
1

Polynomial Datapath Optimization using Constraint Solving
and Formal Modelling

Finn Haedicke†, Bijan Alizadeh‡, Görschwin Fey†, Masahiro Fujita‡, Rolf Drechsler†
† Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{finn, fey, drechsle}@informatik.uni.bremen.de
‡ VLSI Design and Education Center (VDEC), University of Tokyo and CREST, Tokyo, Japan

alizadeh@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract—For a variety of signal processing applications polynomials
are implemented in circuits. Recent work on polynomial datapath
optimization achieved significant reductions of hardware cost as well
as delay compared to previous approaches like Horner form or Common
Sub-expression Elimination (CSE). This work 1) proposes a formal model
for single- and multi-polynomial factorization and 2) handles optimization
as a constraint solving problem using an explicit cost function. By this,
optimal datapath implementations with respect to the cost function are
determined. Compared to recent state-of-the-art heuristics an average
reduction of area and critical path delay is achieved.

I. INTRODUCTION

Although polynomial expressions are frequently encountered in
many applications such as computer graphics and Digital Signal
Processing (DSP) domains, conventional high-level synthesis tech-
niques are not able to manipulate polynomial expressions efficiently
due to the lack of suitable optimization techniques for redundancy
elimination over Z2n . From a synthesis point of view, the designers
often optimize such polynomial functions manually to achieve ef-
ficient Register-Transfer-Level (RTL) implementation. However this
process can be both time consuming and error prone. As a result,
developing high-level optimization and synthesis techniques is desir-
able to automate the design of custom datapaths from a behavioral
description.

The design of computationally expensive embedded systems for
multimedia and DSP applications starts with the algorithmic specifi-
cation in a high level language such as MATLAB. This specification
performs a sequence of arithmetic polynomial computations with in-
teger variables of infinite bit-widths which is often implemented with
fixed-point architectures. When refining algorithmic specifications to
RTL descriptions, the RTL models are often implemented with fixed
word-length datapath architectures. The polynomial computations are
carried out over n-bit integers where the size of the entire datapath
is kept constant by signal truncation. Hence modular polynomial op-
timization and synthesis should be supported. For example, consider
f1 = x+5y, f2 = 5x2−9y2 and f3 = x4 +6x3 +12x2 +6x−5y2

which are not equivalent and also do not have any common sub-
expression over Z. After computing f1 = (x+ 5y) mod 4 = x+ y,
f2 = (5x2 − 9y2) mod 4 = x2 − y2 = (x + y)(x − y) and
f3 = x4 +6x3 +12x2 +6x−5y2 mod 4 = x2−y2 = (x+y)(x−y)
using Modular-Horner Expansion Diagrams (HED) [1], it is obvious
that (f2 mod 4 = f3 mod 4) and a common term, i.e. x + y,
exists over Z4. This common term can be shared between the
implementations of f1, f2 and f3.

A. Our Contributions

Let f1(~x), . . . , fs(~x) be s given polynomial functions over Z2n

where ~x = (x1, x2, . . . , xd) is a vector of d input variables and

This reseach work was supported in part by the German Academic
Exchange Service (DAAD) under grant number D/09/02091.

n is the word-length of each variable. This paper concentrates on
finding factorizations of these functions so that a maximal number of
monomials is shared between the s given polynomial functions over
Z2n in order to optimize the area as much as possible. We propose
an algorithm that is able to symbolically factorize a set of functions,
fi(i = 1, . . . , s), by factorizing fi into three sub-polynomials p1,i,
p2,i and p3,i so that fi = p1,i × p2,i + p3,i, where coefficients
are later matched to new, less expensive values. This optimization
is done with respect to a cost function, that estimates area in terms
of multipliers or adders. While the structure of the decomposition is
similar to previous heuristics, in conclusion, our main contributions
in this paper are as follows:
• Using symbolic factorization
• Minimization using formal methods
• Optimal results with respect to the cost function

B. Structure

This paper is structured as follows. The next two sections give an
overview of related work in the area of polynomial minimization
and introduce some definitions and notations used in this paper,
respectively. Afterwards in Section IV and Section V the single- and
multi-polynomial optimization algorithms are described. Experimen-
tal results are presented in Section VI followed by a summary of this
work in Section VII.

II. RELATED WORK

Although a lot of work has been done to perform optimizations
in the context of code generation techniques [2], the presented
algorithms do not efficiently reduce the number of operations in
a set of arithmetic expressions. Some work was done to optimize
code with arithmetic expressions by factorization of the expressions
[3]. This work developed a canonical form for representing the
arithmetic expressions and an algorithm for finding common sub-
expressions. The drawback of this algorithm is that it takes advantage
of only the associative and commutative properties of arithmetic
operators and therefore can only optimize expressions consisting of
a single type of associative and/or commutative operator at a time.
As a result, it cannot generate complex common sub-expressions
consisting of additions and multiplications. Moreover, this approach
does not provide a modular factorization over Z2n .

