > 2
is straightforward. Consider the case when the constant in-
put is the top-level partition variable with constant value j.
Equation 3 shows the transformation of the input space (de-
noted γ) to the output space (denoted δ) both partitioned to
correspond to the matrix partitioning. Equation 4 shows the
matrix and input vector reduced to account for the constant
input. Here, φ denotes an empty submatrix or subvector of
appropriate dimension. For QMDD, an empty submatrix is
represented by a null edge pointer. Note the positioning of
the jth blocks in Equation 4 in the 0th position is to ac-
count for the possibility that the two circuits use different
fixed values for the constant input.[

δ0

δ1

]
=

[
M0 M1

M2 M3

] [
γ0

γ1

]
(3)

[
δ0

δ1

]
=

[
Mj φ

Mj+2 φ

] [
γj

φ

]
(4)

Now suppose the top-level partition variable is a garbage
output. In this case, we are interested in the output of the
circuit regardless of the value of that variable. Again con-
sidering r = 2 for clarity, and starting from Equation 3,
the matrix can be reduced as shown in Equation 5 where δ̂
denotes the output after removal of the garbage output. To
explain the addition of submatrices in Equation 5, recall that
we require the circuit inputs and outputs to be in pure logic
states, so one element of γ is 1 and the others 0. The same
is true for δ. Further, M is a permutation matrix (a special
case of a unitary matrix).[

δ̂
φ

]
=

[
M0 + M2 M1 + M3

φ φ

] [
γ0

γ1

]
(5)

In general, constant inputs and garbage outputs can cor-
respond to any variables in the circuit’s QMDD. This can be
handled by performing a depth-first traversal of the QMDD
applying the above reductions to each vertex as it is encoun-
tered. In a depth-first traversal, the reductions are applied to
a vertex’s descendants before applying them to the vertex it-
self. Note that a variable can be both a constant input and a
garbage output. The order of applying the two reductions is
unimportant. This traversal reduces submatrices as required
throughout the full matrix.

Wang et al. [16] have considered the circuit equivalency
problem using their XQDD structure. Their approach re-
quires a reordering of the circuit inputs and outputs that
can be prohibitive for large functions and particularly so for
functions where the decision diagram is subject to exponen-
tial growth depending on the variable order (e.g. adders).
An earlier version of this work, [7], employed a similar re-
ordering strategy and it is a major contribution here to show
that such reordering can be avoided.

4.3. Don’t-care Conditions

Let M̂ denote the matrix for a circuit after the constant
input and garbage output reductions are applied. To deal
with total don’t-cares in the target function, we construct a
diagonal matrix D such that Di,i = 0 if the corresponding
output position is a total don’t-care, and Di,i = 1 otherwise.
We then compute M̂ × D. The effect is to force all total
don’t-care situations to 0 by ignoring the input states cor-
responding to don’t-care output assignments. This ensures
that when the reduced matrices (QMDD) are compared for
two circuits, differences can not arise in total don’t-care po-
sitions. Note that the easiest way to construct a QMDD for
D is to start from a diagonal matrix and then use a depth-
first traversal to zero the diagonal elements corresponding
to total don’t-cares.

Partial don’t-care conditions can be handled in a simi-
lar fashion. The difference is that partial don’t-care condi-
tions apply only to a subset and not all outputs. The sim-
plest approach is to treat the outputs for which a set of par-
tial don’t-cares does not apply as pseudo-garbage outputs
and construct a new matrix for this situation by reducing
the pseudo-garbage. A diagonal matrix is then constructed
for those don’t-cares and the equivalence check proceeds as
above. This must be repeated for each subset of the outputs
that have shared partial don’t-cares.

5. SAT-based Equivalence Checking

In this section the SAT-based equivalence checker for re-
versible logic is described. While SAT has been used for
synthesis [5, 17] as well as for debugging [18] of reversible
circuits, to the best of our knowledge it has not been used
for checking the equivalence of reversible or quantum cir-
cuits.

The general idea of the SAT-based equivalence checker
is to encode the problem as an instance of Boolean satis-
fiability to be solved by a SAT solver. If the SAT solver
returns unsatisfiable, then the checked circuits are equiva-
lent. Otherwise, a counter-example can be extracted from
the satisfying assignment of the instance.

