
Verification-driven Design
Across Abstraction Levels

A Case Study

Nils Przigoda1 Jannis Stoppe2 Julia Seiter1 Robert Wille1,2 Rolf Drechsler1,2

1Group for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{przigoda,jstoppe,jseiter,rwille,drechsle}@informatik.uni-bremen.de

Abstract—For the development of complex systems – composed
of hardware, software, or both – more and more high-level
descriptions have been introduced over the past years. Starting
from an informal specification, models of the system are created
with the help of languages such as UML, SysML, or MARTE.
Based on this model, an implementation is generated in a
programming language such as C++, Java, etc. for software or
SystemC, VHDL, etc. for hardware. Whereas various approaches
for the verification of the single levels of abstraction exist, their
application to a cross-level design flow is still to be considered. In
this work, we evaluate this issue by providing a case study on a
verification-driven design across abstraction levels. The results of
this case study demonstrate the capabilities of existing methods
as well as challenges and open issues to be addressed in future
work.

I. INTRODUCTION

With the increasing size and complexity of modern software
and hardware, their design becomes more and more complex
as well. In order to handle this complexity, higher levels of
abstraction are considered. In the domain of software design,
high-level languages such as C++, Java, etc. are already estab-
lished for several decades. Besides that, the use of modeling
languages such as UML (the Unified Modeling Language [1],
[2]) prior to the actual implementation process has become
an established step of many of today’s design flows. This
enables designers to create a formal representation (a model) of
the intended system (including both structural and behavioral
requirements), while, at the same time, implementation details
are hided in these early design steps. Based on this “blueprint”,
an implementation (in C++, Java, etc.) is created as soon as
the model is considered to sufficiently represent the original
specification of the system.

Similar developments can be observed in the field of
hardware design where the design of circuits and systems
does no longer begin with a gate netlist. Instead, abstrac-
tions are applied which, eventually, have led to the Register
Transfer Level (RTL) and the Electronic System Level (ESL).
Nowadays, more and more hardware engineers also employ
formal models provided in modeling languages to represent an
initial description of the design to be built. For this purpose,
profiles of the UML such as SysML (the Systems Modeling
Language, [3], [4]) or MARTE (the Modeling and Analysis of
Real-Time and Embedded Systems framework, [5]) are applied,
which have been specifically adapted for hardware and system
design. Similar to software design, an implementation (here in
SystemC, SystemVerilog, etc.) is created as soon as the model
has been completed.

Hence, the design flows for both software and hardware
employ very similar first steps: The creation of a high-
level description by means of modeling languages (UML or
SysML, respectively) followed by the initial implementation
using very similar programming languages (C++ or SystemC,

respectively)1. However, the ever increasing complexity of
today’s systems did not only motivate the emergence of higher
levels of abstractions, but also affected the actual design tasks.
While a few years ago, the implementation process was the
core activity in any design flow, verification – i. e., checking
whether the design has been modeled or implemented as
intended – dominates the entire process today. In fact, more
than 40 % of the time and costs of the design effort are devoted
to prove the correctness of a system rather than adding new
functionality [6] – with increasing tendency.

As a consequence, engineers and researchers have started to
develop methods for (automatic) verification for all abstraction
levels. As an example, the UML-based Specification Environ-
ment (USE) [7] provides well-established methods that can
be applied e. g., to automatically generate test cases for the
respective UML/OCL models [8]. Besides that, researchers
began to exploit formal methods for the verification of UM-
L/OCL models, e. g., PVS [9], HOL-OCL/Isabelle [10], and
KeY [11], as well as fully automatic proof engines including
methods based on constraint programming (CSP) [12], [13],
[14], description logic [15], [16], the modeling language Alloy
based on relational logic [17], [18], or Boolean satisfiability
(SAT) [19], [20]. While these approaches are usually intro-
duced for consistency checking, i. e., to check if a model free
of contradictions or not, also approaches for debugging [21],
[22] and behavioural checks have been introduced [23], [24].

