Generating SystemC Implementations for Clock
Constraints Specified in UML/MARTE CCSL

Judith Peters!

Robert Wille!:2

Rolf Drechsler!»2

nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{jpeters,rwille,drechsler } @informatik.uni-bremen.de

Abstract—Due to the increasing complexity of today’s embed-
ded systems, the design on higher levels of abstraction becomes
more and more important. In this context, modeling languages
such as UML and its profile MARTE received significant atten-
tion in the recent past. They provide formal descriptions that can
be exploited to automatically generate initial implementations
of a system e.g. in SystemC. While corresponding approaches
have been developed in the past, they often focused on functional
specifications. Besides that, also non-functional behavior such as
clocking constraints needs to be considered in this process. In this
work, we propose an approach which addresses this gap. Given a
formal specification of clocking constraints specified in the Clock
Constraint Specification Language (CCSL; a MARTE accessory),
we propose an automatic code generation scheme which enriches
an existing SystemC implementation by a module triggering the
desired clocks in the system.

I. INTRODUCTION

Today’s embedded systems are composed of a significant
amount of components such as gates and signals. At the
same time, they are enriched with additional sensors and
actors eventually forming a so called cyber-physical system.
As a consequence, such systems have reached an intrinsic
complexity which led to serious challenges for their design
and implementation. This development is also reflected in the
design flow which accordingly evolved over the last decades.

While a textual specification always has been the starting
point of the design process, the actual implementation was and
still is conducted on several abstraction levels. The Electronic
System Level (ESL) is considered the highest implementa-
tion level thus far. Here, languages such as SystemC are
applied which provide description means for both software
and hardware. This allows for the realization and simulation
of respective components prior to the hardware/software par-
titioning. Afterwards, the resulting hardware components are
precisely implemented as descriptions on the Register Transfer
Level (RTL) using languages like VHDL or Verilog. From
these descriptions, the respective hardware blocks are realized
through the gate level, transistor level, etc., to an actual chip.

The design tasks in the lower abstraction levels have re-
ceived significant improvements e. g. by automatic methods for
synthesis, optimization, and verification. However, the initial
implementation of an ESL description from a given (textual)
specification still constitutes a serious gap in today’s design
flow and usually is performed manually.

In order to close this gap and inspired by corresponding
developments in software engineering, researchers and design-
ers started the consideration of modeling languages such as
the Unified Modeling Language (UML, [1]). They provide a
“bridge” between the given specification and its initial imple-
mentation by providing (formal) description means while, at
the same time, hiding precise implementation details. In the

design of embedded and cyber-physical systems, particularly
the Systems Modeling Language (SysML, [2]) as well as the
Modeling and Analysis of Real-time and Embedded systems
profile (MARTE, [3]) finds considerable attention. They build
the basis for an emerging abstraction level recently denoted as
Formal Specification Level (FSL, [4]).

Having a formal specification e. g. by means of MARTE de-
scriptions allows to get a better understanding of the intended
design and to detect errors early in the design process (using
methods as proposed e. g. in [5]). Moreover, such descriptions
also enable an automatic generation of initial implementations
and, by this, aid a design step which was mainly conducted
manually thus far.

First approaches which translate FSL-descriptions into
ESL-descriptions have been proposed in [6], where SysML
diagrams are translated into SystemC modules, and in [7],
where MARTE descriptions are linked to SystemC via a
polyhedron and a loop model. Later, in [8] a strategy has been
proposed which relied on sequence diagrams from MARTE to
generate corresponding SystemC implementations. All these
approaches focus on the functional translation of a formal
specification.

But, in addition to the common modeling tools MARTE
offers a sophisticated time modeling mechanism. It extends
the primitive timing profile of the UML with mechanisms to
model time (TimeStructure) and to access time (Clocks) [9].
This includes a formal language to describe the behav-
ior of the clocks: the Clock Constraint Specification Lan-
guage (CCSL, [10]).

The CCSL defines clocks and their relations to each other
including ticking coincidences or order of ticks over several
clocks. These specifications can be utilized during the design
of a system whenever the question “When?” is asked. The
semantics of the CCSL have been formally defined in [11].

Based on this, several approaches have been proposed in the
past which aim for the simulation and verification of CCSL
constraints. For example, the work presented in [12], [13] ad-
dressed VHDL generating observers to check the compliance
of a CCSL specification, i.e. they simply skipped the ESL
and directly proceeded to RTL. An alternative approach was
to generate Promela code for verification, which was checked
afterwards using the Simple Promela Interpreter (SPIN) [14].
An analysis of CCSL statements was also done in [15], [16],
where a so-called polychrony clock calculus is generated and
checked using the Signali language. Here, a disadvantage is
that the handling of non-deterministic parts cannot be chosen
in this approach. Polychrony can only be generated after
eliminating the non-determinism.

These approaches are partially integrated in TimeSquare —
the main framework to simulate and visualize clocks which
is available as a plugin for eclipse [17]. TimeSquare consists
of an editor for CCSL, a clock calculus to generate clock
traces, and a verification part to check the correctness of clock
traces. The user can choose several simulation policies to
handle nondeterministic parts of CCSL. Waveforms can be
generated and the Papyrus tool offers a graphical view of the
simulation. However, TimeSquare offers traces, which — once
completed — cannot interact with the rest of the system. This
limits the applicability of CCSL within the entire design flow
sketched above. More precisely, while formal specifications
such as MARTE can be utilized in order to create initial
SystemC implementations, corresponding clock constraints are
not handled thus far.

