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Abstract—It is a widely supported prediction that conven-
tional computer hardware technologies are going to reach
their limits in the near future. Consequently, researchers
are working on alternatives. Reversible circuits are one
promising direction with applications e.g. in low-power
design or quantum computation. However, no real design
flow for this new kind of circuits exists so far.

In this paper, the progress in the development of design
methods for reversible circuits is reviewed – with a partic-
ular focus on the synthesis steps. After a brief review on
reversible circuits, the general idea of common synthesis ap-
proaches is described. This includes methods based on truth
table descriptions, methods applicable to larger functions,
and finally an approach based on a programming language.
Discussions and an outlook to future work conclude this
paper.

I. INTRODUCTION

In the recent years, reversible computation established
itself as a very promising research area and an emerging
technology. This is motivated by a widely supported
prediction that the conventional computer hardware
technologies are going to reach their limits in the near
future.

In particular, shrinking transistor sizes and power
dissipation are the major barriers in the development of
smaller and more powerful circuits. Here, a fundamental
limitation of conventional computing becomes evident:
Each time information is lost, energy is dissipated re-
gardless of the underlying technology (also known as
Landauer’s principle which has already been observed
in 1961 [1]). While the amount of energy dissipation
caused by this was negligible in the last decades (in
fact, only k · T · log 2 Joules of energy are dissipated for
each “lost” bit of information, where k is the Boltzmann
constant and T is the temperature), it may become cru-
cial considering that (1) in today’s circuitry millions of
operations are performed in a single second and (2) more
operations are performed with smaller transistor sizes
(i.e. on a smaller area).

As a consequence, Landauer (and later Bennett [2],
Fredkin [3], Toffoli [4], and others) suggested the use
of reversible circuits, i.e. circuits with an equal num-
ber of input and output signals, whereby each input
assignment maps to a unique output assignment (i.e. the
function represented by the circuit is a bijection). Since

reversible circuits are by definition information-lossless,
power dissipation resulting from Landauer’s principle,
as described above, can be decreased or even eliminated
– the fundamental limit is evaded.

Besides that, quantum computation [5] has become
a major application area for reversible logic. It uses
qubits instead of the conventional bits. Qubits allow to
represent not only 0 and 1 but also a superposition of
both. As a result, qubits can represent multiple states at
the same time enabling theoretically enormous speed-
ups in computation. It has been shown that, for ex-
ample, using a quantum circuit it is possible to solve
the factorization problem in polynomial time while for
conventional circuits only exponential methods exist [6].

For both application scenarios, first physical imple-
mentations exist confirming the promising assumptions
and motivating further research (see e.g. [7] for low-
power design or [8] for quantum circuits). Besides that,
reversible logic additionally finds application in domains
like optical computing [9], DNA computing [10], as
well as nanotechnologies [11]. Also, cryptography or
encoding/decoding methods (e.g. for music and videos)
can profit from enhancements in this area (see e.g. [12]).
Furthermore, already today reversible operations are
used in instruction sets for microprocessors [13].

However, no design flow for this new kind of circuits
exists so far. This is crucial since the design of reversible
and quantum systems significantly differs from their
conventional counterparts. Many concepts and methods
developed for conventional hardware design in the last
decades have to be redeveloped in order to support
the new technologies. Accordingly, researchers started
working on such a design flow already some years ago.

In this paper, the progress of this work is reviewed
– with a particular focus on the synthesis steps. Here,
significant achievements have been made in the last
years. While the first approaches were entirely based
on truth table descriptions of the function to be syn-
thesized, recently a first programming language for re-
versible circuit design has been introduced. We provide
an overview of these different methods and discuss the
respective advantages as well as the still open problems.
The descriptions are thereby kept brief and focus on
illustrating the general idea, respectively. For a more
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Fig. 1. Reversible circuitry

detailed treatment, references to the respective original
work are provided. Moreover, most of the approaches
summarized in this paper are also publicly available in
RevKit [14].

