
Data Extraction from SystemC Designs
Using Debug Symbols and the SystemC API

Jannis Stoppe∗ Robert Wille∗† Rolf Drechsler∗†
∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{stoppe,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Due to the ever increasing complexity of hardware
and hardware/software co-designs, developers strive for higher
levels of abstractions in the early stages of the design flow.
To address these demands, design at the Electronic System
Level (ESL) has been introduced. SystemC currently is the “de-
facto standard” for ESL design. The extraction of data from
system designs written in SystemC is thereby crucial e.g. for the
proper understanding of a given system. However, no satisfactory
support of reflection/introspection of SystemC has been provided
yet. Previously proposed methods for this purpose either focus
on static aspects only, restrict the language means of SystemC,
or rely on modifications of the compiler and/or parser.

In this work, we present an approach that overcomes these
limitations. A methodology is introduced which enables full
extraction of the desired information from a given SystemC
design without changing the SystemC library or the compiler.
For this purpose, debug symbols generated by the compiler and
SystemC API calls are exploited. The proposed system retrieves
both, static and dynamic information. A comparison to previously
proposed solutions shows the benefits of the proposed method,
while its application is illustrated by means of a visualization
engine.

I. INTRODUCTION
The complexity of the design of hardware and software

systems, especially in the hardware/software co-design, is ever
increasing. To counter this development, engineers strive for
higher levels of abstractions which, eventually, led to the de-
sign of such systems at the Electronic System Level (ESL) [16].
For this approach, SystemC [21] currently is the “de-facto
standard” [15], [22].

However, due to SystemC being a C++ library, it lacks the
native support for reflection and introspection other system
description languages (like Esys.net [4], [12], [13] or HJJ [10])
provide. Consequently, extracting meta information from a
given system description is a crucial task as (1) the source code
is hard to parse due to the complex structure and the variety
of dialects of C++ and (2) the compiled binaries are basically
stripped of all the information that is not needed for execution,
but might be required for reflection and introspection.

Current approaches try to address these problems by pro-
viding solutions which

• focus on static aspects only [2], [3], [6], [7], [11] or
• execute the design using custom(ized) parsers, compilers,

and/or SystemC libraries that only support a restricted
sub-set of SystemC [8], [9], [19].

This results in limitations concerning the SystemC constructs
being used.

In this work, we introduce a methodology for information
extraction of SystemC designs which addresses these prob-
lems. The general idea is to exert available data and interfaces
as much as possible in order to avoid any restrictions and
dependencies. More precisely, debugging symbols generated
by an off-the-shelf compiler in combination with the existing

SystemC API are applied for this purpose. Both, static and
dynamic information is thereby retrieved.

Using the proposed approach, restrictions and limitations of
the previously introduced solutions are avoided. The proposed
approach considers the established criteria for SystemC design
extraction [19]:

• As few as possible a priori limitations are assumed,
• precise information on all parts of a given system are

provided,
• code reuse is maximized in order to avoid creating a

new C++ dialect and to ensure that the solution is also
applicable to future SystemC compilers, and

• high level TLM constructs are supported.
A comparison to previously introduced approaches confirms

the benefits of our approach. Particularly with respect to a
priori limitations and code reuse, our approach clearly satisfies
the desired criteria. The precision ultimately depends on the
amount of details provided in the debug symbols. However, the
amount of data that can be gathered is more than sufficient for
tasks like system understanding. The respective pros and cons
of the proposed approach are discussed in more detail later in
Section VI-A. Furthermore, the applicability of the proposed
approach is demonstrated by means of a visualization engine.

The remainder of this work is structured as follows: In
order to keep the paper self-contained, the next section briefly
reviews the basics on SystemC and introduces a running
example to be used in this work. Section III reviews and
discusses previously introduced solutions and, therefore, forms
the motivation of this work. Afterwards, Section IV introduces
the general idea of the proposed approach while Section V pro-
vides details on its implementation. Results of the evaluation,
i.e. the comparison to previous work as well as the application
of the extracted results in a visualization engine, are reported
in Section VI. Finally, the paper is concluded in Section VII.