The Horner form is a well-known representation of polynomial
expressions and is the most straightforward way of evaluating poly-
nomial approximations of trigonometric functions in many libraries.
This method transforms the expression into a sequence of nested ad-
ditions and multiplications, which are suitable for sequential machine
evaluation using Multiply-Accumulator (MAC) instructions. In spite
of its advantages in sequential implementations, it does not provide
an efficient optimization for combinational multivariate polynomials.



2

As an example, using the Horner form, the polynomial 2x2z+ 6xyz
is factorized as x(2xz + 6yz).

Symbolic computer algebra based manipulation [3], [4], [5] and
factorization with Common Sub-expression Elimination (CSE) [6] are
much better approaches in optimizing polynomials compared to the
Horner form. For instance, the function 2x2z + 6xyz is reduced to
xz(2x+ 6y), using the CSE method. We can enhance this approach
with a coefficient factorization to obtain 2xz(x + 3y). Moreover,
CSE can be combined with the Modular-HED to provide more
efficient polynomials over Z2n [1]. Despite these advantages, the CSE
method is unable to efficiently factorize some sort of polynomials.
For example x2 + 6xy+ 9y2 is factorized as x(x+ 6y) + 9y2 if we
employ the kernel/co-kernel extraction with CSE [6], [7]. A better
factorization for this polynomial is (x+ 3y)2.

The approximate factorization algorithm in [6] is an efficient
approach in representing an arithmetic function f as a product of
sub-functions: f = f1 × f2 × . . . × fN , where fi is a multivariate
polynomial. However, this approach is able to factorize square-free
polynomials and cannot deal with a sub-function fi with a degree
higher than one. An example is the polynomial (x + 3y)2, which
includes a sub-function with the degree of two. Regarding such
polynomials, the method in [8] has to be enhanced with techniques
to initially reduce the degree of all the sub-functions to one. Another
important drawback of this method is that it cannot handle those
polynomials which are not reducible to f = f1 × f2 × . . .× fN . As
an example the function x2+6xy+9y2+2z cannot be reduced to the
function (x+ 3y)2 + 2z using [8], because we need to leave out the
monomial z. There have been some efforts in the area of polynomial
optimization. However, they are limited in their capability to employ
sophisticated manipulations to reduce the cost of the implementation.

Algebraic techniques in [9], [10] employed various optimization
techniques to manipulate the polynomials and extract common sub-
expressions. The technique in [10] first extracts coefficient multipli-
cations. Then using the kernel/co-kernel extraction techniques from
[7] and [11], common cubes are extracted. Using these extraction
techniques, a large number of linear blocks is exposed. Finally, alge-
braic division is performed to determine whether the obtained linear
blocks are good divisors for optimizing the hardware implementation.
Despite these advantages, this technique is only applicable to those
polynomials in which linear blocks exist explicitly. For example, this
technique is not able to decompose x3 + y3 because (x + y) does
not exist in the given polynomial as a linear term.

Another algebraic method has been proposed in [12] and then
improved in [13]. The main idea is similar to algebraic division
techniques used in logic synthesis. This technique tries to decompose
the original polynomial poly as p1 × p2 + p3 while p3 should be
minimized. For doing so, all possible initial values of p1 and p2

must be evaluated. Then for each initialization it is necessary to
check whether other monomials in poly can be represented in the
form p1 × p2. Finally, the best initialization, which constitutes the
lowest complexity p3, is chosen.

The presented paper abstracts the optimization heuristics in [12],
[13] to employ a symbolic partitioning algorithm and to use formal
methods to find a minimal factorization with respect to the cost func-
tion. The algorithm is later extended to work on multiple polynomials.

III. PRELIMINARIES

This section defines the terms necessary for subsequent parts of the
paper. The following definitions of monomial, term and polynomial
will be used.

Definition 1: m =
Qd

j=1 x
Pj

j is called a monomial with d vari-
ables, where xj is an input variable, Pj is the degree of xj in m,
and Pj is a non-negative integer value.

Definition 2: poly =
PM

i=1 ki × mi =
PM

i=1 ti is called a
multivariate polynomial with M terms (ti = ki × mi), where ki

and mi are a constant coefficient and a monomial, respectively.
To work on elements of polynomials in the above representation

or in other representations, e.g. factorized, some polynomial-specific
sets are defined.

Definition 3 (Tpoly , TL
poly , Mpoly , ML

poly): Given a polynomial in
the form poly =

PM
i=1 ti the set Tpoly = {t1, . . . , tM} contains

all terms in the polynomial. For a polynomial poly′ in another
representation the literal terms TL

poly′ containing terms ti and sub-
polynomials pj , pk are defined inductively based on the syntactic
structure:

TL
ti

:= {ti}
TL

pj+pk
:= TL

pj
∪ TL

pk

TL
pj∗pk

:= TL
pj
∪ TL

pk

The sets Mpoly := {m|(k,m) ∈ Tpoly} and ML
poly := {m|(k,m) ∈

TL
poly} contain all monomials and literal monomials in poly, respec-

tively.
In this work it is necessary to know the coefficient of a monomial

in a polynomial.
Definition 4 (coeff(poly,m)): Given a polynomial poly =PM
i=1 ki ×mi,

coeff(poly,m) :=

(
k (k,m) ∈ Tpoly

0 otherwise

denotes the coefficient of m in poly.
This means coeff(x3 + 3x, x) = 3 and coeff(−4x4 + (a +
b)x2y, x2y) = a+ b.