The remainder of the paper is thereby structured as
follows: First the basics on reversible circuits are intro-
duced. Afterwards, the common synthesis approaches
are reviewed. Starting with the initial approaches based
on truth table descriptions (Section III), methods ap-
plicable to larger functions (Section IV), and finally an
approach based on a programming language (Section VI)
are described. At the end of the paper, conclusions are
drawn and an outlook to future research is provided.

II. REVERSIBLE CIRCUITS

Reversible circuits are digital circuits with the same
number of input signals and output signals. Further-
more, reversible circuits realize bijections only, i.e. each
input assignment maps to a unique output assignment.
Accordingly, computations can be performed in both
directions (from the inputs to the outputs and vice
versa).

Reversible circuits are composed as cascades of re-
versible gates. Each reversible gate over the inputs
X = {x1, . . . , xn} consists of a (possibly empty) set C =
{xi1 , . . . , xik} ⊂ X of control lines and a set T ⊂ X \C of
target lines. Commonly used reversible gates are:

• The Toffoli gate TOF (C, xt) [4], which consists of a
single target line xt ∈ X \C whose value is inverted
if all values on the control lines are set to 1 or if
C = ∅, respectively. All remaining values are passed
through the gate unaltered.

• The Fredkin gate F (C, {xt1, xt2}) [3] which consists
of two target lines xt1, xt2 ∈ X \C interchanges the
values of these target lines if all values on the control
lines are set to 1 or if C = ∅, respectively. Again,
all remaining values are passed through the gate
unaltered.

Example 1. Fig. 1(a) shows a Toffoli gate with two control
lines and a Fredkin gate with one control line, respectively.
The control lines are denoted by , while the target lines are
denoted by ⊕ (for the Toffoli gate) or × (for the Fredkin
gate), respectively. The annotated values demonstrate the
computation of the respective gates. Fig. 1(b) shows different
reversible gates in a cascade forming a reversible circuit.

TABLE I
QUANTUM COST FOR TOFFOLI AND FREDKIN GATES

NO. OF QUANTUM COST
CONTROL LINES OF A TOFFOLI GATE OF A FREDKIN GATE

0 1 3
1 1 7
2 5 15
3 13 28, if at least 2 lines are

unconnected
31, otherwise

4 26, if at least 2 lines are 40, if at least 3 lines are
unconnected unconnected
29, otherwise 54, if 1 or 2 lines are

unconnected
63, otherwise

5 38, if at least 3 lines are 52, if at least 4 lines are
unconnected unconnected
52, if 1 or 2 lines are 82, if 1, 2 or 3 lines are

unconnected unconnected
61, otherwise 127, otherwise

To measure the cost of a reversible circuit, different
metrics are applied (sometimes depending on the ad-
dressed technology). In general, the number of circuit
lines is an important criterion. In particular in the do-
main of quantum computation, the number of lines is
equal to the number of qubits – so far a very restricted
resource.

Beyond that, the costs of the respective gates them-
selves are important, too. Since simply counting the
number of gates does not adequately reflect the effort to
realize them, so called quantum costs are applied. They
measure how many elementary quantum operations are
needed in order to realize a reversible gate [5]. In the past
different methods have been introduced that convert a
reversible gate into its equivalent quantum operations
(see e.g. [15], [16]). Accordingly, different metrics for
quantum costs are applied. In this work, we use the
metric shown in Table I. As can be seen, the costs depend
thereby on the number of control lines, a reversible gate
consists of.

Example 2. The circuit shown in Fig. 1(b) consists of three
circuit lines and has quantum cost of 10.

III. TRUTH TABLE-BASED SYNTHESIS

One of the first synthesis approaches for reversible cir-
cuits relies on truth table descriptions of the function to
be synthesized. The given functions often need thereby
to be reversible. Since this is not the case for many
practical functions, a pre-processing step called embed-
ding often is performed first. This creates a reversible
description of the given function which afterwards can
be used to realize the desired circuit. In this section,
both steps, i.e. the embedding as well as the actual
synthesis, of functions given in terms of truth tables are
exemplarily reviewed.