II. SYSTEMC
SystemC is a C++ library for modeling and simulating

system designs. By providing descriptions means for both,
hardware concepts (like modules, signals, ports, etc.) and soft-
ware concepts (like class instantiations, function calls, memory
allocation, etc.), it allows to model and to execute hardware
and software systems on various levels of abstraction. While
modules (representing parts of a hardware system) and their
connections are instantiated, the logic behind those can be
both, made up of simulated hardware elements down to gate
level or just a software simulation of the behavior that is
supposed to be realized in hardware later on. SystemC is
considered an “industry standard” [22] and is widely used to
prototype hardware/software systems and co-systems as well
as their behavior.

1 # i n c l u d e < sys t emc . h>
2 SC_MODULE(f u l l A d d e r) {
3 s c _ i n <bool > a , b , c a r r y I n ;
4 sc_ou t <bool > r e s u l t , c a r r y O u t ;
5 void c a l c u l a t e () {
6 c a r r y O u t . w r i t e ((a && c a r r y I n) | | (b &&

c a r r y I n) | | (a && b)) ;
7 r e s u l t . w r i t e ((a && ! b && ! c a r r y I n) | | (! a

&& b && ! c a r r y I n) | |
8 (! a && ! b && c a r r y I n) | | (a && b &&

c a r r y I n)) ;
9 }

10 SC_CTOR(f u l l A d d e r) : a (" a ") , b (" b ") , r e s u l t (" r e s u l t "
) , c a r r y O u t (" c a r r y O u t ") {

11 SC_METHOD(c a l c u l a t e) ;
12 s e n s i t i v e << a << b ;
13 }
14 } ;
15 i n t sc_main (i n t a r g c , char ∗a rgv []) {
16 i n t b i t s = 2 ;
17 i f (a r g c > 1)
18 b i t s = max (0 , min (1 6 , a t o i (a rgv [1]))) ;
19 f u l l A d d e r∗ p r e v i o u s ;
20 f o r (i n t i = 0 ; i < b i t s ; i ++) {
21 f u l l A d d e r∗ f a = new f u l l A d d e r (" f u l l A d d e r ") ;
22 i f (i > 0) {
23 s c _ s i g n a l <bool >∗ s i g = new

s c _ s i g n a l <bool >(" c a r r y S i g n a l ") ;
24 p r e v i o u s −>c a r r y I n (∗ s i g) ;
25 fa−>c a r r y O u t (∗ s i g) ;
26 }
27 p r e v i o u s = f a ;
28 }
29 re turn 0 ;
30 }

Fig. 1. SystemC program
Example 1. Fig. 1 shows a SystemC program which is used as
running example in the remainder of this paper. The program
realizes a simple carry-ripple adder. The bit-width of the adder
is not statically defined, but will be provided by the user
when executing the program. This is realized by iteratively
instantiating new one-bit full adders.

III. MOTIVATION
SystemC enables to implement and simulate complex hard-

ware/software systems. Fig. 2a briefly shows the correspond-
ing flow which is basically identical to the typical software
design flow: The desired system is implemented in SystemC
and compiled by an off-the-shelve compiler. Finally, the re-
sulting binary can be executed to simulate the system.

However, to be able to further process a SystemC design
beyond its mere simulation, information concerning the struc-
ture of the design needs to be extracted. Due to the lack
of native support for reflection and introspection, researchers
developed several approaches concerning the extraction of
information from a given SystemC design. Basically, they can
be categorized as follows [15]:

• Static Approaches extract information by interpreting
the source code without executing it. This allows for
an extraction of all static information of the design
including e.g. classes, operations, etc. For this purpose,
either custom C++/SystemC parsers (e.g. [3], [6], [7],
[11]) are applied or the intermediate representation of
existing C++ compilers (e.g. the Abstract Syntax Tree
(AST)) is exploited from which the desired information
is obtained [19].

• In addition to a static data extraction, Hybrid Approaches
(e.g. [5], [8], [9], [19]) additionally consider the dynamic
behavior of a given SystemC program. For this purpose,
the considered SystemC description is executed and the
desired dynamic information is obtained during run-time.