In this work, we are addressing this issue. An approach is
proposed which translates CCSL into SystemC and, by this,
allows for the simulation of the specified clocks in SystemC.
We assume thereby that a complete SystemC description of
the desired system is already available (e.g. by means of
the code generation approaches mentioned above). Then, our
approach adds one further module, a TimeController, to this
implementation which handles the clock behavior specified
in the CCSL and triggers the available clocks as desired.
The corresponding CCSL constraints are thereby accordingly
considered. The resulting SystemC implementation can then
be utilized to simulate not only the functional but also the
clock behavior of the design according to the specification.

The proposed approach is described in the remainder of
this paper as follows: Section II briefly reviews CCSL and
SystemC while Section III introduces the general idea of our
solution. Afterwards, Section IV describes the implementation
of our approach in detail, while Section V illustrates its
application by means of an example. Section VI concludes
the paper.

II. PRELIMINARIES

This section reviews the background on both, the Clock
Constraint Specification Language (CCSL) as a part of the
UML/MARTE specification [3] and SystemC [18] as the
quasi-standard language for simulation at the ESL.

A. The Clock Constraint Specification Language (CCSL)

The Modeling and Analysis of Real-time and Embedded
systems profile (MARTE) for UML provides a language for
describing timing constraints: the Clock Constraint Specifica-
tion Language (CCSL) [3]. Central part of the underlying time
definition are instants, i.e. moments in the raw, unordered
time, defined by clock ticks. The clock is an instrument to
access a set of instants [11]:

Definition 1. A clock (Z,<,D,\,u) consists of a set of
instants I, which owns a quasi-order relation <, a set of labels
for the instants D, a labeling function)\, and a unit u for the
clock ticks. A finite clock has a finite number of ticks. If no
ticks are left, the clock is empty.

Example 1. Consider a processor executing assembler com-
mands. The computation cycles of the processor can be
described using the clock processor. They form the set of
instants of the clock, which are illustrated by dots at the line
shown in Fig. 1. Every instant represents a clock tick. These
ticks represent processor cycles. The order of the instants on
the line is specified by <processor-

processor

Fig. 1. Clock processor with instants (the dots), indices of the instants (the
numbers above), and labels (the commands below [19])

Certain processor cycles at the beginning of the clock are
reserved for computations which set up the system. Those
are labeled by the commands which shall be executed in the
respective instant. In Fig. 1, these labels are denoted below
the dots representing the instants.

Clocks in general can be logical or chronometric [3]. The
main difference between both is, that the intervals of logical
clock ticks can vary concerning physical time. Logical clocks
can refer to any event like processor cycles or sensor data,
while chronometric clocks refer to physical time and can also
be dense.

Concerning a simulation with SystemC, the target system is
discrete and, because of that, provides only logical time. This
directly follows from the clock of the processor as basic clock,
which itself is a logical clock, counting processor cycles. For
that reason, all clocks are simulated as logical discrete clocks
and chronometric continuous clocks will be simulated in a
discrete manner, too.

From the clocks, a time structure can be derived [11]:

Definition 2. A time structure is a pair (C,<), where C is
a set of clocks and < is a binary relation on U.ccZ. named
precedence (one clock tick takes place before or coincidently
with the other). From < three further instant relations can be
derived:

o Coincidence:
=2 (xN%)
The two clock ticks take place coincidently.
o Strict precedence:
<2 (x\9)
One of the clock ticks takes place strictly before and not
coincidently with the other.
o Exclusion:
£ (RU>)
One clock tick takes place before or after, but not coin-
cidentally with the other.

Some of these instant relations are also CCSL statements:
e “41 coincidentWith 757 is i1 = 19
e ‘i1 (strictly) precedes i9” is 71 < 72 resp. i1 <X i2

Example 2. CCSL can be used to describe complex temporal
relations. As an example, consider the clocking depicted in
Fig. 2 which describes the determination of an Advent day: The
Sfourth Sunday of Advent is the Sunday before or at Christmas.
This means that Advent is a day, which is a Sunday. It is the
last before Christmas or it can be the Christmas day itself.

christmas

sundays

days

i4

4th sunday
of Advent

Fig. 2. An instant relation for determining the 4t Sunday of Advent

This is specified by the CCSL statements given in the listing
below. The clocks days, sundays, and christmas are omitted
here, but will behave as the names suggest.

Instant il is sundays;
Instant 12 is christmas;
Instant i3 is sundays;
Instant i4 is days;

il strictly precedes i4;
i3 coincidentWith i4;

i3 precedes i2;

These instant relations affect the instants to which they are
referring to, but not the rest of the instants of the clock. In
other words, from the instants no behavior of the clocks can
be derived. It not even is possible to force instants to appear.
In fact, instants may just be specified in order to describe
a forbidden behavior rather than a desired behavior. This is
illustrated in Example 2, where not all instants of the clock
days are supposed to be Advent days.

Hence, instants will be reported, when they appear, but their
appearance has no further effect. In contrast, if instant relations
are defined for all instants of the clock, they become clock
relations (or clock definitions, in terms of CCSL). These clock
relations constrain the complete behavior of the clocks, so
they can be used to generate a specified behavior. A list of
all possible expressions is given in Table I, which contains
all statements and a short explanation of their semantics.
CCSL offers various expressions to define clocks and to
express relations between them. In Table I, they are sorted
concerning their kind of clock expression (column kind),
which can be a clock definition (def), a clock relation (rel), or
a chrono-nonfunctional-property (cnfp). The category refers to
the fashion in which they are translated to SystemC (this is
discussed later in Section IV-B).

New clocks (from clock definitions) are always subclocks,
i.e. their ticks are a subset of the ticks of their reference
clock(s). In this paper, we will focus on the generation of
clock behavior.

In principle, clock behavior can be defined in two fashions.
e According to the fact whether clocks are grouped
(e. g. tick together or not) and

¢ according to the fact how a clock behaves with respect
to other clocks (e. g. being periodic to another clock)

Formally, grouping clocks can be expressed as a binding.