Definition 5 (C(m), C(poly)): The complexity of a given mono-
mial mi =

Qd
j=1 x

Pi,j

j is denoted by C(mi) =
Pd

j=1 Pi,j . The
complexity of a polynomial poly is the highest complexity of a
monomial in poly: C(poly) = maxm∈MpolyC(m).
In other words, the complexity of a monomial is the number of
variable usages: C(x2y3) = C(xxyyy) = 5.

Definition 6 (sub(m)): For any monomial m =
Qd

j=1 x
Pj

j the set

sub(m) =

(
m′

˛̨̨̨
˛m′ =

dY
j=1

x
P ′j
j ∧ ∀j ∈ {1, . . . , d} : P ′j ≤ Pj

)
contains all sub-monomials of mi (including mi).
The set of all sub-monomials for x2y2z is

sub(x2y2z) = {1, x, x2, x2y, x2y2, x2y2z, x2yz, x2z, xy, xy2,

xy2z, xyz, xz, y, y2z, yz, z}

Therefore sub(m) contains
Qd

j=0(Pj+1) elements for any monomial
m =

Qd
j=1 x

Pj

j .
Definition 7: Given two sets A,B of monomials the set A×B =
{ma×mb|ma ∈ A∧mb ∈ B} is called monomial set multiplication.

Furthermore the notation z = ite(b, x, y) is used as abbreviation
for the if-then-else expression:

z = ite(b, x, y) =

(
x if b
y otherwise

IV. SINGLE-OUTPUT POLYNOMIAL OPTIMIZATION ALGORITHM

The algorithm works on a symbolic representation of polynomials
in terms of constraints. By this a constraint solver can be applied
to find equivalent polynomials. A cost function guides the solver
in finding area efficient solutions. Just like the polynomial, the



3

cost function is represented by constraints, counting the number of
multipliers or adders respectively.

This section explains the steps for the formal polynomial optimiza-
tion algorithm. The basic idea is to recursively decompose a given
polynomial, poly, into three sub-polynomials, p1, p2 and p3, such
that poly = p1 × p2 + p3. As a decomposition into p1 × p2 is not
always possible, the compensation term, p3, is subtracted from the
original polynomial to make it decomposable as poly−p3 = p1×p2.
For this purpose, we propose an algorithm that consists of multiple
steps. These steps are:
(1) Create a symbolic factorization poly = p1 × p2 + p3 that

represents all possible factorizations.
(2) Derive formal constraints describing the symbolic factorization.
(3) Add constraints describing the cost function.
(4) Use a constraint solver to find a minimal factorization with

respect to the cost function.
The following subsections describe the factorization steps.

A. Symbolic Factorization

As a first step a symbolically factorized polynomial

polysym = p1 × p2 + p3 (1)

is created. The polynomial polysym is symbolic as all coefficients
in p1, p2, p3 are free variables. A valuation of the coefficients of
polysym yields an equivalent, factorized form of poly.

To create all monomials in poly a naı̈ve way is to take the set of
all monomials in poly M ,

M =
[

m∈Mpoly

sub(m) (2)

as a basis for pi. But as p1 and p2 in Equation (1) are multiplied, the
complexity of the resulting monomials would exceed those in poly.
Therefore a filter is applied to remove the most expensive monomials:

filter(M) =


m

˛̨̨̨
m ∈M ∧ C(m) < max

m′∈M
C(m′)

ff
This filter removes all monomials with the highest complexity, which
may be only a single one in the simplest case. If multiple monomials
have the highest complexity all of them are removed. Removing only
the top monomials guarantees that all factorizations, e.g. Horner form,
are still represented by polysym. Later even stricter filters are used to
improve the run-time. With this filter function the sets of monomials
M1,2 = filter(M) and M3 = M1,2 ×M1,2 are built. The symbolic
representation is then created using the free variables ai, bj and ck
for p1, p2 and p3, respectively:

polysym = p1 × p2 + p3

= (
X

m∈M1,2

aim)× (
X

n∈M1,2

bjn) +
X

o∈M3

cko (3)

= (a1b1m1 + a1b2m2 + . . .+ a2b1m2 + . . .)

+c1m1 + c2m2 + . . .

