
Lazy-CSeq-SP: Boosting Sequentialization-based
Verification of Multi-Threaded C Programs via

Symbolic Pruning of Redundant Schedules?

Vladimir Herdt1, Hoang M. Le1, Daniel Große1, and Rolf Drechsler1,2

1 Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany
{vherdt,hle,dgrosse,drechsle}@cs.uni-bremen.de

2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Abstract. Sequentialization has been shown to be an effective symbolic
verification technique for concurrent C programs using POSIX threads.
Lazy-CSeq, a tool that applies a lazy sequentialization scheme, has won
the Concurrency division of the last two editions of the Competition on
Software Verification. The tool encodes all thread schedules up to a given
bound into a single non-deterministic sequential C program and then
invokes a C model checker. This paper presents a novel optimized imple-
mentation of lazy sequentialization, which integrates symbolic pruning of
redundant schedules into the encoding. Experimental evaluation shows
that our tool outperforms Lazy-CSeq significantly on many benchmarks.

Keywords: Formal Verification, Concurrency, Sequentialization

1 Introduction

Verifying concurrent programs is a difficult problem, due to the large state space
caused by all possible thread schedules. Context-bounded analysis (CBA) [12,13]
in combination with sequentialization [14,11,10], especially the lazy sequential-
ization scheme employed by Lazy-CSeq [8,9], has been shown to be a particular
effective symbolic verification technique for concurrent C programs using POSIX
threads. Lazy-CSeq has won the Concurrency division of the last two editions
of the Competition of Software Verification (SV-COMP) [4,5]. Essentially, Lazy-
CSeq works as follows: It transforms the multi-threaded program into an unrolled
form, by inlining functions, unwinding loops and cloning instantiated threads
into thread functions. The existing main() function becomes a thread and is re-
placed by a new main() function, which contains a round-robin scheduler. In each
round, each enabled thread is executed for a non-deterministic number of steps.
For this execution, context switch logic is placed inside the thread functions.
It allows to preempt a thread execution at statements that can interfere with

? This work was supported in part the German Federal Ministry of Education and
Research (BMBF) within the project EffektiV under contract no. 01IS13022E and
by the German Research Foundation (DFG) within the Reinhart Koselleck project
DR 287/23-1.

other threads and therefore ensures that all relevant behaviors will be explored.
The local state of the threads is preserved across function calls by making local
variables static and initializing them to non-deterministic values to preserve the
original semantics. Finally, the scheduler is bounded to execute a fixed number
of rounds to create a single non-deterministic bounded sequential C program,
which is then verified using a sequential C model checker. More details can be
found in [8].

This paper presents a novel optimized round-robin scheduler encoding that
incorporates symbolic pruning of redundant schedules and is used as replace-
ment for the Lazy-CSeq scheduler. Furthermore, an extensive static analysis is
employed to reduce the number of context switches placed within the threads,
by detecting interfering statements more accurately. Experimental evaluation
shows that both techniques can boost the performance of lazy sequentialization
significantly.

2 Optimized Scheduler Encoding

Basic Round-Robin Scheduler Encoding A round-robin scheduler, as em-
ployed by Lazy-CSeq, encodes a fixed number of thread execution rounds, thus
effectively implements a variant of CBA. In every round all enabled threads
are executed in a representative total order, each one for a non-deterministic
number of steps. This non-determinism models the preemptive semantics of
POSIX threads where a thread execution can be arbitrarily preempted by an-
other thread. Thus, in each round, there are three possibilities for a thread: 1.
It is skipped (zero execution step); 2. It is executed to completion (in this case,
the thread becomes disabled and will not be executed in the next rounds); 3. It
is executed up to a point where its execution can be resumed in the next round;
In the following the number of threads is denoted as m. Every thread is assigned
a unique index i ∈ {1, ..,m} according to the representative execution order,
and we define ti < tj iff i < j. A schedule is denoted as a sequence of thread
executions with the symbol | as round delimiter. Skipped threads in each round
will be omitted for convenience.

Encoding Symbolic Pruning of Redundant Schedules The main idea
of the encoding is based on round merging. Consider m = 3 and the schedule
t3 | | t2 (all threads are skipped in the second round). The three rounds can be
merged to t3 | t2, but t3 | t2 cannot be merged further, because it is not possible
to execute t3 before t2 in the same round. Another schedule t1t2 | t2t3 can be
merged into a single round t1t2t3, because in the second round, t2 resumes at
the point where it stopped before. For every mergeable schedule, there exists an
equivalent unmergeable schedule. Thus mergeable schedules are redundant and
our encoding aims to prune them. The key observation is the scheduler is only
required to maintain a very simple invariant to do so: before tj is considered, the
last executed thread (with non-zero steps) must not be tj . This invariant ensures
that no more than m − 1 subsequent thread executions are skipped. Thus, it