N CCSL
Framework

Fig. 3.

Example SystemC implementation extended by the TimeController

Definition 3. Clocks can be bound together using bindings.
Consider the clocks c1, co and the event e. Then, two kinds of
bindings exist:
e (ca = ¢1) or (e — 1), i.e ¢ ticks, if co or e ticks or
o (ca > c1)or(c1 <€), i e the clocks ¢y, cq or the event
e tick or tick not together.

Clock behavior over time in relation to other clocks can be
described by using several terms, which is considered later in
Section IV-B.

B. SystemC

As a class library for C++, SystemC is used to implement
and simulate systems at a high abstraction level, i.e. at the
ESL. SystemC provides proper description means supporting
hardware-specific properties [10] in addition to the software
syntax which comes with C++ anyway.

A SystemC description of a system consists of modules,
which are connected via ports and communicate using signals.
The modules own specific processes, which can be sensitive
on certain signals, i.e. they react on value changes on these
signals.

Such descriptions are abstract enough so that they do not re-
quire a hardware/software partitioning, i.e. it is not necessary
to decide whether a module shall be realized as hardware or
software. At the same time, the description is precise enough
to enable a complete simulation of the implemented system.
SystemC can model specific hardware properties like inter-
process communication, parallelism, and synchronization.

SystemC has been certified by the IEEE in 2005 [18] and
is a de-facto-standard in the industry.

III. PROBLEM FORMULATION AND GENERAL IDEA

Using modeling languages like UML enables the precise
specification of the structure as well as the behavior of a
system to be implemented. At the same time, additional
description means provided by extensions such as MARTE
enable the specification of non-functional properties such
as timing. In this work, we focus on timing requirements
specified in CCSL as introduced in the previous section.

The considered scenario is the following: Given an initial
MARTE specification, all structural and functional aspects of
the system have already been implemented in SystemC (e. g.
using the approaches from [6], [7], [8]), i.e. a SystemC imple-
mentation composed of several modules, attributes, methods,
but also clocks is already available (see Fig. 3). However, the
respective timing behavior of the clocks has not been realized
yet. Hence, in the next step an extension to the SystemC
implementation needs to be created, which triggers all clocks
according to the specification provided by the respective CCSL
constraints. Thus far, this extension has been created manually.
In this work, we propose an automatic approach.

TABLE I

CCSL CLOCK DEFINITIONS (DEF), RELATIONS (REL), AND CHRONO-NFPS (CNFP)

kind category new clock statement meaning

def A Cnew when e Cnew < €

def A Cnew c1 restrictedTo b Boolean property b evaluates to true = ¢1 <> Cnew

def A Cnew ¢ filteredBy 8 binary word [evaluates to 1 = ¢1 <> Cnew

def C Cnew c1 discretizedBy r Cnew 18 the time-discretized equivalent of ¢

def A Cnew c1 delayedBy n index of c1 > n = ¢1 <> Cnew

def B Cnew c1 followedby c2 c1 1S not empty = €1 <+ Cnew,C1 1S €Mpty => 2 <> Cpew

def B Cnew c1 inter co Cnew > (€1 A c2)

def B Cnew c1 minus ca Cnew ¢ (€1 A —e2)

def F Cnew c1 sampledTo ca Cnew ticks with ca, if ¢1 has ticked since the last tick of co

rel C - c1 isPeriodicOn cg period n c1 has a pause of n ticks on ca between its ticks, then c1 — c2
rel C - c1 isSporadicOn c2 gap n c1 has a pause of at least n ticks on c2 between its ticks, then ¢; — c2
rel A - c1 isFinerThan ¢ co — Cq

rel A - ¢y isCoarserThan co c1 — c2

rel D - ¢ isFasterThan co the nth tick of c1 is before them of co

rel D - ¢y isSlowerThan co the nt? tick of co is before them of ¢

rel D - c¢1 haveMaxDrift co the number of ticks of ci, ca differs never more than n

rel A - Ccl1 =C2 C1 <> C2

rel B - c1 # c2 c1 — —cg A cg — ey

rel F - c1 alternatesWith co tick n of ¢; < tick n of co A tick n of c2 < tick n+1 of ¢y

rel E - c1 hasSameRateThan c2 offset n equivalent to c1, c2 haveOffset n

cnfp E - c1 hasStability r the distance between two ticks of a chronometic clock can vary by r
cnfp E - c1, co haveOffset d co ticks like c7, but d ticks on a reference clock later

cnfp E - c1, c2 haveSkew r the offset between c1, c2 gets higher in every step by r

cnfp E - c1, c2 haveDrift r the skewness between c1, c2 gets higher in every step by r

The general idea is to extend the existing SystemC im-
plementation by a TimeController as shown in Fig. 3. This
controller can access all clocks and is capable of triggering
them. At the same time, it incorporates all CCSL constraints
ensuring that the controller only triggers clocks when this
accords to the respective specification. More precisely, for any
considered system state during the execution of the SystemC
implementation, the TimeController traverses all clocks and
checks whether clocks can tick, cannot tick, or must tick
according to events in former system states.

The semantics of the CCSL constraints can thereby be dis-
tinguished between two kinds of constraints: Some constraints
are based on former system states, e. g. if one clock has ticked,
two steps later another clock must tick. Other constraints are
the bindings which contain information about the distributions
of clocks between the sets of clocks which will tick or not. A
binding does not state that a clock must or must not tick in
general. Bindings group several clocks together, i. e. depending
on the kind of binding, both clocks can tick or not tick
together, but both clocks cannot tick alone.

Example 3. Consider a MARTE specification with the follow-
ing CCSL constraints:

Clock days;
Clock sundays;
sundays isPeriodicOn days period 6.0;

That means, sundays is a subclock of days. When sundays
ticked, it cannot tick until the clock days has ticked six times
and then has to tick with days. In other words: If sundays
ticks, it has to tick again coincidently with the seventh tick of
days.

