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Abstract. Reversible circuits build the basis for emerging technologies
like quantum computation and have promising applications in domains
like low power design. Hence, much progress in the development of design
solutions for this kind of circuits has been made in the last decade. In
this paper, we provide an overview on reversible circuits as well as their
applications. We discuss recent accomplishments and, finally, have a look
on future challenges in the design of circuits for this emerging technology.

1 Introduction

Reversible circuits represent an emerging technology based on a computation
paradigm which significantly differs from conventional circuits. In fact, they
allow bijective operations only, i.e. n-input n-output functions that map each
possible input vector to a unique output vector. Reversible computation enables
several promising applications and, indeed, superiors conventional computation
paradigms in many domains including but not limited to quantum computa-
tion or low power design (see e.g. [1–3]). But since reversible logic is subject to
certain characteristics and restrictions, the design methodology of circuits and
systems following the reversible computation paradigm significantly differs from
the established (conventional) design flow.

However, much progress in the development of design solutions for reversible
circuits has been made in the last decade: In particular, methods for synthesis
have been developed (see e.g. [4]). These got manifested in first publicly available
design tools [5] and enabled the design of initial circuit representations available
at benchmark libraries [6]. Encouraged by these fundamental work, researchers
now are striving for more scalability – a first hardware description language al-
ready is available [7]. These promising results build the basis for the development
of a design flow which is competitive to the design of conventional circuits.

In this paper, we provide an overview on reversible circuits as well as their
applications. We discuss recent accomplishments and, finally, have a look on
future challenges in the design of circuits for this emerging technology. References
to the respective original work are provided for further reading.
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Fig. 1. Toffoli gate and Toffoli circuit

2 Reversible Circuits

A Boolean function f : Bn → Bm over the variables X := {x1, . . . , xn} is re-
versible iff (1) its number of inputs is equal to the number of outputs (i.e. n = m)
and (2) it maps each input pattern to a unique output pattern. Reversible func-
tions are realized by reversible circuits. A reversible circuit G is a cascade of
reversible gates, where fanout and feedback are not directly allowed [1]. Each
variable of the function f is thereby represented by a circuit line, i.e. a sig-
nal through the whole cascade structure on which the respective computation
is performed. Computations are performed by reversible gates. In the literature,
reversible circuits composed of Toffoli gates are frequently used. A Toffoli gate is
composed of a (possibly empty) set of control lines C = {xi1 , . . . , xik

} ⊂ X and
a single target line xj ∈ X \ C. The Toffoli gate inverts the value on the target
line if all values on the control lines are assigned to 1 or if C = ∅, respectively.
All remaining values are passed through unaltered.

Fig. 1(a) shows a Toffoli gate drawn in standard notation, i.e. control lines
are denoted by , while the target line is denoted by ⊕. A circuit composed of
several Toffoli gates is depicted in Fig. 1(b). This circuit maps e.g. the input 111
to the output 110 and vice versa.

3 Applications of Reversible Circuits

Several promising applications of reversible circuits have been shown – with
quantum computation and low power design being the most prominent examples.
In this section, we briefly review possible research areas which are advanced by
reversible circuits.

3.1 Quantum Computation

In a quantum computer [1], information is represented in terms of qubits in-
stead of bits. In contrast to Boolean logic, qubits do not only allow to represent
Boolean 0’s and Boolean 1’s, but also the superposition of both. In other words,
using quantum computation and qubits in superposition, functions can be evalu-
ated with different possible input assignments in parallel. Unfortunately, it is not
possible to obtain the current state of a qubit. Instead, if a qubit is measured,
either 0 or 1 is returned depending on a respective probability.

Nevertheless, using these quantum mechanical phenomena, quantum com-
putation allows for breaching complexity bounds which are valid for computing
devices based on conventional mechanics. The Grover search [8] and the factor-
ization algorithm by Shor [9] rank among the most famous examples for quantum
algorithms that solve problems in time complexities which cannot be achieved
using conventional computing. The first algorithm addresses thereby the search
of an item in an unsorted database with k items in time O(

√
k), whereas con-

ventional methods cannot be performed using less than linear time. Shor’s al-
gorithm performs prime factorization in polynomial time, i.e. the algorithm is
exponentially faster than its best known conventional counterpart. First physical
realizations of quantum circuits have been presented e.g. in [10].
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The figure illustrates the development of the
power consumption of an elementary com-
putational step in recent CMOS generations
(based on values from [14]). The power con-

sumption is thereby determined by CV 2
t ,

where Vt is the threshold voltage of the tran-
sistors and C is the total capacitance of
the capacitors in the logic gate. The capaci-
tance C is directly proportional to LW

t , i.e. to
the length L and the width W of the tran-
sistors. Reducing these sizes of transistors
enables significant reductions in the power
consumption as shown in the extrapolation.
However, this development will reach a fun-
damental limit when power consumption is
reduced to k · T · log(2) Joule.