All existing approaches are thereby subject to serious re-
strictions and limitations. Obviously, static approaches in-
herently suffer from a purely static analysis only. Dynamic
constructs of the systems like loops, recursions, user defined

(a) Standard SystemC flow

(b) Extracting information using previously proposed solutions

(c) Solution proposed in this work

Fig. 2. Extracting information from SystemC designs

variables, etc. often can hardly be extracted [15]. Particularly,
if the program depends on user input (e.g. the parameter
specifying the bit-width in the carry-ripple adder from Fig. 1),
this information cannot be grasped from the static code at all.

Hybrid approaches usually cover these drawbacks by ad-
ditionally taking into account run-time information. Most
existing approaches rely on customized, i.e. non-standardized,
tools. As an example, Pinapa [15], [19] uses a “slightly
modified version of SystemC” and requires “a patch to the
GNU C++ compiler” [20]. The approach presented in [8]
uses a PCCTS based parser, which effectively restricts the
descriptions means of SystemC. Hence, current hybrid ap-
proaches do not fully support the entire instruction set of
C++. Moreover, these approaches are written specifically for
the existing sub-set of SystemC – in order to support future
releases of SystemC, they need to be re-developed.

Overall, existing approaches either suffer from
• being focused on static aspects only,
• need a customized adaption of SystemC and, therefore,

are not applicable e.g. to future releases of SystemC, or
• rely on customized compilers/parsers which limit the

applicable language constructs.
This is also briefly summarized in Fig. 2b.

Even recently published hybrid systems PinaVM [14] and
SHaBE [5] are applying complex measures to extract system
designs that cannot be easily ported to other project structures.
SHaBE “uses the GNU debugger (GDB) to retrieve the module
hierarchy from a SystemC model" and a GCC plugin to
retrieve static information. While this results in all GCC-
supported constructs being supported as well, not all compilers
offer a plugin interface to modify the compilation process or
a scriptable debugger, making the approach inapplicable for
other setups. PinaVM relies on the intermediate representation
that is generated by the LLVM compiler for execution and
static extraction, making the approach only seem applicable
for setups that rely on IRs (e.g. C++/CLR or LLVM).

While [1] recognized these flaws and presented a solution
that left the SystemC core untouched, the reflection and
introspection capabilities are available only through a Python
wrapper.

In this work, we are aiming at overcoming the given
drawbacks. More precisely, we consider the question:

How to extract the desired information from a
given SystemC design without assuming restricted
language means and without modifying the existing
infrastructure like parsers or compilers?

IV. GENERAL IDEA
In order to address the research question stated above,

we are exerting the data and interfaces that are available in
SystemC/C++ design as much as possible. In particular,

• C++ compilers generate debug symbols from which rele-
vant (static) information of the considered design can be
obtained and

• the SystemC API allows for an extraction e.g. of values
from data-structures during the execution of a program

are being used.
In this work, we propose an approach which exploits

these existing interfaces for a generic and flexible information
extraction of SystemC designs. More precisely, we use the
debug symbols that are generated during compilation anyway
to extract the static meta information of SystemC programs.
By this, we can avoid modifying a compiler (e.g. to dump the
accumulated information) as all desired information can also
be extracted from these symbols.

Dynamic information can obviously be retrieved only during
the execution of a program as some values might not be
known at compile-time. But instead of trying to retrieve this
information by modifying the given design (e.g. to dump
values currently assigned to signals) or by deduction from
the static information, we again make use of the existing
infrastructure. In fact, the SystemC API is exploited to extract
the desired information during run-time, making the solution
for dynamic extraction independent from the platform or the
compiler being used.

As a result, information extraction of SystemC designs can
be conducted as illustrated in Fig. 2c. Instead of modifying
the compiler and working with a binary extended by addi-
tional information needed for information extraction only, the
existing data structures and interfaces are exploited (namely
the debug symbols and the SystemC API). By relying on this
existing infrastructure, the proposed solution is flexible, quite
independent from compiler versions, and fully supports the
whole range of SystemC.

In the next section, the proposed approach is described in
detail.