5.1. The Completely-specified Case

To formulate the problem, a so-called miter structure
as proposed in [1] for traditional (irreversible) circuits is
built. By applying the input assignments in turn to both cir-
cuits C1 and C2, differences at corresponding outputs are
observed by XOR operations. If at least one XOR evaluates
to 1 (determined by an additional OR operation), the two
circuits are not equivalent.

Example 4. The miter structure for two circuits contain-
ing three lines is shown in Figure 3(a). Note that the added
XOR and OR operations are only used in formulating cir-
cuit equivalence checking as a SAT instance. They are not
actually added to the circuits.
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Figure 3. SAT Formulation

In the encoding of this structure into a SAT instance, a
new free variable is introduced for each signal while each
of the reversible gates and the added XOR and OR opera-
tions are represented by a set of clauses. Since V and V+

gates may produce non-Boolean values, the variables for
the associated signals employ a multiple-valued rather than
a Boolean encoding. The specific encoding is:

• 00 represents the Boolean value 0,

• 01 represents the non-Boolean value v,

• 10 represents the Boolean value 1, and

• 11 represents the non-Boolean value v+.

To complete the SAT instance, the output of the OR gate
is constrained to value 1. Clearly, a satisfying assignment
can be found, iff there exists an input assignment to the cir-
cuits where at least one pair of corresponding outputs as-
sumes different values. Such a satisfying assignment is a
counter-example to the proposition that the two circuits are
equivalent.

5.2. Constant Inputs, Garbage Outputs,
and Don’t-care Conditions

In order to handle constant inputs, garbage outputs, and
total and partial don’t-cares, the SAT formulation intro-
duced in the last section is extended as follows:

• Constant Inputs: The associated SAT variables are re-
stricted to the appropriate constant values.

• Garbage Outputs: Garbage outputs are by definition
don’t-cares and can be ignored in the SAT miter struc-
ture.

• Total and Partial Don’t-care Conditions: In these
cases, new variables t, po0 , . . . , pon−1 and additional
AND operations are added to the miter structure. The
variable t evaluates to 0, iff an input assignment lead-
ing to a total don’t-care condition is applied. The vari-
able poi

(0 ≤ i < n) evaluates to 0, iff an input assign-
ment leading to a partial don’t-care condition at output

oi is applied. The AND operations ensure, that if t
(poi) is assigned to 0, all outputs (the respective out-
put) are ignored by the miter. Hence, only differences
in output values without don’t-care conditions are de-
tected.

Example 5. Figure 3(b) shows the extended miter for two
circuits realizing an incompletely-specified function. A
truth table showing the garbage output, the don’t-care con-
ditions, as well as the resulting values for t and pi is given
in the left part of Figure 3(b). Note that the first half of the
truth table includes don’t-cares due to the constant input.

6. Experimental Results

This section provides experimental results. QMDD
V3.1 [9] was used with the default sizes for the computa-
tional tables, a garbage collection limit of 250,000 and a
maximum of 200 circuit lines. For the SAT-based approach
we use the SAT solver MiniSat 2 [3]. The experiments used
an AMD Athlon 3500+ with 1 GB of memory with a time-
out of 500 CPU seconds. All benchmarks were taken from
RevLib [19].

Table 1 shows the results. We have conducted two kinds
of experiments (typically using different gate types): equiv-
alent circuits and non-equivalent circuits (see upper and
lower part of the table). The first column gives the name
of the circuit. For equivalent circuits, two numbers follow-
ing the name give the unique identifier of the circuit real-
izations in RevLib. For non-equivalent circuits, only one
number is given which identifies the circuit from the cor-
responding equivalent test with the larger number of gates.
That circuit is used as given in RevLib and in a modified
form we constructed by arbitrarily altering, adding or delet-
ing gates. Column DC shows the types of don’t-cares (see
table note a for the coding). In column GT the gate types
used in each circuit are provided (see table note b for the
coding). Column n presents the number of inputs and col-
umn Gates gives the number of gates for the first and second
circuit, respectively.

In the next three columns the data for the QMDD-based
approach is shown, i.e. peak number of QMDD nodes, run-
time in CPU seconds and memory in MByte. The peak



number of nodes is the maximum number of active nodes
at any point in building the circuit QMDDs and checking
for equivalence. Finally, the last four columns provide the
data for the SAT-based method. First, the number of vari-
ables and the number of clauses of the SAT instance are
shown. Then, the run-time as well as the required memory
are given.