Additionally, at the beginning of the simulation, the follow-
ing must be defined: If sundays ticks, days must tick as well,
which is in terms of bindings:

sundays — days

This ensures that all instants of sundays are also instants of
days. Additionally, in the initialization of the simulation must
be defined that the clock sundays has to tick no later than
the 7" tick of days. This ensures that the periodical ticking
of sundays starts in time.

Having these constraints, the TimeController first traverses
all clocks and checks whether clocks can, cannot, or must
tick based on the former system states or the initialization. In
this simple example, both clocks, i. e. days and sundays report
that they can but are not forced to tick (there is no constraint
which forces them nor prohibits them to tick), i.e. they are
categorized as follows:

can

must

cannot

Next, the TimeController checks for all bindings whether
they provide any further information about the behavior. The
only binding is sundays — days, which causes no effects at
this point.

At this stage, no information about the ticking behavior of
the clocks is stored in the can list. These clocks are not forced
to tick but also not forbidden to tick. On the other side, it is
also not possible to decide in general, whether they shall tick
or not. If there are e. g. two clocks in the can list which exclude
each other, it is not allowed to let both of them tick.

To prevent the system from remaining in such an idle state,
a policy can be defined. In our solution, we already provide
simple policies. However, further ones can easily be defined by
the user. This mechanism is, to the best of our knowledge, not
considered in any FSL language and especially not in UML
or CCSL.

Policies choose a clock and assign it to the must or cannot
list. Afterwards it is checked which implications can be
concluded from this assignment. If the assignment leads to
a contradiction, the clock is assigned to another list (e.g. if
the first assignment was “let the clock not tick”, it is now

tried whether an assignment “let the clock tick” works) and
implications are checked again. If this leads to a contradiction,
too, a contradiction in the specification might be detected. If
the can list is not empty, this is repeated, until all clocks in it
are assigned.

At the end of this procedure, a valid assignment for all
clocks is determined.

Example 4. Consider again the example from above. This
system is now enriched with a policy which arbitrarily chooses
the clock sundays to tick (adds it to must). This is valid,
since sundays is initially assigned to the can-list. In order to
implement this policy, sundays is now recategorized as must:

can

cannot must

Because of that and in order to avoid the violation of the
binding sundays — days, the TimeController additionally has
to assign the clock days to must. Again this is possible without
any violation, since, in the current system state, days was
initially assigned to can.

cannot

Finally, all clocks in must are called to tick, i.e. the
TimeController triggers these clocks, while all remaining
clocks are not triggered. This whole process is repeated in
the next system state.

If in one state a situation like above occurs, but days is
in cannot instead of can, a contradiction would occur. At
this point, sundays would be removed from must and added
to cannot. Again, the bindings would check if this is still in
accordance to their constraints. If not, a contradiction in the
specification is unveiled.

A contradiction in a simulation like mentioned above does
not necessarily mean that the specification is erroneous, but the
combination of the specification with the chosen ticking policy
may cause problems. At some stages, an unwisely chosen
policy may have effects to some system states, which cause
problems in later states.

Example 5. Consider a system with two sensors sl and s2.
Each of them has to report its values in every second tick
of the system clock sys (here considered as a minimal clock,
which ticks in every step). From the second report of sensor
s2 on, this report will produce an echo, which will interfere
with the report of sl. This echo and the report of sl are not
allowed to take place at the same time. This is represented by
the following specification:

Clock sys is minClock;

Clock sl;

Clock s2;

Clock echo is s2 delayedBy 1.0;
sl isPeriodicOn sys period 1.0;
s2 isPeriodicOn sys period 1.0;
sl # echo;

In the first step, the minimal clock sys is categorized to
must, s1 and s2 to can (since they could both tick in this or
the next step), and echo to cannot (because s2 has not ticked
until now).

can must

cannot

At this stage nothing forbids to let both, s1 and s2, tick in
this step. But if the policy chooses them both to tick, they must
both tick again with sys in the 3¢ step. Now echo occurs with
§2. This would mean that all clocks would have to tick in this
step, while s1 and echo are not allowed to tick together. This
leads to a contradiction.

However; if in the first step the policy chooses only one of
sl and s2, they will tick alternately in the following and by
this, the conflict between sl and echo is avoided.

While the evaluation of the respective CCSL constraints
is trivial for simple examples as illustrated above, more
elaborated constraints may occur. For this purpose, the
TimeController needs to be enriched by a proper data structure
as well as corresponding implementations. How they are
generated for different CCSL constraints is described next.

IV. IMPLEMENTATION

This section first outlines the data structure used in the
proposed solution in order to translate CCSL constraints into
SystemC. Afterwards, the translation scheme is described. The
application of the patterns presented here are illustrated in
Section V.

A. Applied Data Structure

The TimeController is implemented in SystemC and, hence,
based on C++. To properly represent and compute the timing
behavior, three C++ classes are applied:

e The TimeController itself is the unique computing in-
stance, controlling the interaction between the other ob-
jects. As depicted before in Section III, it has access
to the lists of clocks which can, cannot, or must tick.
Additionally it owns the bindings representing how clocks
are bound together as well as the respectively applied
policy.

e For each clock, an additional ClockMonitor is added
which represents information on earlier events that might
affect the current ticking behavior. From the information
of the ClockMonitor, the first assignment of this clock to
the can/cannot/must-lists is performed. Additionally, the
ClockMonitor holds information on how the ticking of
its clock does affect the behavior of the other clocks.