TABLE II
ADDER FUNCTION AND A POSSIBLE EMBEDDING

(a) Adder function
cin x y cout sum
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 ?
1 0 1 1 0 1
1 1 0 1 0 ?
1 1 1 1 1 1

(b) Embedding
0 cin x y cout sum g1 g2
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0

. . .

A. Embedding of Irreversible Functions

The embedding process is illustrated by means of the
adder function shown in Table II(a). The adder has three
inputs (the carry-bit cin as well as the two summands x
and y) and two outputs (the carry cout and the sum). The
adder obviously is not reversible (irreversible), since (1)
the number of inputs differs from the number of outputs
and (2) there is no unique input-output mapping. Even
adding an additional output to the function (leading to
the same number of input and outputs) would not make
the function reversible. Then, the first four lines of the
truth table can be embedded with respect to reversibility
as shown in the rightmost column of Table II(a). How-
ever, since cout = 0 and sum = 1 already appeared two
times (marked bold), no unique embedding for the fifth
truth table line is possible any longer. The same also
holds for the lines marked italic.

This already has been observed in [17] and was further
discussed in [18]. There, the authors came to the con-
clusion that at least dlog(m)e free outputs are required
to make an irreversible function reversible, where m
is the maximum number of times an output pattern is
repeated in the truth table. Since for the adder at most 3
output pattern are repeated, dlog(3)e = 2 free outputs
(and therewith one additional circuit line) are required
to make the function reversible.

Adding new lines causes constant inputs and garbage
outputs. The value of the constant inputs can be chosen
by the designer. Garbage outputs are by definition don’t
cares and thus can be left unspecified leading to an in-
completely specified function. However, many synthesis
approaches require a completely specified function so
that all don’t cares must be assigned with a concrete
value.

As a result, the adder is embedded in a reversible
function including four variables, one constant input,
and two garbage outputs. A possible assignment to the
constant as well as the don’t care values is depicted
in Table II(b). Note that the concrete embedding may
influence the respective synthesis results. Corresponding
evaluations have been made e.g., in [19], [20].

TABLE III
TRANSFORMATION-BASED METHOD

line input output 1st 2nd 3rd 4th 5th 6th

(i) abcd abcd abcd abcd abcd abcd abcd abcd
0 0000 0000 0000 0000 0000 0000 0000 0000
1 0001 0111 0101 0001 0001 0001 0001 0001
2 0010 0110 0110 0110 0010 0010 0010 0010
3 0011 1001 1011 1111 1011 0011 0011 0011
4 0100 0100 0100 0100 0100 0100 0100 0100
5 0101 1011 1001 1101 1101 1101 0101 0101
6 0110 1010 1010 1010 1110 1110 1110 0110
7 0111 1101 1111 1011 1111 0111 1111 0111
8 1000 1000 1000 1000 1000 1000 1000 1000
9 1001 1111 1101 1001 1001 1001 1001 1001

10 1010 1110 1110 1110 1010 1010 1010 1010
11 1011 0001 0011 0111 0011 1011 1011 1011
12 1100 1100 1100 1100 1100 1100 1100 1100
13 1101 0011 0001 0101 0101 0101 1101 1101
14 1110 0010 0010 0010 0110 0110 0110 1110
15 1111 0101 0111 0011 0111 1111 0111 1111

B. Synthesis Using the Transformation-based Approach

With a reversible function (given in terms of a truth
table) at hand, the synthesis can be performed. In the fol-
lowing this is illustrated by means of the transformation-
based approach introduced in [21]. Here, the basic idea
is to traverse each line of the truth table and to add
gates to the circuit until the output values match the
input values (i.e. until the identity of both is achieved).
Gates are thereby chosen so that they don’t alter already
considered lines. Furthermore, gates are added starting
at the output side of the circuit (this is, because output
values are transformed until the identity is achieved).

In the following, we describe the respective steps
of the approach using the (embedded) adder function
from above and Table III. The first column of Table III
denotes the respective line numbers, while the second
and third column give the function specification of the
adder (taken from Table II(b)). For brevity, the inputs 0,
cin, x, y and outputs cout, sum, g1, g2 are denoted by a,
b, c, d, respectively. The remaining columns provide the
transformed output values for the respective steps.

