
Building Fast Multi-Agent Systems
using Hardware Design Languages

for High-Throughput Systems

Jannis Stoppe1,2, Christina Plump1, Sebastian Huhn1,2, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen

Abstract. While being from various domains, Multi Agent Systems and
Hardware Design Languages rely on the same core concepts: parallelism,
separation of concerns as well as communication between independent
entities. This paper introduces the idea of utilizing the benefits of HDLs,
with their focus on fast simulation and correct timing, to implement multi
agent designs. Consequently, the massive advantages can be taken into
account, which have been gained by decades of research in the field of
electronic design, concerning the analysis, the evaluation as well as the
optimization.

1 Introduction

Since several years, Multi Agent Systems (MAS) have been frequently used to
model logistics systems. They offer flexibility, a clear separation of concerns for
the actors of a system, allow for a wide range of simulation parameters and system
setups to be tested and quickly provide both, high-level and in-depth results
for a given design. Hardware Design Languages (HDLs) have been in use for
decades to design and test hardware systems – the development of state-of-the-art
computers, embedded designs and integrated circuits of all kinds relies heavily
on the workflow offered by HDL environments.

However, despite their conceptual differences, they hold some intriguing
similarities, which suggest that they could be used to design systems. In fact,
this application is the counterpart they were originally designed for. This paper
introduces the idea of implementing MAS using established HDLs, which allow
MAS designers to utilize decades worth of optimization from the electronic design
industry while keeping the established multi agent paradigms.

2 Multi-Agent Systems

Since the 1980’s, MAS have been part of various research activities and, thus, have
gained more and more interest over the years. Mainly, this is due to the fact that
they are interpreted as a software paradigm, which can easily deal with massive
open distributed systems appropriately [10]. They are used in different contexts
like logistic: Whenever it is necessary to model systems with several actors that,
while acting autonomously, communicate and perceive their surroundings to
determine their courses of action. Depending on the focus or the perspective
of research, there have been a lot of different definitions for MAS. If one aims
at simulating MAS to prove their validity, they all have the following things in
common (cf. [9] or [3]):

– Agents act autonomously due to their tendencies (objectives, goals), per-
ception of their environment (communication with other agents, passive
recognition of changes in the environment) while this environment is only
partially represented and their given resources.

– Environments constitute a dynamic system (without autonomous behaviour),
which the agents are situated in, perceive their inputs from and output their
actions to.

– Coupling of agents and environment to, finally, model the desired MAS. This
mainly addresses the problem of relating agent’s perceptions and actions with
environmental changes in a time-accurate manner.

As MAS are often very complex, it can be difficult to verify their properties
and correct behaviour formally [5]. Therefore, simulations of those MAS are
strictly required to ensure that they work as intended. Since the beginning of
the 1990’s, various frameworks have been developed to simulate MAS in different
domains. They aim usually at either the study of complexity or distributed
intelligence or aim at Software MAS[9].

Nevertheless, as agents (and also changes in the environment) naturally
happen simultaneously, a simulation of an MAS requires parallelism. Some work
has been done in that regard with tools like Gensim [1], JADE [2] or Spades [7]
as has been surveyed in [10] but they focus on software level.

Using MAS gives engineers the ability to (somewhat) easily model, simulate
and evaluate arbitrary logistic processes. These applications range from small
factory models over more complex, conceptually and novel manufacturing chains,
e.g., a high throughput material developing approach [4] , to vast supply networks.

3 Hardware Design Languages

On the other hand, HDLs serve a very different and specific purpose: the design of
electronic systems. In order to deal with the vast complexity of current hardware
designs, these languages provide a layer of abstraction. This layer allows designers
to implement modular systems at the so-called register-transfer-level.

Hardware modules can be defined as simple machines, which hold an internal
state (i.e. some kind of storage). These machines processes an input usually
referring to signals, i.e., connections to other modules, and produce some kind
of output usually referring to various connections to other modules. Both, the
current state and the output depend on the input as well as the previous state.

The advantage of this approach is, however, not just that dedicated synthesis
tools realize the translation from the HDL to descriptions, which can later be
manufactured, but also the simulation forming a core feature With hardware
manufacturing processes being both, expensive and time-consuming, simulating
a design in software is the state-of-the-art in order to quickly test certain changes
or evaluate ideas. However, with current computers still being typically sequential
machines, the simulation framework has to take care of (simulated) parallelism
and the communication between modules.

