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Abstract. Motivated by its superiority compared to conventional so-
lutions in many applications, quantum computation has intensely been
investigated from a theoretical, physical, and design perspective. While
these investigations mainly focused on two-level quantum systems, re-
cently also advantages and benefits of higher-level quantum systems be-
came evident. Though this led to several approaches for the representa-
tion and realization of quantum functionality in different dimensions, no
efficient solution for verifying their equivalence has been proposed yet.
In the present paper, we address this problem. We propose a scheme
which is capable of verifying the equivalence of two quantum operations
regardless of the dimension of their underlying quantum system. The
proposed scheme can be incorporated into data-structures such as Quan-
tum Multiple-Valued Decision Diagrams (QMDD) particularly suited for
the representation of quantum functionality and, by this, enables an ef-
ficient verification. Experiments confirm the efficiency of the proposed
approach.

1 Introduction

Quantum computation [19] provides a new way of computation based on so called
qubits. In contrast to conventional bits, qubits do not only allow to represent the
(Boolean) basis states 0 and 1, but also superpositions of both. By this, qubits
can represent multiple states at the same time which enables massive parallelism.
Additionally exploiting further quantum mechanical phenomena such as phase
shifts or entanglement enables asymptotic speed-ups for many relevant problems
(e.g. database search or integer factorization), offers new methods for secure
communication (e.g. quantum key distribution), and has several other appealing
applications [19].

Motivated by these prospects, researchers from various domains investigated
this emerging technology. While, originally, the exploitation of quantum mechan-
ical phenomena has been discussed in a purely theoretical fashion (see e.g. [10,23]
for two well-known quantum algorithms), recently also the consideration of phys-
ical realizations (see e.g. [6,8,21]) as well as proper design methods (see e.g. [1])
gained significant interest. However, most of these considerations and imple-
mentations focused on two-level quantum systems, i.e. systems based on qubits.



But, as a matter of fact, the considered quantum systems offer multiple lev-
els to be exploited. These levels are readily accessible and using them for state
preparation and read-out has been demonstrated [18]. By this, computations
can be performed on so called qudits rather than qubits. Researchers investi-
gated possible exploitations of these additional levels e.g. for matters of simpli-
fied implementation or improved design of quantum operations. They were able
to show that multi-level systems are useful for many promising applications and
provide several practical advantages in the design of respective operations (see
e.g. [5, 12]). This is discussed in detail later in Section 3.

As a consequence, several approaches for representing and realizing quantum
functionality in various quantum systems exist. This raises the question of how
to verify whether or not two quantum operations given in different quantum sys-
tems indeed realize the same function. Although several methods for equivalence
checking of quantum functionality have been proposed in the past (e.g. based
on simulation [24], decision diagrams [26], or Boolean satisfiability [28]), all of
them only supported two-level quantum systems composed of qubits.

In this work, we address the problem of checking functional equivalence be-
tween operations that are realized in multi-level quantum systems. This explicitly
includes comparisons between realizations in different dimensions, i.e. quantum
systems with a different number of levels. For this purpose, we first discuss and
define functional equivalence in this context. Afterwards, a verification scheme
based on the formal representation of quantum operations by unitary matrices is
proposed. Since these matrices grow exponentially with the number of considered
qubits, we additionally demonstrate how the proposed scheme can be incorpo-
rated into data-structures such as QMDDs [15] which are explicitly suited for the
compact representation of quantum operations. By this, an equivalence checker
for multi-level quantum systems results. The efficiency of the proposed scheme is
confirmed by an experimental evaluation considering a wide range of operations
realized in different quantum systems.

The remainder of the paper is structured as follows. In Section 2, preliminar-
ies on quantum computation as well as a proper data-structure for the compact
representation of quantum functionality are briefly reviewed. Section 3 discusses
recent achievements in the field of multi-level quantum systems and, by this,
motivates the present work. A definition of functional equivalence in multi-level
quantum systems is then provided in Section 4 before the proposed scheme and
an efficient implementation are described in detail. The paper concludes with a
summary on the conducted experimental evaluation in Section 5 and our con-
clusions in Section 6.