= (a1b1 + c1)m1 + (a1b2 + a2b1 + c2)m2

+ . . . (4)

B. Factorization Constraints

Given Equation (4), the constraints for a valid factorization can be
derived. For each monomial mi the coefficients in the non-factorized
form of polysym must match the coefficient of mi in poly. For this
the symbolic representation in polysym is tied to the value in poly:

∀(φ×m) ∈ Tpolysym : φ = coeff(poly,m) (5)

Algorithm 1: Symbolic partitioning algorithm (factorize terminal)
Input: Set of Monomials M
Output: Map from monomial to symbolic sum representing the

factorization
M1,2 ← filter(M) ;1
M3 ← M1,2 ×M1,2 ;2
symbolic ← ∅ ;3
foreach m ∈M1,2 do4
foreach n ∈M1,2 do5

mi ← m× n ;6
if (mi, φ) ∈ symbolic then update symbolic[mi] = φ+ aibj ;7
else set symbolic[mi] = aibj ;8

foreach o ∈M3 do9
if (o, φ) ∈ symbolic then update symbolic[o] = φ+ ck ;10
else set symbolic[o] = ck ;11

return symbolic;12

Which can be expanded to match Equation (4):

a1b1 + c1 = coeff(poly,m1)
∧ a1b2 + a2b1 + c2 = coeff(poly,m2)
∧ . . . = . . .

This means any valid assignment of ai, bj and ck following the
constraint in Equation (5) yields a valid factorization of poly in
Equation (3).

C. Algorithm

Algorithm 1 creates the symbolic representation. The input to the
algorithm is the set M of all sub-monomials in poly as defined
in Equation (2) and the return value is the map named symbolic
from monomials in polysym to their respective symbolic coefficients
expression as in Equation (4).

In lines 1-2 the input will first be filtered and expensive monomials
are removed. This is done as p1 and p2 are to be multiplied and
the complexity as well as the number of terms of the resulting
polynomial is reduced without losing any expressiveness. The re-
maining monomials are added to M1,2. Afterwards M3 is calculated
as M3 = M1,2 ×M1,2.

The double loop in line 4 and line 5 incrementally creates the
product p1 × p2. In each loop one monomial is calculated (line 6)
and the sum of coefficients for this monomial is updated (line 7 or
line 8, if a partial symbolic coefficient φ was already calculated or
this one is new). For p3 the loop in line 9 does the same with the
monomials in M3.

D. Recursive Factorization

The partitioning algorithm can also be applied recursively to find
less expensive factorizations, resulting e.g. in

poly = (p1,1 × p1,2 + p1,3)× (p2,1 × p2,2 + p2,3)

+(p3,1 × p3,2 + p3,3) (6)

where pi,j are either recursive themselves or terminal. Similar to the
simple symbolic factorization algorithm the complexity of p1,j and
p2,j is reduced in each step. The filter reduces the complexity of p1

and p2 by 1 in so their recursion ends in a linear number of steps.
For p3 additionally a recursion limit d is used so that the algorithm is
guaranteed to terminate in depth d. Using this approach, a symbolic
factorization tree is built, as depicted in Figure 1. The nodes in the
last level are called terminal and calculated according to the previous
section. The nodes on higher levels are called recursive and compose
three nodes from a lower level into a symbolic factorization according
to Equation (6).



4

× +

.

.

.

× +
a

i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

× +

a
i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

× +

a
i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

.

.

.

× +

a
i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

× +

c
i
m

i
+

c
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

a
i
m

i
+

a
j

m
j

+
.

.
.

× +

c
i
m

i
+

c
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

a
i
m

i
+

a
j

m
j

+
.

.
.

.

.

.

× +

c
i
m

i
+

c
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

a
i
m

i
+

a
j

m
j

+
.

.
.

× +

a
i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

× +

a
i
m

i
+

a
j

m
j

+
.

.
.

b
i
m

i
+

b
j

m
j

+
.

.
.

c
i
m

i
+

c
j

m
j

+
.

.
.

terminal

recursive

recursive

Figure 1. Recursive partitioning scheme

Algorithm 2: Symbolic partitioning algorithm (factorize recursive)
Input: Set of Monomials M , max recursion depth d
Output: Map from monomial to symbolic sum representing the

factorization
M1,2 ← filter(M) ;1
M3 ← M1,2 ×M1,2 ;2
if maxm′∈M C(m′) > 1 ∧ d > 1 then3

symb1 = factorize recursive(M1,2, d− 1);4
symb2 = factorize recursive(M1,2, d− 1);5
symb3 = factorize recursive(M3, d− 1);6

else7
symb1 = factorize terminal(M1,2);8
symb2 = factorize terminal(M1,2);9
symb3 = factorize terminal(M3);10

symbolic ← ∅ ;11
foreach (φi,mi) ∈ symb1 do12
foreach (φj ,mj) ∈ symb2 do13

mi,j ← mi ×mj ;14
if (mi,j , φ) ∈ symbolic then update15
symbolic[mi,j ] = φ+ φiφj ;
else set symbolic[mi,j ] = φ+ φiφj16