V. IMPLEMENTATION

Two different modules have been implemented to realize
the ideas proposed above: The first module reads the compiler-
generated debug symbols and extracts static information of the
design from it. The second module is a C++ library which can
be called during run-time to export SystemC objects that are
currently residing in memory. This allows for an extraction of
the dynamic information. Afterwards, the extracted dynamic
information is matched with its static counterpart.
A. Extraction of Static Information via Debug Symbols

Existing approaches for the extraction of static information
rely on parsing the code using a custom program or inter-
preting the intermediate language of a given compiler. In the
proposed solution, debug symbols of the compiled program
are exploited instead. Such debug symbols are created by
almost every modern compiler and contain meta information

. s t a b s " f u l l A d d e r : Tt (0 , 4 8 7 2) =s5332 ! 1 , 0 2 0 , (0 , 1 9 2 7) ; a
: (0 , 1 9 7 9) , 7 3 6 , 4 4 8 ; b : (0 , 1 9 7 9) , 1 1 8 4 , 4 4 8 ; c a r r y I n : (0 , 1 9 7 9)
, 1 6 3 2 , 4 4 8 ; r e s u l t : (0 , 3 9 3 3) , 2 0 8 0 , 4 8 0 ; c a r r y O u t : (0 , 3 9 3 3)
, 2 5 6 0 , 4 8 0 ; . . .

Fig. 3. Debug symbols in the STABS format

of the code which are usually applied to aid the designer in
developing and debugging his/her implementation. For this
purpose, the compilers collect and build extensive data about
the program which, after the compilation, is written to the
disk so that the debugger can use them. However, in a similar
fashion, the desired static information can be extracted from
these symbols.

Example 2. Fig. 3 shows some debug symbols in the STABS
format as they have been generated by the GNU compiler
using the code from Fig. 1. As can been seen, relevant static
information of the design (e.g. the fullAdder class and its
fields) can be recognized. This kind of information is available
to a very deep level, including access modifiers of fields, a
function’s lines in the source code, function parameter types,
base class information, size of types, etc. Furthermore, many
debug symbols are arranged in a hierarchical manner, i.e. a
debug symbol may be composed of several sub-symbols.

In the following, we show how the information available
through these debug symbols can be exploited to extract the
desired static information of a given system. Therefore, we use
the Microsoft VC++ compiler and the Program Database-files
(PDB-files) generated by it [18]1. Additionally applying the
Debug Interface Access (DIA) SDK [17], the debug symbols
that are collected in those files can be accessed.

Fig. 4 shows the general procedure of the extraction. Given
a PDB-file created by the VC++ compiler from a SystemC
design, all topmost debug symbols are loaded first (line 2).
Afterwards, each symbol is separately considered and analyzed
(lines 3-5). The desired information is thereby dumped into an
XML-data structure representing the static information of the
system. Since the debug symbols are hierarchically structured,
the analysis is recursively conducted through the function
analyzeSymbol (line 7). Here, all the desired information of
the currently considered debug symbol are dumped to the
XML-data structure first (line 8). Afterwards, it is checked
whether further hierarchical information is available (lines 9-
17). If this is the case, the corresponding sub-symbols are
analyzed by recursively calling analyzeSymbol for them. To
avoid redundancies, lines 13 and 14 stop the recursion if types
are found that are also part of the symbolTable and would
otherwise be extracted several times.

Example 3. Consider again the SystemC code from Fig. 1
to be analyzed. Using the PDB-file generated by the VC++
compiler, the analysis of the first debug symbol (line 8) results
in an XML-tag like
<userDefinedType name="fullAdder"

addressOffset="0" addressSection="0"
constType="0" length="428">

stating that the considered system contains the class fullAd-
der (an instance of which occupies 428 bytes in memory). More
information about this class can be gained by the analysis
of the corresponding sub-symbols through the recursive calls

1However, although we implemented the proposed solution with these tools,
the same concept can be realized using other modern compilers as well.