Both approaches prove or disprove the equivalence for
all benchmarks (except one for the SAT-based approach)
very quickly. The maximum run-time observed was less
then three minutes. Several experiments with more than
10,000 gates are included. The largest has nearly 27,000
gates. Even for these cases the proof times are very fast.
The largest circuit in terms of the number of inputs and out-
puts, add-64, with n = 193 is a 64 bit ripple carry adder
which requires 64 constant inputs and 128 garbage outputs
to achieve reversibility. The two versions were constructed
by concatenating 64 instances of the circuits in Figures 1.

Comparing the run-times of the two approaches, the
QMDD method appears to be faster in the case of equiva-
lent circuits, while the opposite is true in the non-equivalent
case. Regarding memory usage it can be seen that the
QMDD approach does not blow up even for the large prob-
lems presented. Since a fixed number of clauses is gen-
erated for each gate, the memory consumption of the SAT
approach increases linearly with the number of gates.

7. Conclusions

We have presented two novel approaches for equivalence
checking of reversible circuits which have been designed to
meet a common specification. The specification can con-
tain don’t-care conditions resulting from constant inputs,
garbage outputs, total or partial explicit definitions. Both
approaches, the QMDD-based and the SAT-based methods,
give very good results regarding run-time and memory con-
sumption. For many different benchmarks including very
large circuits (in terms of inputs and gates) the results were
obtained in less than three CPU minutes.

In future work, we plan to extend the approaches to han-
dle circuits with common target functionality but different
reversible specifications. Lastly, we are examining the ex-
tension of the approaches by allowing a greater variety of
quantum gates and allowing quantum values at the circuits’
inputs and outputs.
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Table 1. Experimental Results
CIRCUITS QMDD-BASED SAT-BASED