foreach (φk,mk) ∈ symb3 do17
if (mk, φ) ∈ symbolic then update symbolic[mk] = φ+ φk ;18
else set symbolic[mk] = φk ;19

return symbolic;20

Algorithm 2 shows the details of the recursive symbolic fac-
torization. First the monomials are filtered, like in the terminal
factorization algorithm (line 1-2). In the following lines 3-6 the
algorithm first checks whether to continue recursion or end with
terminal factorizations. The recursion depth depends on the limit d
and on the complexity of the monomials. In each recursion step the
limit is reduced and M1,2 is used for both p1 and p2. The monomials
M3 are used for the recursion of p3. If the recursion condition
does not hold, terminal factorizations are created instead (lines 8-
10). Afterwards, in lines 11-19 the returned symbolic factorizations
are merged to get the symbolic representation in the current level.
This is done in a similar way as in the terminal algorithm. Instead
of variables the expressions from the recursive calls are used.

E. Cost Function and Optimization

After creating the symbolic representation an area efficient fac-
torization has to be found, i.e. a good valuation of the variables. A
constraint solver satisfying Equation (5) creates a valid assignment,
i.e. a new polynomial, which is possibly more expensive than
poly itself. Therefore the constraint solver has to have a notion of
costs to be minimized. With respect to this cost function the most
efficient factorization can be found. This section describes how to
define a suitable cost function to reduce multiplications and enhance
monomial reuse.

An intuitive cost function is the complexity of the used monomials,
which indicates how many variables are multiplied to create the cir-
cuit. This is defined by extracting all terms from polysym and sorting
the coefficient variables by monomial m. Let Γm = {a|(a,m) ∈
TL

polysym
} contain all coefficient variables ai, bj , ck that form a

term with the monomial m in polysym (see Equation (3)). Under the
assumption that a monomial has to be calculated once and can be
reused multiple times, the costs for the monomial are added if any
of its coefficients is non-zero:

costC :=
X

m∈ML
polysym

(
C(m) if ∃a ∈ Γm : a 6= 0

0 otherwise

Additionally, for each symbolic partition one additional multiplier
is required to create p1×p2. For this the predicate used(pi) is defined
to be true iff any coefficient variable in pi is not zero or any of the
sub partitions is used. This enables the definition of cost× as:

cost×(pi) := ite(used(pi,1) ∨ used(pi,2), 1, 0)

+ ite(is terminal pi, 0,

cost×(pi,1) + cost×(pi,2) + cost×(pi,3))

The overall cost of multiplications is given by

costmult = costC + cost×

Example 1: Given polynomial p = x2 − y2 containing the
monomials and sub-monomials x2, x, y2, y, 1. The first partitioning
step for p = p1 × p2 + p3 results in M1,2 = {x, y, 1} and
M3 = {x2, xy, y2, x, y, 1}. The symbolic partitioning therefore
results in:

p = (a1x+ a2y + a3)× (b1x+ b2y + b3)

+(c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6)

From this form the constraints for factorization are derived. For
each monomial in p the correct sum is constrained:

a1b1 + c1 = 1 (for x2)
a2b2 + c3 = −1 (for y2)

a1b2 + a2b1 + c2 = 0 (for xy)
...

The corresponding cost functions are

costC := ite(c1 6= 0, 2, 0)

+ ite(c2 6= 0, 2, 0)

+ ite(c3 6= 0, 2, 0)

+ ite(a1 6= 0 ∨ b1 6= 0 ∨ c4 6= 0, 1, 0)

+ ite(a2 6= 0 ∨ b2 6= 0 ∨ c5 6= 0, 1, 0)

cost× := ite(

3_
i=1

ai 6= 0 ∨
3_

j=1

bi 6= 0, 1, 0)



5

The given polynomial p = x2 − y2 has costs of costmult(p) =
C(x2) + C(y2) = 4. Using a constraint-solver and the constraint
costmult(polysym) ≤ 4, the solution polysym = (x+ y)× (x− y)
is found with minimal costs of 3.

After minimizing the number multipliers, an additional step is
performed to minimize the number of adders. Similar to costmult, the
number of additions in terminal partitions plus additions introduced
through (recursive) partitioning is defined to be the cost of addition
costadd. Adder structures are used in terminal parts p1, p2, p3 to
sum up all terms. Therefore the number of terms n is counted and
n − 1 adders are needed for pi if at least two terms have non-zero
coefficients:

adders(p) = max

0@1,
X

(a,m)∈Tp

ite(a 6= 0, 1, 0)

1A− 1

Additionally for each symbolic partition one adder is used with
(p1 × p2) + p3. The number of adders is therefore:

cost+(pi) := ite((used(pi,1) ∨ used(pi,2)) ∧ used(pi,3), 1, 0)

+ ite(is terminal pi

, adders(pi,1) + adders(pi,2) + adders(pi,3)

, cost+(pi,1) + cost+(pi,2) + cost+(pi,3))

We apply a two-step algorithm. The first step is to minimize the
costs of multiplication. Afterwards costmult is constrained to the
optimal value. In the second step cost+, i.e. the number of adders is
minimized.