2 Preliminaries

This section briefly reviews the basics on quantum computation. Furthermore, we
sketch the main ideas of Quantum Multiple-valued Decision Diagrams (QMDDs),
a data-structure which is used later for an efficient implementation of the pro-
posed equivalence checking scheme.



2.1 Quantum Computation

Most commonly, the basic building blocks for quantum computation are qubits.
A qubit is a two-level quantum system, described by a two-dimensional complex
Hilbert space. The two orthogonal basis states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are used to

represent the (conventional) values 0 and 1. Any state of a qubit may be written
as |Ψ〉 = α|0〉+ β|1〉, where α and β are complex numbers with |α|2 + |β|2 = 1.
The quantum state of a single qubit is denoted by the vector

(
α
β

)
. We say that

a qubit is in superposition if neither of the so called amplitudes α or β is zero.
A qubit can be measured, yielding either the result |0〉 or |1〉 with probability
|α|2 or |β|2, respectively. Such measurement destroys superposition and forces
the qubit to the respective basis state. The state of a quantum system with n > 1
qubits is given by an element of the tensor product of the single qubit spaces, i.e.
a linear combination of the tensor states |0 . . . 0〉, |0 . . . 1〉, . . . , |1 . . . 1〉, which are
the tensor products of basis states. Consequently, a quantum state is represented
as a normalized vector of length 2n (called the state vector), whose components
denote the amplitude for each tensor state.

By the postulates of quantum mechanics, the evolution of a quantum sys-
tem due to a quantum operation can be described by a unitary transformation
matrix U [19]. Here, the columns correspond to the output state vectors that
result when applying the respective operation to the tensor states as inputs.
Thus, the entry uij of the matrix describes the mapping from the input tensor
state |j〉 to the output tensor state |i〉.

Example 1. Commonly used quantum operations include the Hadamard opera-
tionH (setting a qubit into a balanced superposition) and the T (or π

8 ) operation.
The corresponding unitary matrices are defined as

H = 1√
2

(
1 1
1 −1

)
and T =

(
1 0

0 e
πi
8

)
.

Applying these operations to a qubit in basis state |1〉 yields

H|1〉 = 1√
2

(
1 1
1 −1

)(
0

1

)
= 1√

2

(
1

−1

)
= 1√

2
(|0〉 − |1〉) and

T |1〉 =

(
1 0

0 e
πi
8

)(
0

1

)
=

(
0

e
πi
8

)
= e

πi
8 |1〉, respectively.

While these operations work on a single qubit, there are also operations on
multiple qubits. Usually, these are controlled operations in the sense that the
state of the additional control qubits determines which operation is performed
on the target qubit.

Example 2. An important example of a controlled operation is the controlled
NOT (CNOT) which flips the two basis states of the target qubit if and only if
the control qubit is in the |1〉-state.
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Fig. 1. Matrix and QMDD representation of a 2-qubit quantum operation.

It has been shown that the set of CNOT, H, and T operations (forming
the so-called Clifford+T library) is universal for quantum computation, i.e. op-
erations from this set can approximate every unitary transformation to an ar-
bitrary precision [3]. Moreover, these quantum operations can be implemented
in a fault-tolerant fashion [3] – a crucial property since quantum computing is
inherently very sensitive to environmental factors such as radiation and, hence,
fault-tolerance is even more important than for conventional systems.

2.2 Quantum Multiple-valued Decision Diagrams

QMDDs [15] have been introduced as a data-structure for the efficient represen-
tation and manipulation of quantum operations. The main idea is a recursive
partitioning of the respective transformation matrix and the use of edge and ver-
tex weights to represent various complex-valued matrix entries. More precisely,
a transformation matrix of dimension rn × rn is successively partitioned into
r2 sub-matrices of dimension rn−1 × rn−1. This partitioning is represented by
a directed acyclic graph – the QMDD. The following example illustrates main
aspects of this data-structure.