The algorithm starts at truth table line 0. Since for this
line the input is equal to the output (both are assigned
to 0000), no gate has to be added. In contrast, to match
the output with the input in truth table line 1, the
values for c and b must be inverted. To this end, two
gates TOF ({d}, c) (1st step) and TOF ({d}, b) (2nd step)
are added as depicted in Fig. 2. Because of the control
line d, this does not affect the previous truth table line.
In line 2 and line 3, a TOF ({c}, b) gate as well as a
TOF ({c, d}, a) gate is needed to match the values of b
and a, respectively (step 3 and 4). For the latter, two con-
trol lines are needed to keep the already traversed truth
table lines unaltered. Afterwards, only two more gates
TOF ({d, b}, a) (5th step) and TOF ({c, b}, a) (6th step)
are necessary to achieve the input-output identity. The
resulting circuit is shown in Fig. 2. This circuit consists
of six gates and has quantum cost of 18.
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Fig. 2. Circuit obtained by transformation-based synthesis

In [21], further variations of this approach are dis-
cussed. In fact, this transformation can also be applied
in the inverse direction (i.e., so that the input must
match the output) and in both directions simultaneously.
Furthermore, in [22] the approach has been extended
by the application of templates. Templates help one to
reduce the size of the resulting circuits and, thus, to
achieve circuits with lower cost.

C. Further Approaches and Discussion
While the method described above represent only

one possible way to synthesize reversible functions,
many other approaches exist as well. One can dis-
tinguish between further heuristic approaches and ex-
act methods. The strategy introduced in the last sec-
tion (namely selecting reversible gates so that the cho-
sen function representation becomes the identity) was
thereby often adopted and extended. More compact
data-structures like decision diagrams [23], positive-
polarity Reed-Muller expansion [24], or Reed-Muller
spectra [25] have been utilized for this purpose. Besides
that, also complementary approaches have been intro-
duced (e.g. [26], [27]). Instead, exact approaches often are
based on simple enumeration or apply formal methods
(see e.g. [28], [29]).

However, the scalability of all these approaches is
limited, i.e. the methods are applicable for relatively
small functions only. Exact approaches reach their limits
with functions containing more than 6 variables [29]
while heuristic methods are able to synthesize functions
with at most 30 variables [24]. Moreover, often a sig-
nificant amount of run-time is needed to achieve these
results. This is mainly caused by the chosen function
representation. If larger functions should be synthesized,
more compact function descriptions and, accordingly,
other synthesis approaches have to be considered.

IV. BOOLEAN SYNTHESIS FOR LARGE FUNCTIONS

To overcome the limitations of synthesis approaches
based on truth tables (or similar function representa-
tions), alternatives exploiting exclusive sum of products
and decision diagrams have been introduced. These
methods are reviewed in this section.

A. ESOP-based Synthesis
The first approach presented here to illustrate synthe-

sis of large functions makes use of Exclusive Sum of Prod-
ucts (ESOPs) and has been proposed in [30]. ESOPs are

x1 x2 x3 f1 f2 f3
1 - 1 1 0 0
0 1 - 1 1 0
1 1 - 0 0 1
0 0 - 0 0 1
0 1 0 0 1 0

(a) ESOP

x1 –
x2 –
x3 –
0 f1
0 f2
0 f3

(b) Resulting circuit

Fig. 3. ESOP-based synthesis

two-level descriptions of Boolean functions. Each ESOP
is composed of various conjunctions of literals (called
products). A literal either is a propositional variable or its
negation. To form the ESOP, all products are combined
by Exclusive ORs. That is, an ESOP is the most general
form of two-level AND-EXOR expressions.