1 f u n c t i o n ana lyzeDebugData (f i l e n a m e) b e g i n
2 symbolTab le = loadDataFromDebugFi l e (f i l e n a m e)
3 f o r each symbol i n symbolTab le
4 ana lyzeSymbol (symbol)
5 end f o r
6 end f u n c t i o n
7
8 f u n c t i o n ana lyzeSymbol (c u r r e n t S y m b o l) b e g i n
9 dumpAllData (c u r r e n t S y m b o l)

10 i f c u r r e n t S y m b o l has t y p e I n f o r m a t i o n t h e n
11 ana lyzeSymbol (t y p e I n f o r m a t i o n)
12 end i f
13 i f c u r r e n t S y m b o l has subSymbols AND
14 c u r r e n t S y m b o l i s NOT b a s e C l a s s AND
15 c u r r e n t S y m b o l i s NOT t y p e d e f t h e n
16 f o r each subsymbol i n subsymbols
17 ana lyzeSymbol (subsymbol)
18 end f o r
19 end i f
20 end f u n c t i o n

Fig. 4. Pseudo code of debug information extraction

(line 9-17). One of the fullAdder class’s sub-symbols contains
e.g. information about its field “a” (i.e. the full adder’s first
input bit):

<data name="a" [...] >
<type> <userDefinedType
name="sc_core::sc_in<bool>"[...]>

Note the field’s name (“a”) and the field’s type
(sc_core::sc_in<bool> with “<” being replaced by
“<” and “>” by “>” respectively to keep the XML
structure valid) in the description. This information is con-
tained in its own debug symbol that is part of the former
symbol. The hierarchy is encompassed by the recursion. More
information could be gained by searching for the description
of the given type itself. Other sub-symbols provide information
e.g. on inheritance, functions, their parameters, etc.

Using this procedure allows for an exploitation of debug
symbols, which are generated anyway, for the purpose of static
information extraction. Compared to previously proposed so-
lutions with their respective constraints and requirements,
this results in a near-to-none setup as all the information is
retrieved from existing compilers and tools.

B. Extraction of Dynamic Information via the SystemC API

The SystemC library comes with an API that provides not
only means of virtually creating and simulating systems, but
also allows for accessing and inspecting the created instances
of a system during run-time. That is, SystemC itself is,
in principle, able to deliver an overview of the dynamic
information of the instantiated system. However, in addition
to the dynamic features, the static information also needs to
be extracted. Existing approaches exploiting this API for the
extraction of dynamic information still rely on modifying the
SystemC library [9] and, hence, only provide a limited and
restricted solution.

We propose a solution that requires as few changes as
possible to the existing setups by performing the following
steps each time dynamic information should be retrieved:

1) Accessing the instantiated objects: The SystemC
API provides a function to get access to the simulation
context (via sc_get_curr_simcontext()) through
which an object_manager can be retrieved
(via context->get_object_manager()). The
object_manager in turn provides access to all instantiated
objects that are being used in the current run of the SystemC
program.

2) Naming the retrieved objects: To name the retrieved
objects, [9] named the instances based on the fields’ names.
That is, an object created by the SystemC line fullAdder
faField("faName") would be named faField. This leads
to serious problems as

• field names may be used more than once (at different
locations in the program) and

• a single instance may be assigned to several fields and,
hence, a single instance might be referred to by several
different field names.

In order to overcome these problems, the proposed solu-
tion uses the respective SystemC name field for naming an
instantiated object. That is, an object created by the SystemC
line fullAdder faField("faName") would be named
faName. As SystemC automatically renames duplicates and
assigns names to unnamed objects, this solves the above
mentioned problems. Moreover, as the name is chosen by the
designer and is not required to comply with the rules of C++
variable names, the naming of the respective objects becomes
more intuitive for the designer. Finally, this solution makes
any parsing of the SystemC source code obsolete. Limiting
modifications in the SystemC library (as done e.g. in [9]) can
be dropped.

3) Mapping instances: In order retrieve a complete model
of the given design, in a last step the extracted dynamic
information is mapped to the static information gathered by
the debug symbols2 and/or other objects that are being used
in the design. To comply with the non-invasiveness principle,
the C++ and SystemC APIs are exploited:

• The types of the modules are retrieved by Run Time
Type Inspection (RTTI) using the typeid operator (via
typeid(*module).name()). As SystemC objects
already have virtual methods, all SystemC objects provide
a so called vtable during run-time, making the use of
RTTI reasonable. This type name is the same as in the
debug symbols, mapping the instances to their classes.