Example 3. Figure 1a shows a transformation matrix for which a QMDD as
shown in Fig. 1b has been built. Here, the unique root vertex (labelled x0) rep-
resents the whole matrix and has four outgoing edges to vertices representing
the top-left, top-right, bottom-left, and bottom-right sub-matrix (from left to
right). This decomposition is repeated at each partitioning level until the termi-
nal vertex (representing a single matrix entry) is reached. To obtain the value
of a particular matrix entry, one has to follow the corresponding path from the
root vertex at the top to the terminal vertex and multiply all edge weights on
this path. For example, the matrix entry −i from the top right sub-matrix of
Fig. 1a (highlighted bold) can be determined as the product of the weights on the
highlighted path of the QMDD in Fig. 1b. For simplicity, we omit edge weights
equal to 1 and indicate edges with a weight of 0 by stubs.

QMDDs are canonical representations, if normalization of edge weights (as
described in [15]) is performed. Thus, they are very convenient for equivalence
checking. Indeed, due to standard decision diagram techniques like unique tables,
this task can be performed in O(1) by comparing root vertices.



3 Motivation: Multi-level Quantum Systems

Research on quantum computation is considered in numerous facets. Originally,
the exploitation of quantum mechanical phenomena e.g. for data-base search [10],
factorization [23], and other applications has been discussed in a purely theoret-
ical fashion. But in the past decade also several physical realizations have been
proposed – including prototypical implementations based on trapped ions [6],
photons [21], and superconducting qubits [8]. However, most of these consider-
ations and implementations focused on two-level quantum systems, i.e. systems
based on qubits with the basis states |0〉 and |1〉 as reviewed in Section 2.1.

But, as a matter of fact, quantum computation allows for multiple basis
states. Instead of qubits, d-leveled qudits are then used as basic building blocks.
These do not rely on only two orthogonal basis states but a total of d basis states
|0〉, |1〉, . . . , |d−1〉. More precisely, a qudit is described by a d-dimensional Hilbert

space, where the state space is formed by all superpositions |Ψ〉 =
∑d−1
i=0 αi|i〉

for complex-valued αi with
∑d−1
i=0 |αi|2 = 1. Prominent examples of qudits are

qutrits (d = 3) and ququarts (d = 4) which received most attention so far [5, 9,
11,13,16].

Multiple qudits with levels d0, . . . , dn−1 form a d̂-level quantum system where
d̂ is the maximum of the di. The underlying Hilbert space is the tensor product of
the respective spaces of the single qudits. Accordingly, the state of such systems
can be expressed by a state vector of length

∏n−1
i=0 di and is given by a linear

combination of the tensor states |x0, . . . , xn−1〉 where 0 ≤ xi < di for 0 ≤ i < n.
Operations over qudits are described by extended unitary transformation

matrices.

Example 4. The qutrit operation X which exchanges the basis states |0〉 and |2〉
can be described by the matrix

X0,2 =

0 0 1
0 1 0
1 0 0

, while H0,1 = 1√
2


1 1 0 0
1 −1 0 0

0 0
√

2 0

0 0 0
√

2


represents the ququart operation that performs the Hadamard operation on basis
states |0〉 and |1〉, leaving the remaining basis states untouched.

Multi-level systems are not only of theoretical interest [9], but are also useful
for promising applications of quantum computation (see e.g. [5, 12]). Moreover,
the use of multi-level quantum systems offers several practical advantages com-
pared to qubit systems. More precisely:

– Multi-level quantum systems allow for much more efficient realizations of
multi-qubit operations [12]. For example, Fig. 2a shows a minimal imple-
mentation (in terms of T -depth, i.e. the number of sequential T operations)
of a Toffoli operation within the Clifford+T library, i.e. based on a two-level
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Fig. 2. Realizations of the Toffoli operation.

system (taken from [1])3. The same functionality can be realized with sig-
nificantly less operations in a multi-level system using a qutrit as shown in
Fig. 2b (taken from [12]).