Having an ESOP representing a function f : Bn → Bm,
the ESOP-based synthesis approach generates a circuit
with n+m lines, whereby the first n lines also work as
primary inputs. The last m circuit lines are initialized
to constant 0 and work as primary outputs. Having
that, gates are selected such that the desired function
is realized. This selection exploits the fact that a sin-
gle product xi1 , . . . xik of an ESOP description directly
corresponds to a Toffoli gate with control lines C =
{xi1 , . . . xik}. In case of negative literals, NOT gates
(i.e. Toffoli gates with C = ∅) are applied to generate
the appropriate values. Based on these ideas, a circuit
realizing a function given as ESOP can be derived as
illustrated in the following example.

Example 3. Consider the function f to be synthesized
as depicted in Fig. 3(a)1. The first product x1x3

affects f1. Accordingly, a Toffoli gate with control
lines C = {x1x3} and a target line representing the
primary output f1 is added (see Fig. 3(b)). The next
product x1x2 includes a negative literal. Thus, a NOT gate
is needed at line x1 to generate the appropriate value for
the next mappings. Since x1x2 affects both, f1 and f2, two
Toffoli gates with control lines C = {x1x2} are added next.
Afterwards, a further NOT gate is applied to restore the value
of x1 (needed again by the third product). This procedure
is continued until all products have been considered. The
resulting circuit is shown in Fig. 3(b).

Note that thereby the order in which the respective
products are traversed may have a significant impact on
the resulting circuit cost. For example, the line x1 in the
circuit from Example 3 is unnecessarily often inverted.
This can be avoided by treating the respective products
in a different order. Improvements of the original ap-
proach exploiting these (and other) observations have
been proposed e.g. in [31].

1The column on the left-hand side gives the respective products,
where a “1” on the ith position denotes a positive literal (i.e. xi) and
a “0” denotes a negative literal (i.e. xi), respectively. A “-” denotes that
the respective variable is not included in the product. The right-hand
side gives the respective primary output patterns.



B. BDD-based Synthesis

Another alternative aimed at synthesizing large func-
tions as reversible circuit has been proposed in [32].
Here, Binary Decision Diagrams (BDDs) [33] are exploited.
A BDD is a directed graph G = (V,E) where each
terminal node represents the constant 0 or 1 and each
non-terminal node represents a (sub-)function. Each non-
terminal node v ∈ V has thereby two succeeding nodes
low(v) and high(v). If v is representing the function f
and labeled with the variable xi, then the corresponding
sub-functions represented by the succeeding nodes are
the co-factors fxi=0 (low(v)) and fxi=1 (high(v)). Thus,
a BDD naturally exposes the Shannon decomposition.
Having a BDD representing a function f as well as
its sub-functions derived by Shannon decomposition, a
reversible circuit for f can be obtained as shown by the
following example.

Example 4. Fig. 4(a) shows a BDD representing the func-
tion f = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 as
well as the respective co-factors resulting from the application
of the Shannon decomposition. The co-factor f1 can easily be
represented by the primary input x4. Having the value of f1
available, the co-factor f2 can be realized by the first two gates
depicted in Fig. 4(b)2. By this, respective sub-circuits can be
added for all remaining co-factors until a circuit representing
the overall function f results. The remaining steps are shown
in Fig. 4(b).

That is, to realize (possibly large) functions, decom-
position is applied leading to smaller sub-functions for
which existing building blocks can be applied. Then,
the resulting sub-circuits can be composed to realize the
overall function.

As can be seen, this method sometimes requires ad-
ditional circuit lines with constant inputs in order to
preserve (temporary) values. For example, as already
shown above, an additional line is required to realize
the co-factor f2 without losing the input value x4 (which
is still needed to realize f3). A similar issue occurs for
the co-factor f5. Here, the values of f2 and f4 have to
be preserved since they are still needed later to realize
co-factor f6.

Further improvements can be achieved if, advanced
BDD techniques like re-ordering or complement edges
are exploited. Also the use of further decomposition
types result in improvements. In particular, the positive
Davio decomposition is thereby promising, since the
respective transformation can directly be realized by a
single Toffoli gate. Improvements based on these ideas
have been reported in [34], [35].