Other types of cost functions are also possible, e.g. a single-step
optimization that considers adder and multiplier costs in a single cost
function, e.g. by using the area required for each type. Furthermore
modelling other targets as delay or common sub-polynomials is
possible. On the other hand more complex cost function will typically
increase the run-time.

As a constraint solver an (incremental) solver for Satisfiability
Modulo Theories (SMT) for bit-vector theory [14] is used. Such a
solver can naturally represent constraints over Z2n including modulo
arithmetics and can efficiently find valid assignments or prove that
no such assignment exists.

The factorization constraints are translated to SMT bit-vector logic
with the symbolic coefficients as bit-vector variables. Furthermore
the cost function is expressed in terms of these variables. The
minimization algorithm uses multiple calls to the solver until the
minimum is found. For this the algorithm assumes a cost value as
upper bound, e.g. costs of input polynomial poly, and queries the
solver whether a solution with costs less than the upper bound exists.
In practice binary search using a lower and an upper bound was
most efficient for finding the minimal cost value. The bounds are
updated incrementally. If the constraint cost < c is satisfiable, the
upper bound is updated, otherwise the lower bound is updated. The
value c in the next iteration is calculated as c = upper+lower

2
. When

upper = lower holds, the minimum is found.
This algorithm always finds the minimal value of the cost function.

Finding an optimal solution is expected to result in high run-times,
therefore two restrictions were applied to reduce the size of the
constraint solver instance:

• The factorization of p3 is terminal for all cases.
• A more restrictive filter was applied that eliminates the top half

of the monomials in each step.

This significantly decreases the run-time of the SMT solver, but
excludes some possible factorizations.

V. MULTI-OUTPUT POLYNOMIAL OPTIMIZATION ALGORITHM

The single-output polynomial optimization algorithm can be ex-
tended to minimize the multipliers of several polynomials at the
same time. This is based on the same assumption, that a monomial
calculated once can be shared in multiple polynomials. This means
that a monomial m used in poly(1) and poly(2) has to be synthesized
only once.

The basic task is to find a good representation for a set of
n polynomials polys = {poly(1), . . . , poly(n)}. The single-output
polynomial optimization algorithm is extended to minimize such
a set. The symbolic representation does not change, it is applied
on each polynomial separately. For each polynomial poly(i) the
symbolic representation poly(i)

sym is created according to Equation (3).
Afterwards the respective factorization constraints as in Equation (5)
are derived.

Only the cost function has to be adapted. The complexity costs are
calculated over the monomials from all polynomials:

Γ′m = {a|(a,m) ∈
n[

i=1

TL

poly
(i)
sym
}

cost′C =
X

m∈
Sn

i=1 ML

poly
(i)
sym

(
C(m) if ∃a ∈ Γ′m : a 6= 0

0 otherwise

Hence, the overall cost of multiplications are now:

cost′mult = cost′C +
X

p∈polys

cost×(p)

To find an optimal assignment the same algorithm is applied as
for the optimization of single-output polynomials. Note also that
the multi-polynomial algorithm collapses to the single-polynomial
algorithm when applied to only one polynomial. Considering the
single polynomial is therefore only a special case of the general
algorithm.

VI. EXPERIMENTAL RESULTS

The experiments were run on an Intel Core 2 Duo CPU at
3.33 GHz with 3 GB of main memory running a Linux operating
system. As SMT-Solver Boolector 1.1 was used [15]. In order to
demonstrate the advantage of our proposed algorithms over the state-
of-the-art techniques, we use several polynomials extracted from
real embedded systems such as digital signal processing, computer
graphics, automotive and communication applications. In the first
experiment, we have employed phase-shift keying (PSK) that is
used in digital communication from [4], digital image rejection
unit (DIRU), Degree-5 Filter (PFLT), multivariate cosine wavelet
polynomial (MVCS), an anti-aliasing function (ANTI) [4], a Savitzky
Golay filter (SG2) and Quadratic polynomial (QUAD) benchmarks
and applied our method to the benchmarks listed in Table I as single-
output polynomials. These benchmarks have been used in previous
work on polynomial datapath optimization such as [13], [10]. We
have synthesized the polynomials using a traditional logic synthesis
tool in 0.25µm CMOS technology.

The important parameters of the circuits including the area, counted
by number of logic gates (Area) as well as the critical path delay in
nanoseconds (Delay) are shown in Table I. Column M/V/D/n provides
the number of monomials/the number of variables/the highest de-
gree/the bit-vector size of each variable. In each experiment multiplier
and adder minimization as described previously was applied.