For the implementation level, the (verified) models provide a
precise blueprint to be realized. While they can even be used to
generate corresponding code stubs or initial implementations,
a manual refinement is usually required afterwards. Due to
this manual process, new errors might be introduced, i. e.,
an implementation might violate constraints that have been
defined before. This motivates approaches which validate an
implementation against its formal models (as recently consid-
ered e. g., in [25]).

Although impressive progress has been made in this re-
gard, most of the verification approaches only consider single
abstraction levels, i. e., either the correctness/consistency of
formal models or of (initial) implementations. While those
are important contributions, a gap between these abstraction
levels remains. In this work, we evaluate this issue. We
examine the current state-of-the-art of verification approaches
as summarized above and consider how they can adequately be
applied within an integrated design flow. Our focus is thereby
on a verification-driven methodology which is supposed to
detect errors as soon as possible. For this purpose, the initial

1For sake of clarity, we focus on UML and C++ in the following, i. e.,
a view from a pure software design perspective. However, the considera-
tions from this paper can easily be transferred to the respective hardware-
counterparts.

steps of the design flow are considered by means of a small
practical example: an access control system (inspired by [26]).
Starting with a textual specification, we consider both the
creation of a formal model as well as an initial implementation
– with a constant focus on verification.

Our case study illustrates the capabilities of the respective
verification approaches and clearly shows which checks can
be conducted best at which level. Furthermore, it demonstrates
how an initially given model that may appear correct at
first glance can be improved throughout the design process
and eventually be realized as a (correct) implementation. By
this, the advantages and shortcomings of verification methods
solely proposed for models and implementations are discussed
in the context of a verification-driven design across abstraction
levels. This unveils open issues which shall be addressed in
future work.

The remainder of this paper is structured as follows: The
next section reviews the specification and provides details
on the case study, i. e., the access control system to be
implemented in this work. Afterwards, the design of this
system on the modeling level and the (higher) implementation
level is considered in Section III and Section IV, respectively,
with a particular focus on the verification of the respective
descriptions. In Section V, we discuss our findings and draw
conclusions.

II. CONSIDERED ACCESS CONTROL SYSTEM

We will study the application of verification approaches at
the different abstraction levels by means of an access control
system which has originally been presented in [26]. The goal
of this case study is to develop a control system which grants
access to buildings based on a person’s authorization. This
authorization is based on the ID of a magnetic card each person
receives. Each building is equipped with turnstiles and card
readers to check the card upon entry or exit.

In addition to this rather general description of the scenario,
[26] provides a more detailed list of requirements to be
realized which reads as follows.

1) Each person is given permanent authorization to enter
certain buildings.

2) Entry and exit must be controlled by the system so that
at any point, it is known which person is inside which
building.

3) Each person possesses a magnetic card where a unique
ID is stored. Access to buildings is controlled based on
this ID.

4) At each entrance and exit of a building, a card reader is
installed to check a person’s magnetic card.

5) Each card reader is equipped with two lights, red and
green, which can be turned on and off and are used
to signal if the inserted card’s owner is authorized to
enter/leave the building.

6) Aside from card readers, each entrance/exit is also
equipped with a turnstile.

7) Turnstiles are blocked until someone is allowed to pass
based on the check of the person’s card.

8) As each entrance and exit has its own turnstile, there are
no two-way turnstiles to be used for both purposes.

Figure 1 sketches the access protocol to be implemented.
A person approaches a blocked turnstile to enter or leave a
building. When the card is inserted into the card reader, it
is checked for the person’s authorizations. If the person is
allowed to enter or leave the building, then the green light
turns on and the turnstile is open for at most 30 seconds.
Upon expiry of the 30 seconds or once someone passes the

Turnstile
blocked

Insert card
into reader

Green light on;
turnstile open
for 30 seconds

Red light on
for 2 seconds;

turnstile blocked

3

7

Turnstile passed OR 30 secs are over

Fig. 1. Access protocol of the control system

turnstile, the green light is switched off and the turnstile is
blocked again. If the person is not authorized for this building,
then the red light is turned on for 2 seconds and the turnstile
remains blocked.