4 Merging the Concepts

The interesting point is the similarity of these core features of the framework.
While the original application is quite different, the core issues of simulating

either hardware or multi agent systems is very similar: independent entities,
which operate concurrently, must be simulated on a single sequential machine.
Even the required parts for the actual simulation are quite similar on a second
glance: retrieving some kind of (sensory) input, sometimes storing something
depending on this input and finally acting (setting the output) based on both,
inputs and the internal state. Thus, it should be possible to map one of these
concepts to the other.

Hardware development has always been a hot research topic, with countless
hours having been poured into the various tools and workflows. Additionally,
HDLs have always had performance as a core issue. Current hardware systems
consist of billions of gates, which have to be simulated in order to generate
test sets being applied in both pre- as well as post-silicon tests and, at least
important, realizes various verification tasks. Thus, theoretically, HDLs should
be a promising foundation, if it comes to the execution of fast simulations.

This remainder of this paper introduces the concept of MAS-via-HDLs (MvH),
implementing concepts of MAS and simulations using the established HDL
frameworks.

With concepts such as schedulers, events, event queues, communication etc. all
being readily available, HDLs contain everything, which is required for an fully
operational framework. With modularization, processes, modules etc. , HDLs
provide structure similar to what MAS libraries implement to build the agents
themselves.

One major difference between HDLs and MAS is that the former explicitly
prohibit altering any structural features after the simulation has started. This
not only means that, assuming agents are considered to be mapped to module
structures, i.e., no further agents can be instantiated after the simulation has
commenced. but this extends to the communication structures: While wires (or
signals) are considered to be part of the (fixed) hardware in HDLs, i.e., they
can not to be altered on a finished design, MAS often rely on communication
being initiated and then later finished and cut between two or even more agents.
However, this shortcoming can be addresses by introducing the required maximal
amount of agents before the simulation starts. This is like a pool containing enough
members, which are activated and deactivated as required and all these member
are connected according to the given profiles – if needed using, e.g., bus-like
communication structures establishing the message exchange between parties.

Apart from this conceptual difference, however, the concepts are indeed quite
similar allowing HDLs to be orchestrated by MAS frameworks effectively.

5 Case Study

As a case study, the Party example from the JADE [2] framework was adapted
to SystemC [6]. SystemC is a high-level system design framework, which is based
on C++, which has become an industry standard [8] for electronic system design.

The Party example illustrates how agents communicate and how this mech-
anism is used to distribute information. Two agent types are implemented as
follows:

– The Guests are being introduced to each other. Out of all guests, one starts
to share a rumor with the party. As soon as two guests are introduced of
which, at least one, knows the rumor, the rumor is spread among them.

– The Host steadily introduces guest agents to each other and tells initially a
guest the rumor, which has been randomly selected by the host.

The scenario is done as soon as all guests are aware of the rumor.
The Java classes for the agents inherit the existing JADE classes:

1 public c lass HostAgent extends Agent { . . . }
2 public c lass GuestAgent extends Agent { . . . }

The implementations for the SystemC adaption on the other hand implements
agents as hardware modules, relying on the according C++ macros:

1 SC_MODULE(HostAgent) { . . . }
2 SC_MODULE(GuestAgent) { . . . }

More precisely, JADE comes with the so-called DF, the Directory Facilitator,
which operates as a hub between agents (and is often referred to as the system’s
“yellow pages”). While SystemC does not provide a functionality that works
exactly like JADE’s DF, it does have a strong focus on communication between
modules, often in the form of buses or more complex structures. The adapted
implementation gives the host the role of the hub, requiring guests to register at
the host. As communication connections have to be modeled explicitly, the host
requires as many communication sockets as there are potential guests:

1 t lm_ut i l s : : s imp le_in i t i a to r_socket<HostAgent> socket [COUNT] ;

TLM is short for Transaction Level Modeling, a framework integrated into
SystemC, which is used to pass messages between modules in a generic way
while providing better simulation performance than pin-accurate signals. Most
importantly, TLM messages contain arbitrary “payload” fields, allowing users to
easily attach any given data to the message.

Similarly, when the guests are instantiated, they have to be connected to the
given socket in order to be able to exchange messages with the host:

1 i n i t i a t o r = new HostAgent ("HostAgent") ;
2 gues t s = new GuestAgent ∗ [COUNT] ;
3 for (int i = 0 ; i < COUNT; i++) {
4 gues t s [i] = new GuestAgent ("GuestAgent") ;
5 i n i t i a t o r −>socket [i] . bind (gues t s [i]−>socket) ; }

Beside this loop, which connects the host’s ith socket to the ith guest’s socket,
the rest of the modeling remains conceptually similar to the JADE blueprint. The
most obvious difference is due to the fact that hardware simulation frameworks
(such as SystemC) do not allow modules to be removed from the design after
the simulation has started. This means that the modules have to keep track by
themselves whether they are currently active or not. In this example, this is not
an issue as agents are only removed when the final state (of all agents knowing
the rumor) has been reached, at which point the simulation is finished anyway.
However, while this may be an issue concerning how the simulation is planned
and executed (due to dynamic instanciation being restricted), this should not
pose an issue as a) user-defined types may still be instanciated at will and b)
sensible communication protocols should be able to disregard inactive parts. The
only issue that might arise is memory, as all participating parts must be created
before the simulation starts and held in the RAM afterwards.