We compare the results of our approach to the one of [13] that
has been shown to perform about 20% to 40% better than state-of-
the-art synthesis approaches. Even with the run-time optimizations
described in Section IV, our algorithm takes considerably more time



6

Table I
COMPARISON OF THE FORMAL OPTIMIZATION TECHNIQUE WITH THE

APPROACH IN [13] (SINGLE-OUTPUT POLYNOMIALS)

Benchmark M/V/D/n Technique in [13] SMT-based
Time
(s)

Delay
(ns)

Area Time
(s)

Delay
(ns)

Area

ANTI 7/1/6/16 <0.01 38.78 100 574 15.4 34.83 88 761
DIRU 8/2/4/16 3.10 23.17 55 631 57.9 20.57 48 501
MVCS 9/2/3/16 2.60 27.49 111 801 12,7 23.89 95 147
PFLT 6/1/5/16 <0.01 39.38 76 069 15.5 34.87 65 819
PSK 9/2/4/16 4.00 29.24 141 923 24.2 35.24 143 277
QUAD 5/2/2/16 <0.01 21.64 48 289 3.8 18.14 45 090
SG2 9/2/3/16 <0.01 29.21 149 496 6.4 25.58 127 578
average savings: 7.72% 10.47%

than [13]. This is not surprising, since we are comparing heuristic and
exact algorithms. In all cases but one a significantly lower number
of gates is achieved compared to [13]. As a side-effect the delay is
also reduced on the same instances. The slightly poorer performance
on PSK instance is due to the fact that the heuristic [13] is able to
extract two sub-polynomials in the form of p′1 × p′2 + p′3 × p′4 + p′5.
This form is covered by recursive factorization of p3 in p1×p2 +p3

as p′1 × p′2 + (p′3 × p′4 + p′5). But as already described, recursive
factorization of p3 was disabled because it drastically impacts the
run-time of the algorithm. On average a reduction of 10.47% in area
and by 7.72% in delay is achieved.

In another experiment, we have employed different combinations
of PSK, QUAD, MVCS, PFLT, DIRU, ANTI and SG2 benchmarks
as multi-output polynomials. In addition to the results from [13] we
also included results from [10]. Table II summarizes the results for
22 configurations. Our results show that for a given set of polynomial
expressions, our approach determines better factorizations for all
combinations but one with respect to the area. In instance 14, the
heuristics outperform our algorithm. The technique in [13] is able
to extract a common expression (x+ y) from multiple polynomials.
Our algorithm cannot find this extraction as it does not result in an
improvement of the cost function, i.e. the cost of multiplication does
not decrease. On the other hand we are able to reduce the area on
instance 20 by 30.93% and its delay by 15.17% compared to [13].
Furthermore on instance 5 we achieve a reduction of 46.14% in delay
and 16.87% in area compared to [10]. Overall we obtained average
savings of 12.15% in the area and 3.05% in the delay over [13].
Compared to [10] we achieved average savings of 21.17% in the
delay and 5.72% in the area.

Table II
COMPARISON OF THE FORMAL OPTIMIZATION TECHNIQUE WITH THE

APPROACHES IN [10] AND [13] (MULTI-OUTPUT POLYNOMIALS)

Number Benchmark M/V/D/n Technique in [10] Technique in [13] SMT-based
Delay (ns) Area Time (s) Delay (ns) Area Time (s) Delay (ns) Area

1 DIRU, PFLT 14/2/5/16 38,23 117 357 3.10 26.87 110 362 35.60 21.55 106 220
2 PSK, PFLT 15/2/5/16 31,75 172 597 4.00 31.03 193 366 18.10 31.99 184 223
3 QUAD, PFLT 11/2/5/16 38,29 158 975 0.01 30.88 123 192 18.20 39.07 112 102
4 ANTI, PFLT 13/1/6/16 54,30 143 097 0.02 39.92 154 170 35.80 40.30 131 284
5 MVCS, PFLT 15/2/5/16 37,91 159 732 2.60 27.89 156 335 46.10 20.42 132 791
6 DIRU, MVCS, PFLT 23/2/5/16 37,91 192 217 5.70 31.90 208 479 4 575.70 34.23 196 199
7 DIRU, PSK, PFLT 23/2/5/16 31,75 191 522 7.10 29.02 202 515 311.20 27.57 154 228
8 DIRU, QUAD, PFLT 19/2/5/16 38,34 190 864 3.10 29.88 176 156 120.10 26.05 152 455
9 MVCS, PSK, PFLT 24/2/5/16 31,75 215 592 6.60 31.05 279 886 30.70 32.04 240 726