III. VERIFICATION-DRIVEN MODELING

In a first design step, the structure and the behavior of
the access control system are modeled using the means of
the UML. This section briefly reviews the resulting model.
Afterwards, we evaluate which verification tasks can already
be conducted at this abstraction level and how this results in
a significantly improved model.

A. Resulting Model

The model derived from the specification is shown in Fig. 2.
It is composed of three classes which represent its main
components, i. e., Buildings, MagneticCards, and Turnstiles.
These components are modeled as follows.
• The class MagneticCard represents the magnetic card and

consists of one integer attribute id which represents the
unique ID. A magnetic card is possessed and used by a
person (cf. Req. 3 Sect. II).

• The class Building represents the considered buildings
and consists of the two attributes authorized and
inside. The attribute authorized is a set of integers
storing the IDs of all cards with which the building can be
entered or left (cf. Req. 1 Sect. II). The attribute inside
is a set of integers which is used to store the IDs of all
persons currently inside the building (cf. Req. 2 Sect. II).

• The class Turnstile represents the entries/exits of the
buildings. The card readers mentioned in Req. 4 and 5
in Section II and the turnstile are combined into a
single class Turnstile as indicated in Req. 6. It con-
sists of five attributes and three operations. While the
Boolean attributes greenLightOn and redLightOn
represent the state of the respective lights, the Boolean
attribute entry states if the corresponding turnstile
is an entry port (entry set to true) or an exit
port (entry set to false). The integer attribute
currentlyAuthorized stores the ID of the last
magnetic card which has been inserted into the reader.
The attribute timeOpen, also an integer, represents an
internal clock to realize the timing constraints of the
system.

The classes Turnstile and Building are connected by an
association ensuring that each instance of class Building is
connected with at least two Turnstile instances. A Turnstile
instance can only be a part of one Building object. The invari-
ant uniqueID ensures that the IDs of all MagneticCards are
unique as defined in Req. 3 in Section II.

Turnstile
greenLightOn: Boolean
redLightOn: Boolean
currentlyAuthorized: Integer
timeOpen: Integer
entry: Boolean
goThrough()
advanceTime()
checkCard(card : MagneticCard)

Building
authorized: Set(Integer)
inside: Set(Integer)

MagneticCard
id: Integer

gate

2..∗
building

1

inv uniqueID:
MagneticCard.allInstances()->forAll(
card1, card2 | card1.id <> card2.id

)

context Turnstile::checkCard(card : MagneticCard):
pre : greenLightOn = false
pre : redLightOn = false
post :((building.authorized->includes(card.id))

and (entry <> building.inside->includes(card.id))
) implies
(greenLightOn = true
and currentlyAuthorized = card.id)

post : (not (building.authorized->includes(card.id)))
implies
(redLightOn = true)

context Turnstile::advanceTime():
pre : greenLightOn = true

or redLightOn = true
post : (((timeOpen@pre < 2)

or (redLightOn = false))
and (timeOpen@pre < 30)

) implies (timeOpen = timeOpen@pre + 1)
post : ((timeOpen@pre >= 2)

and redLightOn
) implies
((timeOpen = 0)
and (redLightOn = false))

post : (timeOpen@pre >= 30)
implies
(

(timeOpen = 0)
and (greenLightOn = false))

context Turnstile::goThrough():
pre : greenLightOn = true
post :((building.inside@pre->includes(currentlyAuthorized))

and (not entry)
) implies
(not building.inside->includes(currentlyAuthorized))

post :((not building.inside@pre->includes(currentlyAuthorized))
and (entry)

) implies
(building.inside->includes(currentlyAuthorized))

post : greenLightOn = false
post : timeOpen = 0

Fig. 2. Class Diagram of the Access Control System

The behavior of the three operations of the class Turnstile
is defined by means of pre- and postconditions as follows.
• The operation checkCard checks whether a person in-

serting a MagneticCard may pass the respective turnstile.
It receives a MagneticCard instance as parameter and
can only be called if both lights are switched off in the
current system state. If the ID of the magnetic card is
included in the set of authorized IDs for the associated
building, the green light is switched on and the ID of the
currently inserted card is stored. Otherwise, the red light
is switched on.