Fig. 2. Power consumption Q in different CMOS generations

Reversible circuits are of interest in this domain since all quantum operations
inherently are reversible. Since most of the known quantum algorithms include
a large Boolean component (e.g. the database in Grover’s search algorithm and
the modulo exponentiation in Shor’s algorithm), the design of these components
is often conducted by a two-stage approach, i.e. (1) realizing the desired func-
tionality as a reversible circuit and (2) map the resulting circuit to a functionally
equivalent quantum circuit (using methods introduced e.g. in [11, 12]).

3.2 Low Power Design

Pioneering work by Landauer [13] showed that, regardless of the underlying
technology, loosing information during computation causes power dissipation.
More precisely, for each “lost” bit of information, at least k ·T · log(2) Joules are
dissipated (where k is the Boltzmann constant and T is the temperature). Since
today’s computing devices are usually built of elementary gates like AND, OR,
NAND, etc., they are subject to this principle and, hence, dissipate this amount
of power in each computational step.

Although the theoretical lower bound on power dissipation still does not
constitute a significant fraction of the power consumption of current devices, it
nonetheless poses an obstacle for the future. Fig. 2 illustrates the development
of the power consumption of an elementary computational step in recent and
expected future CMOS generations (based on values from [14]). The figure shows
that today’s technology is still a factor of 1,000 away from the Landauer limit and
that the expected CMOS development will reduce this to a factor of 100 within
the next 10 years. However, a simple extrapolation also shows that the trend
cannot continue with the current family of static CMOS gates as no amount
of technological refinement can overcome the Landauer barrier. Moreover, the
Landauer limit is only a lower bound on the dissipation. Gershenfeld has shown
that the actual power dissipation corresponds to the amount of power used to
represent a signal [15], i.e. Landauer’s barrier is closer than immediately implied
by the extrapolation from Fig. 2.

Since reversible circuits bijectively transforms data at each computation step,
the above-mentioned information loss and its resulting power dissipation does
not occur. Because of this, reversible circuits manifests themselves as the only
way to break this fundamental limit. In fact, it has been proven that to enable
computations with no power consumption at all, the underlying realization must
follow reversible computation principles [16]. These fundamental results motivate
researchers in investigating this direction further. First physical realizations have
been presented e.g. in [2].



3.3 Further Applications

While quantum computation and low power design represent the most prominent
application areas of reversible circuits, promising results have been achieved in
other domains as well.

An obvious filed is for example the design of encoding and decoding devices.
Since encoders and decoders always realize reversible one-to-one mappings, the
application of reversible circuits is a reasonable choice. However, so far, most of
such devices are implemented in a conventional, i.e. irreversible, manner and,
therefore, miss potential benefits in their design. An exception provides the ap-
proach recently presented in [3] where, for the first time, encoders and decoders
for the on-chip communication between different components of a system-on-a-
chip have been designed by means of reversible circuits.

As another domain, adiabatic circuits [17] utilize signals that, in order to
avoid power losses, switch their states very slowly. When the power dissipa-
tion from switching transitions has been suppressed to a minimum, the static
power dissipation caused by leaking devices in advanced, extremely miniaturized
process technologies will become very substantial. Regardless of the computing
paradigm, the static energy is present in virtually all transistor circuits. How-
ever, reversible circuits have the advantage that they naturally are suited for
adiabatic switching without any extra circuitry.

Finally, program inversion provides a proper application for reversible com-
putation. Motivated e.g. through debugging purposes, the question how to auto-
matically derive the inverse of a given program is addressed. As most of the ex-
isting programs follow the conventional, i.e. irreversible, computation paradigm,
program analysis techniques (e.g. [18]) or interpretive solutions (e.g. [19]) are ap-
plied so far. However, programs based on a reversible, i.e. invertible, computation
paradigm would allow an inherent and obvious program inversion.