10 MVCS, QUAD, PFLT 20/2/5/16 38,33 229 893 2.60 31.12 201 089 68.40 31.76 188 927
11 PSK, QUAD, PFLT 20/2/5/16 43,18 257 574 4.00 31.04 200 728 23.90 29.09 190 637
12 DIRU, ANTI, PFLT 21/2/6/16 54,38 178 268 3.10 39.93 209 439 208.70 40.06 154 724
13 DIRU, MVCS, PSK, PFLT 32/2/5/16 31,75 234 004 9.70 32.06 286 603 247.80 31.40 254 738
14 DIRU, MVCS, QUAD, PFLT 28/2/5/16 38,33 291 980 5.70 32.90 283 855 479.30 37.82 445 008
15 DIRU, PSK, QUAD, PFLT 28/2/5/16 43,07 249 654 7.10 30.02 248 303 12 512.20 31.74 221 264
16 MVCS, PSK, QUAD, PFLT 29/2/5/16 43,08 274 683 6.60 30.96 304 841 67.50 31.32 271 477
17 DIRU, MVCS, ANTI, PFLT 30/2/6/16 54,32 251 844 5.70 39.93 317 693 73.90 34.37 248 499
18 DIRU, MVCS, PSK, ANTI, PFLT 39/2/6/16 54,48 408 720 9.70 39.86 410 926 4 272.20 33.19 324 402
19 DIRU, MVCS, PSK, SG2, PFLT 41/2/5/16 41,71 339 997 9.70 39.56 458 484 6 167.30 35.56 326 957
20 DIRU, MVCS, PSK, QUAD, SG2, PFLT 46/2/5/16 41,71 389 744 9.70 39.56 498 052 6 289.30 33.56 343 990
21 DIRU, MVCS, PSK, SG2, ANTI, PFLT 48/2/6/16 54,59 394 574 9.70 39.86 529 409 759.10 36.94 428 977
22 DIRU, MVCS, PSK, QUAD, SG2, ANTI, PFLT 53/2/6/16 54,59 434 178 9.70 39.86 568 499 1 421.60 41.27 409 942

average savings: 21.17% 5.72% 3.05% 12.15%

VII. CONCLUSIONS

This paper presented a methodology to describe polynomial fac-
torization and minimization as a constraint solving problem. This
methodology was extended to recursive factorization and multiple
polynomials. The approach outperforms state-of-the-art optimization
techniques. On average the algorithm improves area and delay for
the benchmarks considered.

Future extensions of this approach are the realization of different
cost functions such as delay as well as further run-time optimizations.

REFERENCES

[1] B. Alizadeh and M. Fujita, “Modular-HED: A canonical decision di-
agram for modular equivalence verification of polynomial functions,”
in Proc. of 5th International Workshop on Constraints in Formal
Verification (CFV), 2008, pp. 22–40.

[2] A. V. Aho, S. C. Johnson, and J. D. Ullman, “Code generation for
expressions with common subexpressions,” Journal of the ACM, vol. 24,
no. 1, pp. 146–160, 1977.

[3] M. A. Breuer, “Generation of optimal code for expressions via factor-
ization,” Comm. of the ACM, vol. 12, no. 6, pp. 333–340, 1969.

[4] A. Peymandoust and G. D. Micheli, “Application of symbolic computer
algebra in high-level data-flow synthesis,” IEEE Trans. on CAD, vol. 22,
no. 9, pp. 1154–1165, 2003.

[5] S. Gopalakrishnan and P. Kalla, “Optimization of polynomial datapaths
using finite ring algebra,” ACM Trans. on Design Automation of Elec-
tronic Systems, vol. 12, no. 4, p. 49, 2007.

[6] A. Hosangadi, F. Fallah, and R. Kastner, “Factoring and eliminating
common subexpressions in polynomial expressions,” in Int’l Conf. on
CAD, 2004, pp. 169–174.

[7] B. DeRenzi and W. Gong, “JuanCSE,” 2005, http://express.ece.ucsb.
edu/suif/cse.html, last updated 2005. [Online]. Available: \url{http:
//express.ece.ucsb.edu/suif/cse.html}

[8] E. Kaltofen, J. P. May, Z. Yang, and L. Zhi, “Approximate factorization
of multivariate polynomials using singular value decomposition,” J.
Symb. Comput., vol. 43, no. 5, pp. 359–376, 2008.

[9] S. Gopalakrishnan, P. Kalla, M. B. Meredith, and F. Enescu, “Finding
linear building-blocks for RTL synthesis of polynomial datapaths with
fixed-size bit-vectors,” in Int’l Conf. on CAD, 2007, pp. 143–148.

[10] S. Gopalakrishnan and P. Kalla, “Algebraic techniques to enhance
common sub-expression elimination for polynomial system synthesis,”
in Design, Automation and Test in Europe, 2009, pp. 1452–1457.

[11] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing polynomial expres-
sions by algebraic factorization and common subexpression elimination,”
IEEE Trans. on CAD, vol. 25, no. 10, pp. 2012–2022, 2006.

[12] O. Sarbishei, B. Alizadeh, and M. Fujita, “Polynomial datapath op-
timization using partitioning and compensation heuristics,” in Design
Automation Conf. ACM, 2009, pp. 931–936.

[13] B. Alizadeh and M. Fujita, “Improved heuristics for finite word-length
polynomial datapath optimization,” in Int’l Conf. on CAD. ACM, 2009,
pp. 739–744.

[14] S. Ranise and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB),” http://www.smtlib.org, 2006.

[15] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174–177.