2Note that an additional circuit line is added to preserve the values
of x4 and x3 which are still needed by the co-factors f3 and f4,
respectively.

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

(a) BDD

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

x1 −

x2 −

x3 −

x4, f1 −

0 f

1 −

0 −

0 −

(b) Resulting circuit

Fig. 4. Example for BDD-based synthesis

V. SYNTHESIS USING PROGRAMMING LANGUAGES

The approaches reviewed in the last section are ca-
pable to realize circuits for functions with more than
100 variables. However, they still rely on Boolean de-
scriptions and, thus, do not allow the design of com-
plex reversible systems. Consequently, higher levels of
abstractions have been considered leading to the de-
velopment of hardware description languages. A first
version of such a language called SyReC has recently
been introduced in [36].

A. The SyReC Language

SyReC is based on the reversible software language
Janus [37], which has been enriched by further concepts
(e.g. declaring circuit signals of different bit-widths),
new operations (e.g. bit-access and shifts), and some
restrictions (e.g. the prohibition of dynamic loops). Fig. 5
shows a typical SyReC program specifying a simple
arithmetic logic unit.

As can be seen, a SyReC program includes the declara-
tion of modules and signals of the circuit to be specified
(Line 1). Signals represent thereby non-negative integers
as its sole data type. Besides that, different statements
and expressions are available to specify the functionality
of the circuit. In order to ensure the reversibility, these



1 module alu( in op(2), in a, in b, out c )
2 if ( op = 0 ) then
3 c ˆ= ( a + b )
4 else
5 if ( op = 1 ) then
6 c ˆ= ( a − b )
7 else
8 if ( op = 2 ) then
9 c ˆ= ( a ∗ b )

10 else
11 c ˆ= ( a / b )
12 fi ( op = 2 )
13 fi ( op = 1 )
14 fi ( op = 0 )

Fig. 5. SyReC specification of an ALU

statements must satisfy certain criteria. For example,
each conditional statement (i.e. each if-statement) has
to be terminated by a corresponding fi-statement (see
e.g. Line 12). Furthermore, statements and expressions
are distinguished between reversible assignment operations
and not necessarily reversible binary operations.

Reversible assignment operations assign values to a
signal on the left-hand side. Therefore, the respective sig-
nal must not appear in the expression on the right-hand
side. Furthermore, only a restricted set of assignment
operations exists, namely increase (+=), decrease (-=), bit-
wise XOR (ˆ=). These operations preserve the reversibil-
ity (i.e. it is possible to compute these operations in both
directions).

In contrast, binary operations, e.g. arithmetic, bit-wise,
logical, or relational operations, may not be reversible.
Thus, they can only be used in right-hand expressions
which preserve, i.e. do not modify, the values of the re-
spective inputs. In doing so, all computations remain re-
versible since the input values can be applied to reverse
any operation. For example, to specify the multiplication
in Line 9, a new free signal c must be introduced which
is used to store the product. In comparison to common
(irreversible) programming languages, statements such
as a=b+ (5 ∗ a) are not allowed.

For a detailed introduction of the SyReC programming
language, we refer to [36] as well as to the detailed
documentation provided at the RevLib benchmark web-
page [38].

B. Synthesis of SyReC Specifications
Using the SyReC language, it is possible to design

reversible circuits on a higher level. For example, the
arithmetic logic unit can be specified much easier using
the code from Fig. 5 in comparison to methods based on
truth tables or decision diagrams. However, the specified
circuits still need to be synthesized.

Therefore, a hierarchical synthesis method has been
introduced in [36]. This approach uses existing realiza-

if e then
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Fig. 6. Realization of an if-statement

tions of the individual operations (i.e. building blocks)
and combines them so that the desired circuit results.
Previous work on the realization of these building blocks
(e.g. [39], [40]) was thereby exploited.