• The operation advanceTime realizes the timing con-
straints stated in the specification. It can only be called
if one of the lights is switched on and increases the
timeOpen attribute until its respective limit, depending
on the state of the lights, has been reached. Then, the
clock is reset and the respective light is switched off.

• The operation goThrough allows the currently autho-
rized person to pass the turnstile and, by this, to enter
or to leave the associated building. This operation can
only be called if the green light is switched on. After
execution, the respective ID is added to or removed from
the set of IDs currently registered inside the building.
Besides that, the green light is switched off and the clock
is reset.

The resulting model could be considered to sufficiently
represent the original specification from Section II and an
implementation engineer could start implementing the given
features. However, since this model already provides a formal
description, we can use it to determine if any meaningful

Building0:Building
authorized = ∅
inside = ∅

Turnstile0:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = 0
timeOpen = 0
entry = false

Turnstile1:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = 0
timeOpen = 0
entry = true

Fig. 3. A valid system state

implementation exists at all or if the model needs to be
revised. Hence, before actually starting the implementation,
we consider a selection of possible checks as a next design
step.

B. Verification
Possible directions for the verification of models usually

address two major concerns: Do the given model and all of
its constraints allow for a valid instantiation/implementation
(also known as consistency checking) and does the given model
describe the desired behavior (demanding behavior checking)?
In our case study, we are going to consider both consistency
and behavior checking.

These kinds of verification problems, however, are undecid-
able when applied to an unbounded model which is the case
for UML models. Datatypes such as integers have no upper
or lower bound, the number of objects is not bounded, etc. To
solve this issue, we apply bounded verification methods and
restrict the concerned aspects, making the verification tasks
decidable. Since the eventual implementation will be bounded
as well, these limitations are not too strict.

1) Consistency Checking:
Checking the feasibility of a given model, it is essential to
know whether at least one arbitrary system state satisfying
all constraints provided by the model can be instantiated. If
this is the case, the model is called consistent. Otherwise,
the model contains contradictory constraints which prevent
a valid instantiation – the model is inconsistent. In case of
any inconsistencies, the model has to be revised prior to the
implementation process because no implementation precisely
realizing the model’s constraints can result in an instantiatable
system.

In order to conduct such a consistency check, different
approaches have been proposed in the past. As an example,
the UML-based Specification Environment (USE) [7] provides
methods to generate a valid system state or to prove that no
such system state exists. Whereas USE internally relies on
enumerative methods, other approaches are based on theorem
provers, e. g., PVS [9], HOL-OCL/Isabelle [10], KeY [11], and
SAT solvers [19], [20]. In principle, all of them are sufficient
for our purpose.

To conduct the most basic consistency check, we try to
determine a valid system state where at least one class is
instantiated (an empty system state with no objects at all does
not provide any useful information and, hence, is explicitly not
considered). More precisely, we ask the applied consistency
checker to determine a system state such that the number of
instances per class may vary from 0 to 5. This results in the
(valid) system state shown in Fig. 3.

While this system state proves that the considered model is
not self-contradictory, it does not provide a sufficient witness
for our scenario as no instance of the class MagneticCard
was created. If we are going to implement an access control
system based on this model, we should be certain that there

is at least one magnetic card to be used by a person. Hence,
we slightly change the configuration of the consistency check
and enforce the generation of a system state where all classes
are instantiated at least once – including the MagneticCard.

This consistency check, however, turns out to be failing, i. e.,
there is no valid system state in which all classes are instanti-
ated at least once. This information is important: Although the
model described in Section III-A seemed complete and correct
at first glance, it obviously includes a serious flaw. Without
conducting consistency checks at this early stage in the design
flow, this flaw might have remained undetected until the
completion of a first implementation. Applying verification-
driven design, which employs correctness checks as early
as possible, avoids the resulting large debugging effort and
the equally expensive revision of both the model and the
implementation.