« Finally, Bind objects represent the bindings as reviewed
in Section II-A. They can access the information stored in
ClockMonitor objects of the respectively involved clocks.
Based on this information, it is decided whether, accor-
ding to the current state of the monitors, an assignment
of a clock to the can/cannot/must-lists has to be changed
to satisfy this binding. Alternatively, the existence of a
contradiction can be detected.

Fig. 4 shows the resulting structure. For each clock to be
simulated a ClockMonitor object is created which is owned by
the TimeController. Depending on the given CCSL constraints,
these ClockMonitor objects may be enriched with further Bind

:TimeController

to clockl
---—

must

Fig. 4. TimeController with three ClockMonitor objects, two Bind objects,
the policy, and the lists for clocks that can, cannot, or must tick

objects. Based on this data structure, CCSL statements can
accordingly be expressed in SystemC.

B. Representation of CCSL in the Framework

CCSL contains a rich variety of expressions (see Ta-
ble I) which require different realizations within the proposed
SystemC scheme. Therefore, the total set of possible CCSL
expressions is categorized with respect to their representation
in terms of bindings, conditions, etc. In total, six different
categories (A to F) are considered which are also respectively
indicated in Table I. In the following, the respective handling
of CCSL constraints from each category is described’.

A The first category is composed of expressions which can
be defined and translated using the bindings <+ and —
from Definition 3 as well as conditions evaluating to
Boolean values only. They can be realized in a straight-
forward fashion using the respective ClockMonitor object
with no further restrictions. Only a respective Bind object
is created which accordingly binds the considered clocks
together.

B CCSL expressions stating clock bindings conditioned
by other clocks ticks (e.g. #) are summarized in this
category. Here, a clock is only bound to another, if other
clocks tick, tick not, or if they have certain clock-specific
properties like emptiness. Again, these constraints are
realized by creating simple Bind objects to the affected
ClockMonitor objects. The respective conditions can ea-
sily be checked by those objects.

C The CCSL expressions in this category restrict the ticking
of a clock in relation to the ticking defined by other
clocks. This includes

— constraints stating that a clock must have ticked until
a certain tick of a reference clock occurred (e.g. a
clock ¢; must tick, until a clock co has ticked n
times, i.e. ¢;.tickIn(n,ca)),

— constraints stating that a clock must tick in an
explicitly specified fashion with another clock (e. g. a
clock ¢; may tick together with the n'" tick of a
clock ¢g, i.e. ¢y.tickExactlyIn(n,cs)), or

— constraints prohibiting a clock to tick until a refe-
rence clock has ticked a certain amount of times
(e.g. clock ¢; may not tick, until a clock co has
ticked n times, i.e. ¢1.lockFor(n,cs)).

TAs mentioned above, examples illustrating the application are afterwards
provided in Section V.

This kind of constraint requires that the ClockMonitor
objects interact with each other. To this end, a lock and
a tickIn method is provided for each ClockMonitor. They
can be used to provide other clocks with the information
that they are not allowed to tick anymore or that they, in
fact, have to tick. By calling these operations, the future
assignments of the can/cannot/must-lists are modified.

More precisely, each ClockMonitor owns lists of clocks
it interacts with, i.e. a list of clocks to lock, a list of
clocks to call ticking, and a list for the precise ticking
calls. Each entry in these lists is composed of triples like

(Ctargeta Creference; l)
where ciqrget 18 the target clock of the statement (e. g. the
clock which shall be locked), c,cference 1s the reference
clock (e.g. the clock which defines the length of the
lock or ticking call), and the length [of the lock/ticking
call itself. Whenever a clock ticks, its corresponding
ClockMonitor traverses its lists and e. g. locks all clocks
Ctarget from the lock list for the defined time [on
Creference-
Cogresponding to the lists of clocks to lock or call ticking,
each clock owns the respective lists of the applied ticking
calls and locks. In each step a clock is asked, if it can,
cannot or must tick. The answer to this question depends
amongst others on these lists. If there are locks left in
the lock list, a clock cannot tick, if a ticking call expires,
it must tick and so on. Here — besides other times in the
simulation — also contradictions can be found, e.g. if a
ticking call expires on a locked clock.
These lists are updated after every simulation step. Each
clock has a further list with clocks, which use this clock
as reference clock for any statement. If the clock ticks,
it notifies all listening clocks, so they can update their
locks and/or ticking calls.
CCSL expressions from category D represent restrictions
to the number of ticks of a clock. A clock restricted by a
constraint from this category can tick without restrictions
in time, but has only a certain contingent of ticks. If no
ticks are left, it can not tick anymore. The actual number
of ticks is related to another clock which may grant more
ticks when it ticks by itself. For example, a constraint
such as ¢;.addTick(cs) belongs to this category stating
that if co ticks ¢; is granted another tick.
Constraints like these are realized in a similar fashion
as constraints from category C. Again, ClockMonitor
objects influence each other by adding ticks. This is also
realized with lists. The clock which adds ticks holds a
list with all clocks to which ticks shall be added. Triples
are not needed here, because there is no reference clock
and the number of ticks added is always 1. Instead, the
clock with the ticking restriction handles the ticks by a
list composed of tuples such as

(Cgrantinga Z),

where cgranting 15 the clock which grants the ticks and
is the number of ticks which are currently left. Only if
all entries in this list are larger or equal one, the clock
can (but must not) tick.

CCSL expressions providing constraints for chronometric
clocks are summarized in this category. They rely on
calculating the next tick of the restricted clock and then
enforce a respective ticking. Two kinds of restrictions are
considered here: Stability lets a clock restrict itself by

calculating the next tick, while offset-related constraints
make the first clock restricting the following by calcula-
ting its next tick.

These constraints are realized in a similar fashion as con-
straints from category C. The only difference is that the
value ! from the triple (ctarget, Cre fe,,ence,l) is replaced
by a corresponding function which may depend on drift,
skew, or stability of the clock.