eliminates all empty rounds and ensures that a new round starts with a thread
tj < ti which ended the last round, as they could otherwise be merged. This
enables a very lightweight encoding of round merging, which only introduces
a single new variable to keep track of the last executed thread, and a set of
assumptions. Fig. 1 shows a comparison of a single execution of a thread tj for
a non-deterministic number of steps in Lazy-CSeq (left side) and Lazy-CSeq-
SP (right side). The functions guess pc and NC(j) return a non-deterministic
non-negative value and the number of context switches in tj , respectively. The
variables pc[j] and pc cs store the current location in tj and the location of the
next context switch, respectively.

thread_index = j;

if (active_thread[j] == 1) {

pc_cs = pc[j] + guess_pc();

assume (pc_cs >= 0 &&

pc_cs <= NC(j));

thread_j (threadargs[j]);

pc[j] = pc_cs;

}

thread_index = j;

assume (j != last_thread_index);

if (active_thread[j] == 1) {

pc_cs = guess_pc();

assume (pc_cs <= NC(j));

if (pc_cs > pc[j]) {

thread_j (threadargs[j]);

pc[j] = pc_cs;

last_thread_index = j;

}

}

Fig. 1. Execution of a single thread in Lazy-CSeq (left) and Lazy-CSeq-SP (right)

3 Implementation Details

We have implemented our tool Lazy-CSeq-SP in Python (version 3.4). A web-
interface is available at www.systemc-verification.org/LazyCSeqSP for eval-
uation. An architecture overview is shown in Fig. 2. It expects a C program
sequentialized by Lazy-CSeq, which is then further processed in two steps as
shown in the lower part of Fig. 2, to produce an optimized C program. In the
first step the context switch logic inside the threads, the main function with the
scheduler encoding and some other auxiliary definitions generated by Lazy-CSeq
are removed by using some simple scripts with regular expression matching. Es-
sentially this results in a program, where all functions (except those marked
atomic) have been inlined, loops unwound, and all threads cloned the number
of times they are instantiated (the number of pthread create statements is stati-
cally known due to the inlining and unwinding performed by Lazy-CSeq). In the
second step a static analysis is applied to collect informations, which are then
used to compute locations for the context switches. Our analysis is more accu-
rate than Lazy-CSeq and often generates a smaller number of context switches,
which also reduces the state space.

www.systemc-verification.org/LazyCSeqSP

threads without
context switches

auxiliary
definitions

context
switches

sequentialized
C file

pthreads
C file

Lazy-CSeq

Verifier

threads

scheduler

+

+

sequentialized
C file

1. preprocess

Lazy-CSeq-SP

2. static analysis

Fig. 2. Tool implementation overview

Reducing Context Switches by Static Analysis Essentially, the static anal-
ysis works as follows: First, the pycparser library is used to parse the prepro-
cessed sequentialized file into an AST, which is then transformed and annotated
in subsequent phases. This includes a declaration analysis (binding names to
declarations), a simple type analysis, a pointer analysis [3,7] and an escape
analysis. The collected informations are then used to compute the following
sets of data (called effects) for every statement: reads, writes, assumptions and
pthread join calls. Based on these statement effects a context switch is placed
before a statement s if one of the following conditions holds:

1. s has a read-write dependency with any statement from another thread, i.e.
both access the same variable with at least one of them writing;

2. s contains a pthread join call or an assumption;
3. s is the initial statement of a thread.

The first condition can be efficiently checked by first combining all statement
effects for every thread separately. The third condition ensures that initial non-
interfering statements of a thread are not re-executed, when the thread resumes
its execution. As an optimization, no context switches are placed due to con-
dition (1) or (2) in the main function thread until a pthread create statement
is reached, since initially only the main function thread is enabled. Please note
that no context switches are placed before any pthread create statement at all,
since creating a new thread does not interfere with the execution of the already
available threads. The reason is that enabling another thread can only add ad-
ditional behaviors, not limit existing ones. Furthermore, only a single context
switch is placed before a group of multiple consecutive pthread join calls. Once
every created thread has been joined, no more context switches will be placed.
Other (pthread) library calls are naturally handled with the first condition, e.g. a
pthread mutex lock call is modeled to have a write access to the mutex argument.
Finally no context switches are placed before (loop unwinding) assumptions, can
be proven to be satisfiable (and have no other dependencies), since they cannot
terminate the program execution.