4 Design of Reversible Circuits

Motivated by the promising applications outlined above, design and synthesis
of reversible circuits became an active research area where a significant amount
of approaches has been presented over the last years. This section provides an
overview of the initial contributions and the recent accomplishments in this area.
Based on this, future challenges and possible solutions to them are discussed.

4.1 The Beginning

First approaches for synthesis of reversible circuits relied on simple function rep-
resentations such as permutations or truth tables. Somewhat later, more compact
data-structures like decision diagrams, positive-polarity Reed-Muller expansion,
or Reed-Muller spectra have been utilized for this purpose. Complementary, also
exact synthesis approaches, i.e. methods ensuring minimality of the resulting cir-
cuits, have been proposed. An overview of these methods is e.g. provided in [4].
The given functions need thereby to be reversible. Since this is not the case for
many practically relevant functions, a pre-processing step often is performed first
which embeds the desired non-reversible functionality into a proper reversible
function [20, 21].

Until today, these approaches build the basis of the design of reversible cir-
cuits and can be used e.g. to realize basic building blocks for reversible compu-
tations. However, the scalability of all these approaches is limited. That is, the
methods are applicable for relatively small functions, i.e. functions with at most
30 variables only. Hence, after the initial development of synthesis methods for
this upcoming emerging technology, researchers began to strive for more scalable
design solutions.



0 a&b

a a

b b

(a) (a & b)

c cˆ=a&b

a a

b b

(b) c ^= (a&b)

c c⊕=a� b⊕
0 ←add. line�
a a

b b

a� b

(c) c ⊕= (a�b)
Fig. 3. Circuits obtained by HDL-based synthesis

4.2 Recent Accomplishments

While being an open research problem for many years, how to automatically
realize large functions and more complex logic as reversible circuit has been
tackled by recently presented solutions. More compact function representations
like Binary Decision Diagrams (BDDs) [22] have been applied for this purpose.
In contrast to the synthesis approaches outlined above, a hierarchical synthe-
sis scheme is thereby applied. That is, the (possibly very large) function to be
synthesized, is decomposed into smaller sub-functions. The decomposition is re-
peatedly applied until a sub-function results for which a building block exists. By
accordingly composing these building blocks, a circuit representing the desired
function results.

The development of this paradigm in the domain of reversible circuit design
eventually led to the definition and consideration of a Hardware Description
Language (HDL) for reversible circuits in [7]. In order to ensure reversibility
in the description, this HDL distinguishes thereby between reversible opera-
tions (denoted by ⊕=) and not necessarily reversible binary operations (denoted
by �). The former class of operations assigns values to a signal on the left-hand
side. Therefore, the left-hand side signal must not appear in the expression on
the right-hand side. Furthermore, only a restricted set of assignment operations
exists, namely increase (+=), decrease (-=), and bit-wise XOR (^=). These opera-
tions preserve the reversibility (i.e. it is possible to compute these operations in
both directions). In contrast, binary operations, e.g. arithmetic, bit-wise, logical,
or relational operations, may not be reversible. Thus, they can only be used in
right-hand expressions which preserve the values of the respective inputs. In do-
ing so, all computations remain reversible since the input values can be applied to
reverse any operation. For example, to describe a multiplication (i.e. a*b), a new
free signal c must be introduced which is used to store the product (i.e. c^=a*b
is applied). In comparison to common (non-reversible) languages, this forbids
statements like a=a*b.

Having an HDL description like this, automatic synthesis of complex re-
versible circuits became applicable for the first time. Again, a hierarchical syn-
thesis paradigm is thereby applied [7]. That is, existing realizations of the indi-
vidual operations are combined so that the desired circuit is realized.