• Channels are differentiated from modules using
an attempted cast to sc_interface* (via if
(dynamic_cast<sc_interface*>(module)
!= 0) isChannel = true). This allows for
channels to be marked as such during extraction albeit
they usually behave like modules.

• Ports are matched either by the name of their
channel (when being connected to one) (via
(dynamic_cast<sc_channel*>(chan))->
name()) or the memory address of the respective signal
(via reinterpret_cast<int>(chan)). All ports
that share the same signal address are considered to
be connected depending on being either input, output
or both. In contrast, ports that share the same channel
instance’s name are considered to be connected to the
given channel.

The type names that are extracted by the SystemC API
in this fashion exactly match those that are extracted from
the debug symbols. Hence, the remaining mapping between
the extracted static information and the extracted dynamic
information is a simple comparison operation.

Incorporating these steps, the designer only has to specify
at which point during the execution of the project, dynamic

2Note that e.g. [9] did not retrieve any static information and, hence, no
such mapping at all was considered there.

<SystemCDesign>
<module name="fullAdder_0" type="struct fullAdder">
<In name="fullAdder.a"

type="class sc_core::sc_in<bool>"></In>
<In name="fullAdder.b"
type="class sc_core::sc_in<bool>"></In>
...

Fig. 5. Result of the dynamic design extraction of SystemC
information should be extracted. This is realized by providing
a function dumpModulesToFile(string filename).
Whenever this function is called during the execution of
a SystemC program, the respective steps from above are
performed and, similar to the extraction of the static analysis,
the determined information is stored in an XML-data-structure.
Example 4. Consider again the SystemC code from Fig. 1 to
be analyzed. Assuming the designer is interested in all dynamic
information available after the full adder has completely been
instantiated. Then the designer only has to add the com-
mand dumpModulesToFile(string filename) after
line 28 in the code from Fig. 1. Then, during the execution of
the program, the respective API calls are conducted eventually
leading to the XML-tags as partially shown in Fig. 5. From
this, the designer can obtain the desired information, e.g. that
there is an object called “fullAdder_0” of the type “fullAdder”
with two inputs “a” and “b”, each of which is of type
sc_core::sc_in<bool>.

VI. EVALUATION
In this section, we evaluate the proposed approach. To

this end, the methods introduced in Section V have been
implemented as the tool LENSE (the Lightweight Expedient
for Non-Invasive System Extraction).

There are two major components in this tool: the first
one analyzes the debug symbols of the compiled SystemC
programs as introduced in Section V-A, while the second one
is the library to extract the dynamic information as introduced
in Section V-B. Both have been implemented in C++, the
former additionally using the DIA SDK to access the debug
information, the latter using the SystemC library. While, in the
current implementation, the static analysis is only applicable to
Microsoft VC++ projects under Windows, dynamic extraction
is platform independent and has been tested in Linux and
Windows environments. Both modules build an XML structure
that is written to disk for further usage.

In our evaluation we (1) discuss the characteristics and
the applicability of LENSE and (2) illustrate the application
of LENSE by means of a visualization scenario.
A. Discussion

According to [19], SystemC design extraction approaches
should satisfy the following criteria:

1) Assuming as few a priori limitations as possible,
2) providing precise information on all parts of the pro-

gram,
3) maximizing code reuse to avoid creating new C++

dialects and to ensure that the solution is also applicable
to future SystemC compilers, as well as

4) being able to manage high level Transaction Level
Modeling (TLM) constructs.

Concerning the a priori limitations (#1), our approach
clearly outperforms previously proposed solutions. In fact,
LENSE enables a full data extraction without interfering
with the overall compilation process. While all approaches
proposed so far rely on a modification of the applied com-
piler and/or the SystemC library, existing debug symbols and

interfaces are exploited here (as illustrated in Fig. 2). Our
hybrid approach does not rely on custom code annotations
or language constructs being used. Also, we do not require
the user to use a modified or custom compiler or parser (ef-
fectively limiting the language constructs being used). While
the implementation currently only supports Microsoft VC++
debug symbols, the methodology is not limited to it and
an implementation for alternative symbols (e.g. STABS or
DWARF) are straight-forward.