– A theoretical analysis showed that ququart operations may have a general
advantage over qubit operations when it comes to the realization of general-
ized Toffoli operations. In fact, mapping these Toffoli operations to quantum
operations using qubit-based techniques (e.g. [2]) requires an exponential ef-
fort. In contrast, a recently proposed four-valued approach can realize each
Toffoli operation with linear complexity [22].

These advantages lead to an increased interest in multi-level quantum sys-
tems and the implementation of quantum operations in various dimensions. Con-
sequently, as for qubit systems, the synthesis of general quantum functionality
has also been studied for multi-level systems [4,7,17]. In [7], a generalized CNOT
operation is suggested that reacts on an arbitrary control state and swaps an
arbitrary pair of states on the target qudit. The advantage of this approach is
that it is physically realizable by using standard CNOT operations and certain
laser beams (Rabi oscillations) to swap basis states. By this, synthesis of many
important multi-level circuits becomes possible with established technology.

Overall, various representations and realizations of quantum functionality for
different quantum systems exist. But whether or not two given quantum oper-
ations in different dimensions indeed realize the same functionality has hardly
been considered yet. This issue is addressed in the following, i.e. we present a
scheme which automatically checks for the equivalence of operations in multi-
level quantum systems.

3 As established in the literature, horizontal lines represent the qudits and the opera-
tions H , T , (CNOT), etc. are applied successively from left to right.



4 Equivalence Checking in Multi-level Quantum Systems

While, thus far, equivalence checking for quantum functionality has intensely
been considered in the past (leading to approaches e.g. based on simulation [24],
decision diagrams [26], or Boolean satisfiability [28]), usually only operations in
the same dimension have been compared. In this work, we propose a verification
scheme which is capable of proving the functional equivalence between quantum
operations even if they are realized in different dimensions. For this purpose, this
section first discusses fundamental preconditions and provides a precise defini-
tion of the functional equivalence that we are going to address. Afterwards, the
proposed equivalence checking scheme is introduced. Based on these concepts,
we finally illustrate an efficient implementation of the proposed scheme.

4.1 Functional Equivalence for Quantum Operations

The purpose of equivalence checking is to verify whether two quantum operations
realize the same functionality. In the following, we denote the two quantum
operations to be compared by U1 and U2. The underlying quantum systems may
have different dimensions d1 and d2 (for U1 and U2, respectively), where we
assume d2 ≥ d1 (without loss of generality). In order to check for equivalence
between U1 and U2, it is important to have a precise definition of which basis
states of the quantum systems actually correspond to each other. Basis states
can either be shared states, if there is a corresponding basis state in the other
system, or don’t care states, if there is no counterpart.

Example 5. Consider two quantum operations U1 and U2, which are realized in
a 2-level and 3-level quantum system, respectively. More precisely, the 2-level
system consists of three qubits whereas the 3-level system is a hybrid system
composed of two qubits and a single qutrit. A possible mapping between basis
states is shown in Fig. 3. Here, all basis states are shared states except the |1〉
state of the qutrit in U2, which has no counterpart in U1 and, thus, is a don’t
care state.

|0〉 |1〉 |0〉 |1〉 |0〉 |1〉

|0〉 |1〉 |0〉 |1〉 |0〉 |1〉 |2〉

U1

U2

Fig. 3. Possible mapping of basis states between quantum systems.

In the following, the correspondence of basis states is represented by a func-
tion ψ. It is assumed that ψ is either derived from the specification of the re-
spective technology mapping or directly provided by the designer.



In this work, we require that both quantum systems are composed of the
same number of qudits and do not consider corner cases in which e.g. a ququart
is realized by two qubits or even more scattered mappings. Although the pro-
posed approach could be extended in order to support also these cases, our
simplification is strongly motivated by the following facts:

– It is a natural requirement to enable the same set of measurements for U1

and U2. Since only entire qudits can be measured, this is only possible if
there is a one-to-one relation between qudits in both systems.

– In order to interpret a measurement result correctly, there may not be cross-
mappings between basis states that do not belong to corresponding qudits.