So far, the reason for the detected flaw is still unknown.
But just like for the verification, automated methods may
help here. A significant body of research has recently been
conducted aiming at supporting engineers in debugging in-
consistent models (see e. g., [22], [21], [27]). Based on the
current configuration of the (failed) consistency check, both
approaches automatically generate so-called error candidates,
i. e., a subset of UML/OCL constraints which might explain
the contradiction. Inspecting this subset instead of the whole
collection of constraints significantly simplifies the identifica-
tion of the flaw’s origin.

In our case, these approaches return the invariant
uniqueID as the only error candidate. Having a more
detailed look unveils that this invariant indeed is self-
contradictory: The iterator of the forAll-operation also
checks card1.id <> card2.id for card1 and card2
being the same object. This means that the ID of a magnetic
card has to be different from itself which is impossible. With
this information, the engineer can easily fix this problem by
revising this invariant to
context MagneticCard inv uniqueID:

MagneticCard.allInstances()->forAll(card |
(self <> card) implies (self.id <> card.id)

)
Performing the consistency check with the revised model

now leads to a valid system state including instantiations for
all classes. This is a promising indication that the considered
model indeed is a proper representation of the structure of the
desired system.

2) Behavior Checking:
The checks from above validated that an implementation of
the model from Section III-A exists, i. e., an instantiation in
the form of a consistent system state of the access control
system exists. Now, it remains to be checked whether such
an implementation would also realize the desired behavior.
For this purpose, automatic approaches have recently been
proposed as well (see e. g., [23], [24]). They allow for the
consideration of several verification tasks.

To ensure that any kind of dynamic behavior is possible
in the model, we aim for checking the executability of the
model, i. e., is it possible at all to conduct a sequence of
(arbitrary) operation calls on an instantiation. More precisely,
we try to determine a sequence of (valid) system states with
valid operation calls between two successive system states –
i. e., each transition has to include a calling state satisfying
the precondition as well as a succeeding state satisfying
the postcondition of the respective operation call. This is
an important check: if a model does not allow an arbitrary
sequence of operation calls, all further checks are rendered
meaningless. Using methods such as proposed in [23], [24], we
can prove that about a dozen of consecutive arbitrary operation

Building0:Building
authorized = {1}
inside = {1}

Turnstile0:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = 0
timeOpen = 0
entry = true

MagneticCard0:MagneticCard
id = 1

Turnstile1:Turnstile
greenLightOn = false
redLightOn = false
currentlyAuthorized = 0
timeOpen = 0
entry = true

Fig. 4. A deadlock system state

calls indeed can be conducted on the model presented in
Section III-A (including the already mentioned corrections).

Still, the question remains whether the operation calls are
performed as intended or whether certain unwanted states can
be reached. Other, more refined, checks focus on the evaluation
of these issues. Guaranteeing that the model does not allow
for any deadlocks is such an issue. This can be formulated
as the query “Does the model allow for a system state in
which no further operation calls can be performed due to
violated preconditions or an invalid subsequent system state.”
The approaches mentioned above can handle such queries and,
in our case, generate such a system state as illustrated in Fig. 4.

Here, none of the possible operation calls can be performed
without violating a constraint. More precisely:
• In order to invoke advanceTime, either
self.greenLightOn or self.redLightOn
must be set to true. For both Turnstile instances, both
elements are set to false in the system state shown in
Fig. 4.

• In order to invoke goThrough,
self.greenLightOn must be set to true. Again,
this is not the case for both Turnstile instances in the
system state shown in Fig. 4.

• In order to invoke checkCard an instance of the class
MagneticCard is required which is either inside the
building in case of an exit turnstile or outside the building
in case of an entry turnstile. But since both instances of
the class Turnstile are set to represent entries (entry
set to true), the MagneticCard is identified as inside the
building and, thus, the operation can not be invoked due
to failed preconditions.