4 Experimental Evaluation and Conclusion

We have evaluated Lazy-CSeq-SP on benchmarks from the Concurrency division
of the SV-COMP 2015 [2]. All experiments are performed on a 3.4 GHz AMD
machine running Linux. The time and memory limits are set to 600 seconds and
4GB, respectively. The abbreviation T.O. denotes that the time limit has been
exceeded. The runtime results in seconds for a set of representative benchmarks
are shown in Table 1. A table including results for a larger set of benchmarks is
also available at www.systemc-verification.org/LazyCSeqSP.

Table 1. Benchmark results

Benchmark Lazy-CSeq +SA Lazy-CSeq-SP

fib bench longest false.c.r11.u11 278.157 166.388 12.061
fkp2013 false.c.r2.u50 4.265 3.934 4.298
qw2004 false.c.r1.u1 0.250 0.238 0.240
sigma false.c.r1.u16 7.523 4.087 4.244

fib bench longest true.c.r11.u11 243.630 221.486 15.621
fk2012 true.c.r3.u8 T.O. 54.875 56.358
fkp2013 true.c.r3.u48 529.447 1.895 2.206
fkp2014 true.c.r5.u5 31.913 12.884 12.599
queue ok true.c.r4.u20 337.787 278.580 65.224
queue ok true.c.r5.u20 T.O. T.O. 97.408
read write lock true.c.r30.u1 311.012 159.506 5.415
sssc12 true.c.r3.u7 123.239 76.220 71.479
stack true.c.r5.u5 67.071 21.541 10.529

The table shows three different configurations: the original Lazy-CSeq (ver-
sion 2.0beta), our implementation with optimized context switch placement by
static analysis (+SA), and additionally with symbolic pruning of redundant
schedules (Lazy-CSeq-SP). To ensure a fair comparison, we patched Lazy-CSeq
to place context switches before (potentially unsatisfiable) while-loop unwinding
assumptions. Otherwise the Lazy-CSeq unwinding would effectively be reduced
by one, since the last execution of the loop body would not be considered. The
table is divided into two halves. The upper (lower) half shows the results on
the unsafe (safe) benchmarks. The number of rounds and the unwinding are
encoded into the benchmark name. CBMC version 5.0 is used as backend [1,6].
Only the CBMC runtimes are reported, since the time required to generate the
sequentialized file is comparatively negligible.

On the presented benchmarks, clear improvements can be observed for the
configuration +SA compared to Lazy-CSeq. Lazy-CSeq-SP improves the results
further with some exceptions, where +SA shows better results. These are due to
the simpler encoding of +SA, but the runtime differences are not significant. The
results clearly show the advantages of symbolic pruning of redundant schedules
and encourage further research in this direction. For future work we plan to
investigate more aggressive pruning, e.g. symbolic Partial Order Reduction [15].

www.systemc-verification.org/LazyCSeqSP

References

1. CBMC 5.0. http://www.cprover.org/cbmc/download/cbmc-5-0-linux-64.tgz.
2. SV-COMP 2015. http://sv-comp.sosy-lab.org/2015/.
3. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-

guage. PhD thesis, University of Copenhagen, 1994.
4. D. Beyer. Status report on software verification - (competition summary SV-

COMP 2014). In Tools and Algorithms for the Construction and Analysis of Sys-
tems - 20th International Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, pages 373–388, 2014.

5. D. Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings, pages 401–416, 2015.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer
Science, pages 168–176. Springer, 2004.

7. B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’07, pages 290–299, New York, NY, USA, 2007. ACM.

8. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded model
checking of multi-threaded c programs via lazy sequentialization. In A. Biere and
R. Bloem, editors, Computer Aided Verification, volume 8559 of Lecture Notes in
Computer Science, pages 585–602. Springer International Publishing, 2014.

9. O. Inverso, E. Tomasco, B. Fischer, S. L. Torre, and G. Parlat. Lazy-CSeq 0.6c:
An Improved Lazy Sequentialization Tool for C. University of Southampton, 2014.

10. S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concur-
rent reachability to sequential reachability. In A. Bouajjani and O. Maler, editors,
Computer Aided Verification, volume 5643 of Lecture Notes in Computer Science,
pages 477–492. Springer Berlin Heidelberg, 2009.

11. A. Lal and T. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Form. Methods Syst. Des., 35(1):73–97, Aug. 2009.

12. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, pages 446–455,
New York, NY, USA, 2007. ACM.

13. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In N. Halbwachs and L. Zuck, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 3440 of Lecture Notes in Computer Science, pages
93–107. Springer Berlin Heidelberg, 2005.

14. S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Imple-
mentation, PLDI ’04, pages 14–24, New York, NY, USA, 2004. ACM.

15. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial order reduction.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 382–396, Berlin, Heidelberg, 2008. Springer-Verlag.

	Lazy-CSeq-SP: Boosting Sequentialization-based Verification of Multi-Threaded C Programs via Symbolic Pruning of Redundant Schedules