Don’t care states may be employed during the operation, like e.g. in the
multi-level realization of the Toffoli operation shown in Fig. 2b. But, we assume
that neither input nor corresponding output states carry a don’t care component.

Having these definitions and assumptions, two quantum operations U1 and U2

are functionally equivalent (U1 ≡ U2) if they perform an equivalent transforma-
tion on shared states. The behaviour on don’t care states, however, may be
arbitrary.

Example 6. Consider the matrix H0,1 from Example 4 describing a Hadamard
operation on a ququart. Assuming the trivial mapping of shared states ψ(|i〉) = |i〉
(for i = 0, 1), H0,1 is equivalent to the Hadamard operation H on a qubit (from
Example 1). However, with the same mapping, this is not the case for

H0,2 = 1√
2


1 0 1 0

0
√

2 0 0
1 0−1 0

0 0 0
√

2

 ,

which also performs a Hadamard operation on a ququart, but on different basis
states.

4.2 Proposed Equivalence Checking Scheme

Assume two quantum operations U1 and U2 (realized in quantum systems with
dimensions d2 ≥ d1) together with a mapping ψ and the corresponding distinc-
tion in shared states and don’t care states. Then, functional equivalence of these
operations can be verified in two steps:

1. Check whether the sub-matrices of U1 and U2 representing the mapping of
shared input states to shared output states are equivalent.

2. Check whether the sub-matrices of U1 and U2 representing the mapping of
don’t care input states to shared output states (and vice versa) are zero
matrices.
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Fig. 4. Matrix of U2 to be compared against U1.

If both checks evaluate to true, then U1 and U2 are equivalent. This scheme is
illustrated by means of Fig. 4 on the basis of single qudit systems. More precisely,
Fig. 4 shows the matrix representing the quantum operation U2, i.e. within the
higher level system. Without loss of generality, assume that the basis states
|0〉, . . . , |s〉 of the U1-system are shared states (s < d1) and that ψ maps them to
the basis states |0〉, . . . , |s〉 of the U2-system. The remaining states are assumed
to be don’t cares. Then, the top-left (s+ 1)× (s+ 1) sub-matrix of U2 in Fig. 4
represents the mapping of shared input to shared output states. If U1 ≡ U2, this
mapping obviously has to be equivalent to the corresponding mapping described
in U1. This is checked in Step 1.

Next, we exploit the fact that, as discussed in Section 4.1, only superpositions
of shared basis states are applied to U2, i.e. the basis states |s+ 1〉, . . . , |di − 1〉
are always prepared (expected) with zero amplitude for input (output) states.
Because of that and in order to keep the unitarity of the overall matrix, no
further mappings from don’t care states to shared states (represented in the
top-right sub-matrix) and from shared states to don’t care states (represented
in the bottom-left sub-matrix) must exist. That is, the corresponding matrices
have to be zero matrices. This is checked in Step 2. Note that we do not need to
consider the bottom-right sub-matrix representing the mapping from don’t care
input to don’t care output states, since arbitrary behaviour is allowed here.

Example 7. Once again, consider the operations H (from Example 1) and H0,1

(from Example 4) together with the trivial mapping of shared states between
the underlying 2- and 4-level quantum systems (i.e. ψ(|i〉) = |i〉 for i = 0, 1).

The 4-level operation H0,1 is equivalent to the 2-level operation H, because
(1) the mappings of shared states are equivalent and (2) no mappings from don’t
care states to shared states and vice versa exist. In contrast, these properties do
not hold for the operation H0,2 (from Example 6), showing its non-equivalence
to the other two operations.

This scheme can accordingly be extended to quantum systems composed of
an arbitrary number of qudits. Then, however, the checks have to consider the
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Fig. 5. Equivalence of operations in multi-qudit systems.

more scattered distribution of the respective sub-matrices. This is sketched in
Fig. 5, where U1 (realized in a 2-level quantum system) is to be compared to
U2 (realized in a 4-level quantum system composed of two ququarts). Here we
assume that there are no don’t care states in the U1-system and again, without
loss of generality, that ψ maps the basis states |0〉 and |1〉 of the U1-system to the
shared basis states |0〉 and |1〉 of the U2-system. As can be seen, all (shared and
don’t care) basis states are considered separately for each qudit. Accordingly,
the sub-matrices to be checked against U1, the zero matrices, and don’t care
matrices (∗) are scattered throughout the whole transformation matrix.