F The last category is for expressions which have an own
and more complicated behavior. They are implemented
using an own implementation of the class Bind. The be-
havior can be represented by a simple automaton, whose
different states affect the behavior of the implementation.
It behaves like different bindings in the different states of
the automaton. The state-changes are dependent on which
clock of a given set of possible clocks ticks.

Besides that, CCSL statements may include intervals, tuples,
and other vague statements as arguments of timing expres-
sions. Those cause further non-determinisms in the execution.
Theoretically, a policy could handle this, but would need
more sophisticated policies compared to the ones described
above. Hence, such vague statements are omitted at this stage.
However, future contributions with more elaborate policies
might include vague statements.

The next section gives an example, how a CCSL specifi-
cation can be implemented in SystemC and how it behaves
during the simulation.

V. APPLICATION

In this section, the generation of a SystemC implementation
for a given set of CCSL constraints is illustrated by means of
an example. To this end, the considered example is briefly
introduced first. Afterwards, the code generation process and
the execution of the resulting implementation is illustrated.
All code generation has been conducted using an Xtext-based
parser.

A. Considered Example

We illustrate the application of the proposed solution by
means of a communication satellite scenario depicted in
Fig. 5. This example displays special timing constraints due
to the specific conditions in space, where a behavior timed
by positions of celestial bodies in relation to each other is
needed. Additionally this scenario is inspired by the works
of the cooperation partner of our graduate school System
Design (SyDe), the German Aerospace Center (DLR). Space
missions have very strict timing constraints — logical as well
as chronometric — and, hence, work with very different time
dimensions: from milliseconds, when e. g. the rocket starts, to
years or longer, when the travel time to the target is considered.
This makes it very attractive to model these dimensions at the
FSL.

The satellite orbits the earth at a certain height and needs
10 hours to circumnavigate the earth. Energy is gained using
a solar panel. If the earth’s shadow is passed and the panels
do not gain enough energy, the power supply is switched to
batteries.

To hold its orbit, the satellite has two rocket engines which
are fired electrically. This firing needs a significant amount
of energy and, because of that, is not allowed while passing
the shadow. The height is checked at least once a day, but,
due to the rapid temperature change, cannot be checked if an

) earth’s shadow
satellite

Fig. 5. The satellite on its orbit

alteration between light and shadow occurs (i.e. during dusk
and dawn moments).
To model this behavior, several events are described:

¢ Minutes, hours and days

— all defined through one central clock
— 60 minutes = 1 hour
— 24 hours = 1 day

o Entering the earth’s shadow and sunlight

— one circumnavigation lasts 10 hours
— flying through the shadow lasts 3 hours

o Times to adjust the antenna
— every minute
o Times to check the orbit

— every minute
— not during dusk and dawn
— not more often than once in five minutes

The resulting CCSL description is given in Fig. 6.
This includes various CCSL expressions. The constraints
isPeriodicOn and isSporadicOn are expressions from category
C, i.e. they restrict when — in relation to their clocks — a clock
can tick. Both state that the restricted clock is a subclock
of the reference clock. But while isPeriodicOn lets the new
clock tick with every period+1%t tick of the reference clock,
isSporadicOn just states that at least gap ticks of the reference
clock must be between two ticks of the subclock. The #
statement forbids two clocks to tick at the same time. It
is a statement making the clock’s behavior depending from
other clocks and, hence, is a constraint from category B. The
isFasterThan-expressions belongs to category E and, therefore,
restricts the number of ticks, i.e. checkOrbit must tick more
often than days. The last expression — haveOffset — states that
every tick of enterLight is followed by a tick of enterShadow
with the fifth tick on the reference clock hours.

B. Generating SystemC

As outlined before, we assume that all functional behavior
of the system is already implemented in SystemC. Then, the
CCSL description from Fig. 6 is translated to a SystemC
module as described in the previous section. The respectively
added code lines are provided in Fig. 7.

First, the module’s basic structure is generated. This in-
cludes the surrounding structures in lines 1-2 and the conclu-
ding SC_CTOR-block in lines 48-54. Additionally, a method
for the initialization of the module (lines 12-37) and for
running the simulation (lines 39-46) is created. Both are
mentioned in the SC_CTOR-block. The method run (see line
50) is called in every step of the simulation, while initialize

ClockConstraintSystem satellite {

Clock minutes is chronometric 1 m;
Clock hours;
Clock days;
Clock enterShadow;
Clock enterLight;
Clock checkOrbit;
hours isPeriodicOn minutes period 59.0;
days isPeriodicOn hours period 23.0;
enterLight isPeriodicOn hours period 9.0;
enterLight , enterShadow

haveOffset {7.0} on hours;
checkOrbit isFasterThan days;

checkOrbit isSporadicOn minutes gap 4.0;
enterShadow # ckeckOrbit;
enterLight # checkOrbit;

Fig. 6.

is only called once (see line 52) at the beginning in order to
set up the simulation. The thread is sensitive to the internal
clock clk (see lines 3 and 51) which directs the simulation.
So far, all structures mentioned right now are equal for all
SystemC modules, except the two methods which are only
part of all TimeController modules.

Next, the model-specific CCSL parts are added: For all
clocks from Fig. 6, corresponding ClockMonitor objects are
generated (see lines 14-22). Since the clock minutes is chrono-
metric, the period to the internal clock is accordingly adjusted
(line 14). Furthermore, a port is added for every clock which
is directed by the TimeController (see lines 5-10). This is
needed in order to trigger the respective tickings.