NAME DCa GTb n GATES NODES TIME MEM. VARS CLSES TIME MEM.
EQUIVALENT CIRCUITS
0410184 (170,169) none NCV / NCT 14 74 / 46 2924 0.01 12.54 2843 4640 0.05 3.70
add16 (175,174) CG CV / CT 49 96 / 64 7841 0.02 12.72 12788 18356 0.08 6.31
add32 (185,183) CG CV / CT 97 192 / 128 28761 0.03 13.82 50148 70500 0.29 15.14
add64 (186,184) CG CV / CT 193 384 / 256 109769 0.12 17.53 198596 276164 1.12 48.10
alu-v0 (26,27) G NCT / NCT 5 6 / 6 171 0.01 12.53 72 159 0.00 2.70
alu-v1 (28,29) G NCT / NCT 5 7 / 7 188 0.00 12.53 82 180 0.00 2.70
alu-v2 (30,33) G NCT / NCT 5 18 / 7 295 0.00 12.53 145 340 0.00 2.70
alu-v3 (34,35) G NCT / NCT 5 7 / 7 177 0.00 12.53 83 185 0.00 2.70
alu-v4 (36,37) G NCT / NCT 5 7 / 7 223 0.00 12.53 84 189 0.00 2.70
c2 (182,181) none NCV / NCT 35 305 / 116 40767 0.08 14.36 26018 40774 0.52 10.67
ckt1 (149,151) none T / CT 9 11554 / 1487 250311 5.05 23.91 130419 302871 32.10 55.24
ckt2 (152,154) none T / CT 8 5030 / 620 250020 1.09 23.89 50849 119592 3.82 23.86
ckt3 (155,157) none T / CT 10 26468 / 2674 250441 22.71 23.91 320578 735809 86.81 134.67
ckt5 (158,159) none T / CT 9 10276 / 499 250061 3.32 23.91 107764 249191 19.15 48.18
ckt6 (160,160) none T / T 15 10740 / 10740 258140 97.95 24.25 343712 751876 TO –
cnt3-5 (179,180) CGT CT / CT 16 25 / 20 204874 0.64 21.95 2338 21976 0.43 9.56
decod24-v2 (43,44) CT NCT / NCV 4 6 / 9 192 0.00 12.52 115 214 0.00 2.70
hwb4 (52,49) none CT / CT 4 11 / 17 208 0.00 12.52 133 336 0.01 2.82
hwb5 (55,53) none NCT / CT 5 24 / 55 972 0.00 12.52 448 1111 0.02 2.94
hwb6 (56,58) none CT / CT 6 126 / 42 3588 0.01 12.53 1146 2846 0.03 3.21
hwb7 (62,60) none NCT / F 7 331 / 166 22010 0.04 13.44 3730 9249 0.14 4.49
hwb8 (116,115) none NCT / CTP 8 749 / 614 82942 0.26 16.19 11599 27786 1.02 7.42
hwb9 (123,122) none NCT / CTP 9 1959 / 1541 250162 1.89 23.88 33454 79798 6.28 16.73
mod10 (171,176) T NCT / NCT 4 10 / 7 122 0.00 12.53 97 265 0.00 2.70
mod8-10 (178,177) GTP NCT / NCT 5 9 / 14 235 0.00 12.53 161 491 0.01 2.70
rd53 (135,134) CGT CT / TP 7 16 / 12 593 0.00 12.53 224 523 0.01 2.83
sym9 (146,147) CGT CT / CTP 12 28 / 28 8825 0.02 12.89 727 1582 0.02 3.37
NON-EQUIVALENT CIRCUITS
0410184 (170) none NCV / NCV 14 74 / 73 2550 0.00 12.59 4318 6385 0.04 4.16
add16 (175) CG CV / NCV 49 96 / 97 9516 0.02 13.22 19270 23732 0.10 7.23
add32 (185) CG CV / NCV 97 192 / 193 21892 0.04 14.11 75398 90522 0.38 19.31
add64 (186) CG CV / NCV 193 384 / 386 91417 0.15 17.93 298632 353478 1.53 63.91
alu-v0 (26) G NCT / NCT 5 6 / 5 116 0.00 12.52 67 148 0.00 2.70
alu-v1 (28) G NCT / CT 5 7 / 6 119 0.00 12.52 77 172 0.00 2.70
alu-v2 (30) G NCT / NCT 5 18 / 16 346 0.00 12.52 198 480 0.01 2.70
alu-v3 (34) G NCT / CT 5 7 / 6 202 0.00 12.52 79 178 0.00 2.70
alu-v4 (36) G NCT / CT 5 7 / 6 204 0.01 12.52 81 186 0.00 2.70
c2 (182) none NCV / NCV 35 305 / 304 34107 0.15 14.21 43648 64262 0.32 15.84
ckt1 (149) none T / CT 9 11554 / 11554 250311 9.53 23.91 231099 531527 4.58 97.09
ckt2 (152) none T / T 8 5030 / 5029 229154 2.00 22.97 90549 211280 2.12 39.08
ckt3 (155) none T / T 10 26468 / 26464 250441 44.14 23.91 582274 1323351 13.72 243.19
ckt5 (158) none T / CT 9 10276 / 10276 250163 6.91 23.90 205539 472739 4.85 84.53
ckt6 (160) none T / CT 15 10740 / 10740 260196 144.93 24.50 343711 751873 16.48 143.23
cnt3-5 (179) CGT CT / NCT 16 25 / 26 204745 0.63 21.94 2429 22158 0.43 9.74
decod24-v2 (43) CT NCT / NCT 4 6 / 5 89 0.00 12.52 60 143 0.00 2.70
hwb (4) none CT / NCT 4 11 / 18 216 0.00 12.52 137 344 0.01 2.83
hwb5 (55) none NCT / CT 5 24 / 54 961 0.00 12.53 442 1094 0.01 2.94
hwb6 (56) none CT / CT 6 126 / 125 3922 0.01 12.53 1733 4357 0.03 3.50
hwb7 (62) none NCT / NCT 7 331 / 331 22541 0.06 13.45 4865 11553 0.08 4.94
hwb8 (116) none NCT / NCT 8 749 / 750 61990 0.31 15.28 12438 28977 0.16 8.05
hwb9 (123) none NCT / NCT 9 1959 / 1958 250162 2.55 23.91 36244 83568 0.57 17.39
mod (10) T NCT / NCT 4 10 / 10 107 0.00 12.53 109 296 0.00 2.70
mod8 (10) GTP NCT / NCT 5 9 / 15 269 0.00 12.52 166 501 0.01 2.70
rd53 (135) CGT CT / CT 7 16 / 16 611 0.00 12.54 252 582 0.01 2.82
sym9 (146) CGT CT / CT 12 28 / 27 10045 0.02 12.93 714 1553 0.01 3.36

aDon’t-care: none = completely-specified, C = constant input, G = garbage output, T = total don’t-care, P = partial don’t-care
bGate type: N = NOT, C = controlled-NOT, F = multiple control Fredkin, P = Peres, T = multiple control Toffoli, V = V or V+