This, however, does not restrict the applicability of the proposed equivalence
checking scheme, but of course harms the efficiency of the checks. Note that this
is even more the case for more complex mappings of shared states. Then, the
matrices under consideration can be in a more dispersed shape and the scheme
might result in checking equivalence of many small non-adjacent sub-matrices.

Hence, an efficient implementation of this scheme even in these cases is es-
sential and will be described next.

4.3 Implementation Using QMDDs
While the concepts introduced above are sufficient to check equivalence between
arbitrary quantum operations, the matrix representations used thus far consti-
tute a serious hurdle to the applicability of the proposed scheme. In fact, matrix
descriptions grow exponentially with the number of qudits in a system. Hence,
a naive implementation based on matrices is infeasible for quantum systems of
a certain size.

In order to address this issue, we implemented the proposed scheme by means
of the QMDD data-structure introduced in [15]. In this data-structure, each
vertex represents a matrix which is partitioned into four sub-matrices (for qubit
systems). Each sub-matrix is then represented by a successor of the current
vertex. In case of multi-level quantum systems, the number of successors grows
accordingly with the number of basis states.
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Example 8. Figure 6 sketches the QMDD representations of the quantum opera-
tions already discussed in Fig. 5. As U1 assumes a two-level quantum system, the
overall matrix is partitioned into four sub-matrices. In contrast, the four-level
system of U2 is composed of 4 ·4 = 16 sub-matrices. Hence, the respective nodes
have four and 16 successors, respectively. The x1-vertices in Fig. 6a represent the
sub-matrices U0

1 and U3
1 , respectively (as indicated in brackets). The x1-vertex

in Fig. 6b sketches the second-top-right sub-matrix. Its sub-blocks U3
1 and ∗ are

represented by distinct sets of edges (which are indicated by a correspondingly

labelled M , but are not part of the original QMDD).

Due to efficient techniques like shared nodes or unique tables, QMDDs are
capable of representing quantum functionality for several dozens of qubits and/or
qudits. Moreover, computed tables enable a very efficient implementation of the
equivalence checking scheme outlined above.

For the purpose of equivalence checking, the QMDD representations of the
operations have to be aligned. More precisely, we

– align the number of don’t care states for corresponding qudits by “blow-
ing up” vertices with additional successors (e.g. to introduce two additional
don’t care states for each qubit, all vertices in Fig. 6a are equipped with 12
additional 0-edges),

– align basis states (if the mapping of shared states is non-trivial) by rearrang-
ing edges appropriately, and

– align possibly different don’t care to don’t care mappings (∗) by setting the
corresponding edges to zero.

This transformation can be done in a single traversal of each QMDD and leads to
representations of two matrices (of equal size), which are identical if and only if
the operations are functionally equivalent. The latter can be verified in constant
time by a single unique table look-up, since QMDDs provide canonical repre-
sentations. By this, equivalence checking can be conducted efficiently even for
larger quantum systems. This has been confirmed by an experimental evaluation
whose results are summarized and discussed in the next section.



5 Experimental Results

The equivalence checking scheme described above has been implemented in C on
top of the original QMDD package presented in [15]4 and evaluated on a wide
range of operations realized in different quantum systems. More precisely, we
considered

– 2-level and 4-level representations of various quantum operations including
Shor’s 9-qubit error correcting code (denoted by 9qubitN1 and 9qubitN2 ),
as well as a 7-qubit encoding (denoted by 7qubitcode) taken from [14] and
instances of Grover’s algorithm (denoted by Grover-k) and quantum Fourier
transforms (denoted by QFT-k) taken from [19] (k is the number of qubits),

– multi-qubit operations taken from RevLib [27], mainly realizing Boolean
functionality for 2-level systems that additionally have been mapped to 4-
level representations based on the methods described in [22] (denoted by
their respective RevLib identifier), and

– randomly generated quantum operations with up to 25 qubits (denoted ar-
bitrary).