With regard to the precision (#2), previously proposed
solutions retrieve their information from intermediate repre-
sentations like the AST. Our tool ultimately depends on the
debug symbols generated by the compiler. This, however,
ensures a significant amount of information concerning the
structure of a program is available (e.g. information about class
hierarchy, member functions, fields, visibility, etc.), including
precise information concerning the individual lines in the
source files that a particular element is made up of.

Concerning code reuse (#3) our approach, while having
been implemented for a Microsoft VC++ environment, is
applicable to basically any setup, requiring no changes in
the user’s code base at all (apart from a single function
call to denote at which point during the execution dynamic
information should be retrieved). We are exploiting the exist-
ing infrastructure of debug symbols (for static information)
and the SystemC API (for dynamic information), leaving
no dependency on versions, kinds of compilers, or SystemC
libraries being used.

Our approach provides TLM support (#4). As our tool
inspects the full class hierarchy, all objects that at some point
inherit from or implement any SystemC class are recognized
and extracted properly. As, however, the interesting part of
TLM is usually the way information is being transferred in
the system, we recognize a limitation of our approach as no
run-time behavior of the simulation is being tracked yet. But
this is no limitation of the methodology itself. A more detailed
consideration of this aspect is left for future work.

Overall, the proposed approach improves the existing state-
of-the-art particularly with respect to criterion #1 and crite-
rion #3. However, also the precision (criterion #2) is high, but
ultimately depends on the amount of details being provided by
the debug symbols. The amount of data that can be gathered is
still tremendous and more than suffices for tasks like system
understanding. Finally, also TLM support (criterion #4) is
provided, although this will be considered in more detail in
future work.

B. Application
The extracted data was used to create a proof-of-concept

visualization tool for SystemC designs. This tool reads the
extracted XML files and merges them into a system visualiza-
tion that combines the static information (i.e. the source code
elements that were retrieved from the debug symbols) and
the dynamic information (i.e. instances of modules, signals,
etc. that were retrieved from the SystemC API) in one single
view. This tool has been written in C#/XNA. The goal of
this tool is to illustrate how the independently generated data
from the different sources (static, dynamic) are merged and
exploited.

Two possible views of the visualization are depicted in
Fig. 6. More precisely, Fig. 6a shows the dynamic information
retrieved by executing the carry-ripple adder program from
Fig. 1 with a bit-width of 4. Each box represents thereby

(a) Global view (b) Closer view

Fig. 6. Visualization of the SystemC example

an instantitation of a 1-bit fullAdder with its corresponding
fields and connections. A closer view to one of the boxes is
provided in Fig. 6b. Here, the smaller boxes within the top
box represent the respective fields of the fullAdder which
have been obtained from the static meta information.

The approach is also applicable to complex SystemC de-
signs. More precisely, the tool has successfully been tested
on all examples that are delivered with the SystemC library.
For all these designs, a corresponding visualization has been
created within a few moments.

VII. CONCLUSION

In this work, an alternative approach to extract both, dy-
namic and static data from a SystemC program has been
presented. Unlike previous approaches, the proposed solution
neither requires modifications of the SystemC library nor does
it have prerequisites concerning the compilation process (as
long as debug files are generated). While the implementation
itself is currently limited to the Microsoft VC++ debug format,
this limitation is not systemic. A similar solution can be
realized with other modern compilers as well. A comparison
to previously proposed solutions illustrated the benefits of
the proposed method. By means of a visualization engine, a
possible application has been shown.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
project VisES under contract no. 16M3197B and the German
Research Foundation (DFG) within the Reinhart Koselleck
project under contract no. DR 287/23-1.

REFERENCES

[1] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. Resp: A
nonintrusive transaction-level reflective mpsoc simulation platform for
design space exploration. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 28(12):1857 –1869, dec. 2009.