When these designs are executed (with the JADE implementation being
modified to no longer rely on user inputs but instead running by itself), the
difference between the given approaches is striking: JADE required 6.895 seconds
to spread the rumor across 1000 guests, the SystemC adaption merely 0.054
seconds (executed on an Intel i5-3320M with 12 GB RAM). While this example
of course only provides a single measurement, scalability should not be an issue
as long as the system is run on a single host system. As HDLs are built very

performance-centred while at the same time focusing on reproducibility, they do
not provide measures to route communications across separate machines – thus,
as soon as this would be required for larger simulations, scalability might become
a problem.

Keep in mind that this comes at the cost of increased implementation effort:
There is no graphical user-interface to investigate the communication, although
SystemC does offer sophisticated logging features. Furthermore, the C++ foun-
dation does not offer garbage collection, thus, the designers have to free allocated
memory by themselves, and the communication channels have to be modeled ex-
plicitly. However, the proposed MvH technique leads to a significant performance
boost compared to conventional MAS development workflows – in particular, a
computation time less than ten seconds are perfectly fine for most the investigated
use cases. This means that the application of the proposed MvH technique has
to be considered, especially, when building systems with lots of agents or a vast
amount of communication, which -in the first place- allows to design highly
optimized MAS.

These optimized MAS are strictly required, if the system relies on a high
throughput of elements (such as manufacturing chains of very small, independent,
interacting items) and, therefore, should be deliberately analysed

Future work should look into the details of whether or not certain criteria have
to be fulfilled for the difference to remain this vast, if the performance-gaining
points of SystemC are projectable to other HDLs as well. Furthermore, it should
be investigated whether or not these driving forces can be transferred into a
dedicated MAS framework that is built on top of these faster frameworks.

6 Acknowledgment

Financial support of subprojects P02 “Heuristic, Statistical and Analytical Experimental Design”
and P01 “Predictive Function” of the Collaborative Research Center SFB1232 funded by the Ger-
man Research Foundation (DFG), the Reinhart Koselleck project DR 287/23-1 (DFG), University
of Bremen’s graduate school SyDe, funded by the German Excellence Initiative and BMBF grant
SELFIE, no. 01IW16001 are gratefully acknowledged.

References
1. John Anderson. A generic distributed simulation system for intelligent agent design and eval-

uation. In in Proceedings of the Tenth Conference on AI, Simulation and Planning, 2000,
Society for Computer Simulation International, pages 36–44.

2. Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. Jade — A Java
Agent Development Framework, pages 125–147. Springer US, Boston, MA, 2005.

3. Roberto A. Flores-Mendez. Towards a standardization of multi-agent system framework. Cross-
roads, 5(4):18–24, June 1999.

4. Sebastian Huhn, Heike Sonnenberg, Stephan Eggersglüß, Brigitte Clausen, and Rolf Drechsler.
Revealing properties of structural materials by combining regression-based algorithms and nano
indentation measurements. In IEEE Symposium Series on Computational Intelligence, 2017.

5. Muaz A. Niazi, Amir Hussain, and Mario Kolberg. Verification & validation of agent
based simulations using the VOMAS (virtual overlay multi-agent system) approach. CoRR,
abs/1708.02361, 2017.

6. O.S.C. Initiative. IEEE Standard SystemC Language Reference Manual. IEEE Computer
Society, 2006.

7. Patrick Riley and George Riley. SPADES — a distributed agent simulation environment with
software-in-the-loop execution. In S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors,
Winter Simulation Conference Proceedings, volume 1, pages 817–825, 2003.

8. Carsten Schulz-Key, Markus Winterholer, Thomas Schweizer, Tommy Kuhn, and Wolfgang
Rosentiel. Object-oriented modeling and synthesis of SystemC specifications. In Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 238–243. IEEE, 2004.

9. Adelinde M. Uhrmacher and Danny Weyns. Multi-Agent Systems: Simulation and Applica-
tions. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

10. Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2nd edition,
2009.