In addition to detecting a deadlock state (as intended by this
check), another serious design flaw has been unveiled. While
the association between Turnstile and Building requires that
each building has at least two turnstiles, it is not guaranteed
that there is always one entry and one exit – even though
the relation 2..∗ was intended for this. Having the unwanted
system state shown in Fig. 4, a designer can identify this
problem manually and resolve it by adding the following
invariant to the class Building:
context Building
inv atLeastOneEntry :

self.gate->exists(g | g.entry)
inv atLeastOneExit :

self.gate->exists(g | not (g.entry))

This also resolves the deadlock problem.
Knowing that the model is executable and how deadlock

states can be detected, another important aspect of behavioral
models shall be considered: frame conditions. Frame con-
ditions describe which model elements may change during
the transition from one system state to another, triggered
by an operation call. They are important because, thus far,

only pre- and postconditions restrict the respective calling
and succeeding states – allowing for plenty of arbitrary and
unwanted changes.

For example, during the execution of checkCard, which
requires a MagneticCard instance as a parameter, the ID of the
MagneticCard could change although this is not an intended
behavior and should be prohibited. To this end, the OCL com-
mand modifies only representing an invariability clause
has been proposed in [28]. For each operation, this command
allows to declare a list of all model elements which might
be modified in combination with a scope. All other model
elements are assumed to keep their respective value.

For the operation checkCard, defining the invariability
clauses can be conducted based on the following consider-
ations: The values of the elements self.greenLightOn
and self.redLightOn indicate whether the check of
the magnetic card was successful or not. The element
self.currentlyAuthorized stores the ID of the mag-
netic card which has just been checked for authorization.
Consequently changes of their values do make sense and all
three elements have to be added to the set of invariability
clauses. In contrast, the element self.timeOpen, which is
never used in the postconditions, should not be affected by this
operation and, hence, not be added to an invariability clause.
This applies to all elements which do not occur in a postcon-
dition. The remaining model elements mentioned in the post-
conditions require further inspection: self.entry is used
in the postcondition, but a change of its value would change
the direction of the turnstile – clearly an undesired behavior.
Therefore, self.entry is not added to the invariability
clause. In the same way, the designer decides that changes of
self.building, self.building.authorized, and
self.building.inside are not desired and, thus, they
are not added to the invariability clause. Frame conditions for
all other operations are defined similarly.

Obviously, defining these frame conditions is a highly
manual approach thus far. Since a great deal of design
understanding has to be considered for this purpose, it is
unlikely that fully automatic methods will ever be able to
completely handle this task. Nevertheless, first methods aiming
for aiding this process are currently under consideration (see,
e. g., [29]). Here, automatic analyses are performed which
lead to suggestions for the respective classifications of the
model elements. While the designer have to make the final
decision on the frame conditions, these classifications may
already provide a good starting point.

After adding all frame conditions, an operation of the model
is clearly more restricted than before and, thus, it is advisable
to re-run all the behavioral checks conducted thus far again.
Considering the updated model, all these checks passed. As a
consequence, we gained a significantly improved model which
has been stripped from its flaws and additionally provides a
more precise definition of its behavior.

Now, it would be advisable to conduct further, more
application-specific checks, e. g., is it somehow possible to
access a building with a magnetic card without authorization
or is it possible to register one ID of a magnetic card in
more than one building at the same time, etc. All these
queries can be checked in a similar fashion as done above
for executability or deadlocks: The respective desired/bad
states and a bounded sequence of arbitrary operation calls are
configured. Then, approaches such as [23], [24] can be applied
to determine a corresponding sequence or to prove that no
such sequence exists. Whenever the model is considered as
sufficiently checked, it can be passed to the next stage of the
design flow for an implementation.

Overall, the verification-driven design of the model as
sketched above leads to a significant improvement in the qual-
ity of the resulting model. Although the model as described
in Section III-A may have appeared correct at first glance,
it included a significant number of flaws and/or imprecisions
that would have complicated the implementation process or,
in the worst case, would have led to an implementation which
would not satisfy the described requirements. Using the meth-
ods exemplarily discussed above allowed for avoiding these
flaws/imprecisions and has led to a much more mature model.
Note that this still is no guarantee that all flaws/imprecisions
are detected – but chances for these are significantly reduced.