Besides that, the realization of control logic was not
investigated in detail before and, thus, received special
attention. The realization of loops and module calls
is thereby straightforward, since the respective instruc-
tions simply have to be cascaded together. In contrast,
conditional statements require more elaborated methods.
In [36], the two approaches depicted in Fig. 6 have been
introduced for this purpose:

1) The first one (shown in Fig. 6(b)) relies on dupli-
cation. Here, the values of all signals that possibly
might be affected in an if- or else-block are copied
(using an additional circuit line with a constant
input as shown by Signal a and Signal c in Fig. 6).
Then, sub-circuits realizing the respective if-/else-
block are added (denoted by the boxes). Finally, de-
pending on the result of the conditional statement
(Signal e in Fig. 6), the values of the duplicated
lines and the original lines are swapped leading
to the desired result which can be used in the
following.

2) The second realization (shown in Fig. 6(c)) makes
intensive use of control connections. More pre-
cisely, control lines are added to all gates in the
realization of the respective then- and else-block.
Therewith, the gates in these blocks are only trig-
gered iff the result of the conditional statement
(i.e. signal e) is assigned to 1 or 0, respectively.
A NOT gate (i.e. a Toffoli gate t(∅, {e}) without
control lines) is thereby applied to flip the value
of e so that the gates of the else block can be
“controlled” as well.

Having both alternatives, it is up to the designer which
one should be used during synthesis. Using the first
realization leads to additional circuit lines (particularly
in quantum logic a restricted resource). This is not the
case in the second realization. But due to the additional
control lines, the quantum costs are significantly larger
in this solution. Thus, both methods are not completely
satisfactory, motivating further research on these higher
levels of abstractions.



VI. CONCLUSIONS AND OUTLOOK

In this paper, we gave a brief overview of the progress
that has been made in the design of reversible circuits.
We reviewed the basic ideas of several synthesis ap-
proaches based on truth table descriptions, exclusive
sum of products, decision diagrams, and, finally, a
hardware description language. Most of the approaches
summarized in this paper are publicly available in
RevKit [14]. While this survey shows the significant
achievements that have already been realized in this do-
main, it also manifests some unsolved problems which
have to be tackled in future work. For example:

• Synthesis for large functions and synthesis based on
hardware description languages, respectively, suf-
fers from a significant number of additional circuit
lines. A first approach addressing this issue is al-
ready available [41]. However, as e.g. shown in [18],
these promising results are still far away from the
optimum.

• Synthesis of reversible circuits specified in a hard-
ware description language still is in its infancy.
Determining more efficient realizations of the data
flow and the control flow remains a subject for
future work.

• Quantum cost has been established as a cost met-
ric to evaluate synthesized reversible circuits. But
beyond that, also other, more technology-specific
constraints should be considered (e.g. transistor
cost [42] or nearest-neighbor requirements [43],
[44]).

• All synthesis approaches reviewed in this survey
considered combinatorial circuits. But in order to
realize practical reversible circuits, sequential behav-
ior has to be supported as well. First approaches
in this direction have already been proposed (see
e.g. [45], [46], [47], [48]) and need to be continued.

Followed by the increasing power of the synthesis
methods, also new verification issues will emerge. In
particular for complex circuits specified using e.g. hard-
ware description languages, it often cannot be ensured
that the design was implemented as intended. Thus,
developing appropriate verification methods is a logical
next step. Researchers can thereby build on first results
achieved for equivalence checking (see e.g. [49], [50],
[51]) and even debugging [52].

Furthermore, questions related to test of reversible
circuits more and more becomes of interest. Already
today, first models and approaches in this area exist (see
e.g. [53], [54], [55], [56]). But due to the absence of large
physical realizations, it is hard to evaluate the suitability
of them. Additionally, existing approaches cover only
some possible technologies. With ongoing progress in the
development of further (and larger) physical quantum
computing or reversible CMOS realizations, new models
and approaches are needed to efficiently test them.

Finally, all these methods and approaches have to
be combined to an integrated design flow. Even if
first approaches towards such a flow are available (see
e.g. [57]), this is the long-term goal of any research in
the domain of reversible circuit design. The development
of a design flow which is comparable to the one for
traditional circuit design (that has been developed in the
last 25 years) will last further years of research. But the
achievements from the recent past provide a good basis
for that.
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