[2] David Berner, Jean-Pierre Talpin, Hiren Patel, Deepak Abraham Math-
aikutty, and Sandeep Shukla. SystemCXML: An extensible SystemC
front end using XML. In Proceedings of the Forum on Specification
and Design Languages, pages 405–409, 2005.

[3] Carlo Brandolese, Paolini Di Felice, Luigi Pomante, and Daniele
Scarpazza. Parsing SystemC: an open-source, easy-to-extend parser. In
IADIS International Conference on Applied Computing, pages 706–709,
2006.

[4] Olivier Brassard, Frederic Rousseau, Jean David, Mathieu Kastle, and
El Aboulhamid. Automatic Generation of Embedded Systems with .NET
Framework Based Tools. 2006 IEEE North-East Workshop on Circuits
and Systems, pages 165–168, June 2006.

[5] H. Broeders and R. van Leuken. Extracting behavior and dynamically
generated hierarchy from systemc models. In Design Automation
Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 357 –362, june
2011.

[6] Javier Castillo, Pablo Huerta, and Jose Ignacio Martinez. An open-
source tool for SystemC to Verilog automatic translation. Latin American
Applied Research, 37(1):53–58, 2007.

[7] Görschwin Fey, Daniel Große, Tim Cassens, Christian Genz, Tim
Warode, and Rolf Drechsler. ParSyC: an efficient SystemC parser. In
Workshop on Synthesis And System Integration of Mixed Information
technologies, pages 148–154, 2004.

[8] Christian Genz and Rolf Drechsler. Overcoming limitations of the
SystemC data introspection. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 590–593, 2009.

[9] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst.
Efficient automatic visualization of systemc designs. In Forum on
Specification & Design Languages, pages 646–658, 2003.

[10] John Hopf, G. Stewart Itzstein, and David Kearney. Hardware Join
Java: a high level language for reconfigurable hardware development.
In International Conference on Field-Programmable Technology, pages
344–347, 2002.

[11] FZI Karlsruhe. KaSCPar - Karlsruhe SystemC Parser Suite, 2012.
http://www.fzi.de/index.php/de/component/content/article/238-ispe-
sim/4350-kascpar-karlsruhe-systemc-parser-suite.

[12] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, Luc
Charest, Francois R. Boyer, Jean Pierre David, and Guy Bois. ESys.
Net: a new solution for embedded systems modeling and simulation.
ACM SIGPLAN Notices, 39(7):107–114, 2004.

[13] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, Luc
Charest, Francois R. Boyer, Jean Pierre David, and Guy Bois. .NET
framework - a solution for the next generation tools for system-level
modeling and simulation. In Design, Automation and Test in Europe
Conference, pages 732–733, 2004.

[14] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC Front-End
Based on an Executable Intermediate Representation. In Proceedings of
the tenth ACM international conference on Embedded software, pages
79–88. ACM, 2010.

[15] Kevin Marquet, Matthieu Moy, and Bageshri Karkare. A theoretical and
experimental review of SystemC front-ends. In Forum on Specification
and Design Languages, pages 124–129, 2010.

[16] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and
Verification: A Prescription for Electronic System Level Methodology.
Morgan Kaufmann, 2007.

[17] Microsoft. Debug Interface Access SDK, 2010.
http://msdn.microsoft.com/de-de/library/x93ctkx8%28v=vs.100%29.aspx.

[18] Microsoft. Program Database Files (C++), 2010.
http://msdn.microsoft.com/en-us/library/yd4f8bd1%28v=vs.100%29.aspx.

[19] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
Pinapa: An extraction tool for systemc descriptions of systems-on-a-
chip. In Conference on Embedded software, pages 317–324, 2005.

[20] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
LusSy: An open tool for the analysis of systems-on-a-chip at the
transaction level. Design Automation for Embedded Systems, 10(2-
3):73–104, 2006.

[21] O.S.C. Initiative. IEEE Standard SystemC Language Reference Manual.
IEEE Computer Society, 2006.

[22] Carsten Schulz-Key, Markus Winterholer, Thomas Schweizer, Tommy
Kuhn, and Wolfgang Rosentiel. Object-oriented modeling and synthesis
of SystemC specifications. In Asia and South Pacific Design Automation
Conference, pages 238–243, 2004.