Finally, the respective constraints are implemented (see lines
24-36). First, the isPeriodicOn constraints are realized using
to the clocks hours, days, and enterLight. This is a constraint
from category C. For a more detailed explanation, consider:

Here, hours is the clock which is restricting itself by an

Controller :: addIsPeriodicOn (hours ,
minutes , period_33);

exact ticking call. So, internally, the CCSL framework forms a
triple of the parameters, where hours is the target clock to be
restricted, minutes is the reference clock, and period_33 is the
duration of the restriction (which is set to 59.0 in line 24). This
triple is added to the exact ticking call list of the ClockMonitor
for hours. As isPeriodicOn is a subclocking statement where
the restricted clock is a subclock of the reference clock, a Bind
object is created, which prevents hours from ticking, if minutes
is not ticking (hours — minutes). The other isPeriodicOn
statements are generated analogously.

Afterwards, isFasterThan (line 31) is added to checkOrbit.
Internally checkOrbit restricts days by restricting the number
of ticks for days. The ClockMonitor checkOrbit has to tick
more often. Internally, days is added to the tick granting
list of checkOrbit and the initial ticks of days are set to 0,
i.e. checkOrbit has to tick first to grant more ticks to days.

The realization of isSporadicOn in line 33 is similar to the
realization of isPeriodicOn. The difference is only that the

// define hours on minutes
/! define days on hours
// 10 hours between light entries
// light lasts 7 hours, rest is shadow
// check orbit at least once a day
// not more than once in 5 minutes

/! no orbit check during dusk/dawn

The CCSL description of the satellite clock system

triple is not added to the exact ticking call list, but to the lock
list.

Both # statements in lines 34-35 are realized by creating
an internal Bind object. This guarantees that they will not tick
together. The last CCSL expression, haveOffset, is again very
similar to isPeriodicOn. However, the target clock is not the
restricting clock enterLight, but the offset clock enterShadow.
The reference clock is hours and the duration is offset 36 as
defined in line 30. The offset clock is now a subclock of hours.

After automatically generating the complete module, the
user only has to connect the ports manually to their respective
clocks. Then, the simulation can be started.

C. Running the Simulation

Having the automatically generated SystemC realization of
the CCSL constraints, simulations on them can be performed
by simply invoking the method run in every simulation step.
Corresponding policies can additionally be enforced as e. g. il-
lustrated in line 42 defining a simple maximum policy. Each
simulation step consists of three phases:

1) At the beginning of every simulation step, all

ClockMonitor objects are asked by the TimeController
whether they are allowed to tick, they have to tick, or
they are not supposed to tick, and are assigned to the
respective list (can, cannot or must). The ClockMonitors
assume thereby logical clocks except for the clock
minutes which is chronometric. This clock reports either
that it must or cannot tick (always a definite answer)
dependent on the system clock clk, which represents
physical time.
All other ClockMonitors decide their ticking abilities
depending on earlier simulation steps. This may be
influenced e.g. by the number of ticks which were
granted by other clocks who are restricting their number
of ticks or locks (which forbid ticking). In the first
simulation step, all report that they can tick, except
enterShadow which cannot tick until enterLight has.

2) For all ClockMonitor objects in the can list, the
TimeController has to decide whether they shall tick or
not. To do so, all Bind objects are checked, if there is

SC_MODULE("satellite_TimeController")
{
sc_in<bool> clk;
sc_out<bool> port_minutes;
sc_out<bool> port_hours;
sc_out<bool> port_days;
sc_out<bool> port_enterShadow;
sc_out<bool> port_enterLight;
sc_out<bool> port_checkOrbit;
void initialize ()
{
int period_30 =1 % 60000;
ChronometricClockMonitor* minutes
= new ChronometricClockMonitor ("minutes", period_30, &port_minutes);
ClockMonitor* hours = new ClockMonitor("hours", &port_hours);
ClockMonitor* days = new ClockMonitor("days", &port_days);
ClockMonitor* enterShadow
= new ClockMonitor("enterShadow", &port_enterShadow);
ClockMonitor* enterLight = new ClockMonitor("enterLight", &port_enterLight);
ClockMonitor* checkOrbit = new ClockMonitor ("checkOrbit", &port_checkOrbit);
double period_33 = 59.0;
Controller :: addIsPeriodicOn (hours, minutes, period_33);
double period_34 = 23.0;
Controller :: addIsPeriodicOn (days, hours, period_34);
double period_35 = 9.0;
Controller :: addIsPeriodicOn (enterLight , hours, period_35);
double offset_36 = (7.0);
Controller :: addIsFasterThan (checkOrbit, days);
double gap_37 = 4.0;
Controller :: addIsSporadicOn (checkOrbit, minutes, gap_37);
Controller :: addExclude (enterShadow , ckeckOrbit);
Controller :: addExclude (enterLight , checkOrbit);
Controller :: addHaveOffset(enterLight , enterShadow , hours, offset_36);
1
void run ()
{
try {
Controller :: run(new ccsl:: clk:: MaximumPolicy ());
} catch(ccsl::clk:: ContradictionExceptionx* e) {
cout << e.what();
}
1
SC_CTOR(satellite_TimeController)
SC_METHOD(run);
sensitive << clk.pos();
initialize ();