In total, 296 benchmarks have been considered. For each of them, the 2-level
representation has been compared against the respective 4-level representation.
In order to additionally evaluate the performance of the proposed approach
for non-equivalent operations, for each pair of representations we introduced
an error through random changes (to one of them) and compared this to the
original operation. All experiments have been conducted on a 2.8 GHz Intel
Core i7 machine with 8 GB of main memory running Linux. The timeout was
set to 500 CPU seconds.

The results are summarized in Table 1 for a selection of the conducted exper-
iments5. The first two columns provide the identifiers of the respective bench-
marks followed by its number of qudits. Afterwards, the run-time (in CPU sec-
onds) for building up the data-structure (QMDD) as well as performing the ac-
tual equivalence check (EC) is provided for both cases, i.e. when both operations
are equivalent and when they are not equivalent. As can be seen, the proposed
scheme is able to efficiently check the equivalence of two quantum operations
for the majority of all benchmarks. In fact, for 224 out of the 296 benchmarks,
we were able to check their equivalence in less than a minute. While the actual
equivalence check can always be conducted in almost no time, the limiting factor
is the time needed for the construction of the representation of the respective
quantum functionality, i.e. the QMDD in this case. Hence, the efficiency of the
proposed scheme only relies on the chosen description mean. As improving those
is an active research area (see e.g. the work on alternative representations such as
XQDDs [26], QuIDDs [25] or improvements on QMDDs themselves [20]) and the
proposed scheme can easily be adapted to other representations, further benefits
can be expected here in the future.
4 We thank the authors of [15] for providing us with their implementation of the

QMDD package.
5 Due to space limitations, we were not able to provide the numbers for all benchmarks.



Table 1. Experimental evaluation

Runtimes (s)
Equivalence Non-Equivalence

Benchmark #Qudits QMDD EC QMDD EC

7qbitcode 7 < 0.01 < 0.01 < 0.01 < 0.01
9qubitN1 9 < 0.01 < 0.01 < 0.01 < 0.01
9qubitN2 17 0.04 < 0.01 0.04 < 0.01
Grover-5 11 0.41 < 0.01 0.38 < 0.01
Grover-6 13 0.04 < 0.01 0.05 < 0.01
QFT-5 5 < 0.01 < 0.01 0.01 < 0.01
QFT-7 7 0.01 0.01 0.02 < 0.01

add16 174 49 0.03 < 0.01 0.02 < 0.01
add32 183 97 0.08 < 0.01 0.08 < 0.01
alu2 199 16 117.84 0.01 115.94 0.02
alu3 200 18 224.42 0.04 217.3 0.04
apla 203 22 14.77 0.02 15.3 0.02
bw 291 87 > 500 – > 500 –

cm163a 213 29 1.63 < 0.01 1.74 0.03
cu 219 25 4.36 < 0.01 4.59 0.02

cycle10 293 39 22.91 < 0.01 25.29 < 0.01
ham15 107 15 103.77 0.31 88.6 0.25

hwb7 61 7 3.24 < 0.01 2.94 < 0.01
lu 326 299 > 500 – > 500 –

mod5add 306 32 326.98 0.4 307.95 0.36

arbitrary10 10 0.7 < 0.01 0.73 < 0.01
arbitrary15 15 15.04 0.2 25.41 0.55
arbitrary20 20 26.76 0.15 41.34 0.35
arbitrary25 25 > 500 – > 500 –

6 Conclusions

In this work, we presented a scheme for checking the equivalence between two
quantum operations working in different quantum systems. By this, the recent
developments showing the advantages and benefits of multi-level quantum sys-
tems are taken into account. The proposed scheme can be incorporated into
data-structures particularly suited for the representation of quantum function-
ality. An experimental evaluation confirmed that this enabled an efficient and
fast equivalence checking which is mainly limited by the representation of the
applied quantum functionality.
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