While this represents a significant step towards design of complex reversible
circuits, the resulting realizations suffer from having a very large number of addi-
tional circuit signals. This is caused by the fact that building blocks representing
non-reversible operations usually require additional circuit lines with constant
inputs 0. For example, the AND operation (a & b) – a typical binary operation –
is non-reversible. In order to realize the AND nevertheless, an additional circuit
line with a constant input is required as shown in Fig. 3(a). However, since bi-
nary operations can only be applied in combination with a reversible assignment
operation, these lines principally are not necessary (e.g. the overall statement
c ^= (a & b) can be realized without additional lines as shown in Fig. 3(b)).
But determining the respective circuits for arbitrary combinations of reversible
assignment operations and binary operations is a cumbersome task.
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Fig. 4. Improved HDL-based synthesis

Hence, so far HDL synthesizers realize reversible circuits using the hierarchi-
cal scheme as illustrated in Fig. 3(c) for a general statement c ⊕= (a � b)3.
That is, first the respective building block(s) for binary operations are solely ap-
plied. This requires additional circuit lines. Afterwards, the intermediate results
from the binary operations (buffered in the additional circuit lines) are applied
together with the building block of the corresponding reversible assignment op-
eration.

4.3 Future Challenges

With the recent accomplishments, the scalability of synthesis approaches for
reversible circuits has significantly been improved. Although further improve-
ments and extensions concerning the available descriptions means are still de-
sired (e.g. more complex data-types, support of sequential behavior, etc.), the
specification and realization of complex reversible circuits at a high level became
possible. But as outlined above, the resulting circuits still suffer from having too
many circuit lines. A first approach addressing this issue is already available [23].
However, as e.g. shown in [24], these promising results are still far away from
the optimum. Hence, after progress concerning the scalability has been made,
how to reduce the number of additional circuit lines remains an open problem.

A possible direction to solve this issue might be to “undo” the values of inter-
mediate results once they are not needed any longer. Then, no new additional
lines might be required to buffer upcoming intermediate results. Instead, the
existing (reset) signals can be re-used. The general idea is briefly illustrated in
Fig. 4 by means of the following two generic HDL statements:

a ⊕= (b � c);
d ⊕= (e � f);

First, two sub-circuits Gb�c and Ga⊕=b�c are added ensuring that the first state-
ment is realized. This is equal to the established procedure from Fig. 3(c) and
leads to additional lines with constant inputs. But in contrast to existing HDL
synthesizers, a further sub-circuit G−1

b�c is applied afterwards. Since G−1
b�c is the

inverse of Gb�c, this sets the circuit lines buffering the result of b� c back to the
constant 0. As a result, these circuit lines can be reused in order to realize the
following statements as illustrated for d⊕=e� f in Fig. 4.

Following this procedure, significant improvements can be achieved. However,
even this solution does not entirely reduce the total number of additional lines
to none. Hence, a further consideration is necessary. While this represents one
of the major obstacles for synthesis of complex reversible circuits today, beyond
that also the following challenges should be addressed:
3 Circuit lines drawn through the blocks represent thereby signals whose values are

preserved.



– Quantum cost [11, 12] are mainly applied as cost metric to evaluate the
synthesized reversible circuits so far. But beyond that, also other, more
technology-specific constraints should be considered (e.g. transistor cost [25]
or nearest-neighbor requirements [26, 27]).

– In order to realize practical reversible circuits, sequential behavior has to be
supported. Initial work considering this issue can be found e.g. in [28–30]
but requires more research to become applicable for complex designs.

– Followed by the increasing power of the synthesis methods, also new verifica-
tion issues will emerge. Hence, developing appropriate checkers particularly
for complex reversible designs is a logical next step. Researchers can thereby
build on first results achieved for equivalence checking (see e.g. [31, 32]) and
even debugging [33].

– Furthermore, questions related to test of reversible circuits more and more
becomes of interest. A basis builds the work presented e.g. in [34, 35]. How-
ever, with ongoing progress in the development of further (and larger) phys-
ical realizations, new test models and ATPG approaches are needed.

– Finally, all these methods and approaches have to be combined to an in-
tegrated design flow. Although first simple flows are provided e.g. through
tools like RevKit [5], this remains the long-term challenge of research in the
domain of reversible circuit design.

5 Conclusions

Reversible circuits is an emerging technology with promising applications. In
the last decade, synthesis of reversible circuits has intensely been studied and
impressive accomplishments have been made. Starting from first synthesis ap-
proaches applicable to functions represented by permutations or truth tables,
today it is possible to design and synthesize complex circuits using a reversible
hardware description language. However, HDL-based synthesis still suffers from
the fact that circuits with a large number of lines are generated. This represents
a major challenge for the future. In this paper, a brief overview on reversible cir-
cuits and their applications, recent accomplishment, as well as future challenges
has been provided.
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