Fig. 7. The automatically generated TimeController module in SystemC

already a contradiction or if some ClockMonitors can be
assigned as a conclusion from the Bind objects. In this
precise simulation, the first check of the Bind objects
reports, that there is no information known about further
behavior of clocks just from the bindings.
Then, the MaximumPolicy arbitrarily chooses one
ClockMonitor (e.g. days) and assigns it to the ticking
list. There exists a binding which states that if days ticks,
hours has to tick as well (because as a periodic clock
days is a subclock of hours). The same is valid for hours
being periodic on minutes. Since minutes is already in
the ticking list, no other implications are concluded at
this point.
Next the Policy chooses enterLight to tick. This causes
no further changes and finally, checkOrbit is assigned to
tick, too. The final ticking list is
{minutes, hours, days, enterLight, checkOrbit}
3) If in the CCSL specification there are instants defined,
it is now checked if one of them appeared in this step.
After that, all ClockMonitors are called to tick and flush
their ports with the trigger signal to the clock modules.
Afterwards they iterate their lists of ClockMonitors
to lock or call ticking and proceed these invocations.
ClockMonitor hours calls itself to tick again in exactly
60 ticks on minutes, days calls itself ticking in exact 24
ticks of hours. Beginning of light phase, enterLight, calls
itself to tick again in 10 ticks on hours, and enterShadow
to tick in 7 ticks on hours. The ClockMonitor checkOrbit
simply locks itself (forbids itself to tick) for 4 ticks
on minutes. Additionally days is granted a tick by
checkOrbit, because it is not allowed to tick faster (more
often) than checkOrbit.
Finally, all ClockMonitors iterate the list of
ClockMonitors which are listening to them and
notify each of them of their ticking. The notified
ClockMonitors iterate all their saved ticking calls and
locks and decrease the respective duration until the lock
is solved or a ticking call must be served.

In the further simulation, these three phases are repeated in
every simulation step. Until minutes ticks again, no clock can
tick. But with the 60" tick of minutes, hours will tick again,
with the 5" tick checkOrbit can tick and so on. In every step
this process is repeated until the simulation is terminated.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a translation of MARTE CCSL
descriptions to SystemC. Assuming the rest of the system
already existing in SystemC, we added the behavior described
in CCSL, by creating a TimeController module. This triggers
the ticking of the clock modules using our CCSL framework
to compute, whether a clock ticks or not.

CCSL statements were translated using their characteristics
to define a simple data structure fitting all CCSL statements.
During the simulation in each cycle the set of ticking clocks is
computed and the ticks in the respective modules are triggered.

Our further research will focus on improving the framework
e.g. by improving the policies for better reasoning. The

policies shortly touched in Section III are still quite simple.
They neither take the relations between clocks in account nor
their restrictions by their own ticking behavior. Furthermore
there is a lack of specification means for policies for the user.
At the moment, the user has to implement the policy interface

manually, which is not desired during a specification process
on FSL. To find better description means here is another target
of our further work.

ACKNOWLEDGMENTS

This work has been partially supported by the Graduate
School SyDe, funded by the German Excellence Initiative
within the University of Bremen’s institutional strategy and by
the German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1.

[10]
[11]
[12]
[13]

(14]

[15]

[16]

o1 (OMG UML) Superstructure. Object Management Grou};MZOIL
, UML Profile for MARTE: Modeling and Analysis of Real-Time
Towards Verification-driven Design Based on Natural Language Pro-
[5] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
[6] W. Raslan and A. Sameh, “Mapping SysML to SystemC,” in Forum on
“From high level MPSoC description to SystemC code generation,”
[8] E.Ebeid, D. Quaglia, and F. Fummi, “Generation of SystemC/TLM code
pp. 187-190.
T. Grotker, System design with SystemC. Springer, 2002.
C. André, F. Mallet, and J. DeAntoni, “VHDL Observers for Clock Con-
F. Mallet, “Automatic Generation of Observers from MARTE / CCSL,”
L. Yin, FE. Mallet, and J. Liu, “Verification of MARTE/CCSL Time
H. Yu, J.-P. Talpin, L. Besnard, T. Gautier, F. Mallet, C. André,
Object/Component/Service-Oriented Real-Time Distributed Computing
thesis from MARTE CCSL timing specifications,” in ACM & IEEE
[17] J. Deantoni, “TimeSquare: Treat Your Models with Logical Time,” in
I. S. Association, 1666-2011 — IEEE Standard for Standard SystemC

REFERENCES
[1] Object Management Group, OMG Unified Modeling Language TM
, OMG Systems Modeling Language (OMG SysML'™). Object
Management Group, 2012.
[3]
Embedded Systems. Object Management Group, 2011.

[4] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:
cessing,” in Forum on Specification and Design Languages, 2012, pp.
53-58.

UML Models,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), Dresden, 2011.
Specification and Design Languages, 2007, pp. 225-230.

[7] R. B. Atitallah, E. Piel, J. Taillard, S. Niar, and J. L. Dekeyser,
in International ModEasy Workshop in conjunction with Forum on
specification and Design Languages (FDL’07), 2007.
from UML/MARTE sequence diagrams for verification,” in Symposium
on Design and Diagnostics of Electronic Circuits and Systems, 2012,

[9] C. André, F. Mallet, and R. de Simone, “Time modeling in MARTE,”
in Forum on Specification and Design Languages, 2007, pp. 268-273.
C. André and F. Mallet, Clock Constraints in UML/MARTE CCSL.
Institut National de Recherche en Informatique et en Automatique, 2008.
straint Checking,” in International Symposium on Industrial Embedded
Systems (SIES), 2010, pp. 98-107.
in IEEE International Workshop on Rapid System Prototyping, 2012,
pp. 86-92.

Requirements in Promela/SPIN,” in International Conference on En-
gineering of Complex Computer Systems (ICECCS), 2011, pp. 65-74.
R. de Simone, and R. D. Simone, “Polychronous Analysis of Tim-
ing Constraints in UML MARTE,” in International Symposium on
(ISORC), 2010, pp. 145-151.

H. Yu, J.-P. Talpin, and L. Besnard, “Polychronous controller syn-
International Conference on Formal Methods and Models for Codesign
(MEMOCODE), 2011, pp. 21-30.

International Conference on Objects, Models, Components, Patterns
(TOOLS), 2012, pp. 34-41.

Language Reference Manual. TEEE Standards Association, 2011.

P. A. Carter, PC Assembly Language. Paul A. Carter, 2006.

[18]
[19]