IV. IMPLEMENTATION AND COMPARISON TO THE FORMAL
MODEL

After the formal model is considered complete and verified,
the implementation process follows, i. e., the generation of a
working, executable realization of the given model. As this is
mostly conducted manually, this design step provides another
source of errors. Hence, after completing the implementation,
it is necessary to validate the result against the original formal
model. In this section, we consider the corresponding design
steps. First, the access control system specified in Section II
and modeled in Section III is implemented in C++. Afterwards,
approaches are applied which allow for a comparison of the
resulting implementation to the model.

A. Implementation of the Model
The implementation derived from the model introduced in

Fig. 2 and revised in Section III-B is shown in Fig. 5. More
precisely:
• Lines 1–3 specify packages which are referenced in the

implementation to keep the example self-contained and
working.

• Line 4 contains a preprocessor directive: The NUM_AUTH
identifier is replaced with the given replacement value
(32 in this case) before compilation. In this case, this
leads to a given maximum amount of cards that are
allowed to be inside a building. This already means that,
in contrast to the model which does not specify any size
on the given sets, this implementation has been refined to
only allow up to a certain number of values to be added
to the according sets.

• Lines 6–11 introduce a common base class for all other
classes that gives each of them a name, making it easier
to, e. g., have readable feedback from the application later
on.

• Lines 13–46 introduce the classes that were specified in
Fig. 2. Fields are named accordingly. Due to using C++,
methods are declared in the class declaration parts but are
implemented later. Line 24 is a forward declaration to en-
able the Turnstile class to reference the Building
class before the latter is declared below.

• Lines 48–55 implement functions to check whether or not
the given sets include certain elements. These functions
have not been specified before but they are implicitly part
of the OCL constraints that allow checking sets for the
inclusion of elements.

• Lines 57–93 finally implement the functions that have
been specified to be part of the Turnstile class.
Note that each function follows the pattern of starting
with an if-clause which tests the preconditions given in
the formal model. If these conditions are not met, the
else{} statement at the bottom leaves the program’s
state untouched while exiting the function. This ensures
that a function call with unsatisfied conditions does not

1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e < a l g o r i t h m >
3 # i n c l u d e < s t r i n g >
4 # d e f i n e NUM_AUTH 32
5
6 c l a s s S t r u c t u r e {
7 p u b l i c :
8 s t r i n g m_name ;
9 s t r i n g name () { re turn m_name ; }

10 S t r u c t u r e (s t r i n g p_name) { t h i s−>m_name = p_name ; }
11 } ;
12
13 c l a s s Magnet icCard : S t r u c t u r e {
14 p u b l i c :
15 i n t i d ;
16 s t a t i c i n t cur ren tMaxID ;
17 Magne t icCard (s t r i n g p_name) : S t r u c t u r e (p_name) { t h i s−>i d = cur ren tMaxID ++;}
18 } ;
19
20 i n t Magnet icCard : : cur ren tMaxID = 0 ;
21
22 c l a s s B u i l d i n g ;
23
24 c l a s s T u r n s t i l e : S t r u c t u r e {
25 p u b l i c :
26 bool greenLigh tOn ;
27 bool r edL igh tOn ;
28 i n t c u r r e n t l y A u t h o r i z e d ;
29 i n t t imeOpen ;
30 bool e n t r y ;
31 B u i l d i n g∗ b u i l d i n g ;
32 T u r n s t i l e (s t r i n g p_name) : S t r u c t u r e (p_name) { }
33 void checkCard (Magne t icCard∗ c a r d) ;
34 void advanceTime () ;
35 void goThrough () ;
36 } ;
37
38 c l a s s B u i l d i n g : S t r u c t u r e {
39 p u b l i c :
40 i n t a u t h o r i z e d [NUM_AUTH] ;
41 bool i n s i d e [NUM_AUTH] ;
42 T u r n s t i l e∗∗ g a t e s ;
43 B u i l d i n g (s t r i n g p_name) : S t r u c t u r e (p_name) { }
44 bool a u t h o r i z e d I n c l u d e s (i n t v a l u e) ;
45 bool i n s i d e I n c l u d e s (i n t v a l u e) ;
46 } ;
47
48 bool B u i l d i n g : : a u t h o r i z e d I n c l u d e s (i n t v a l u e) {
49 i n t ∗b e g i n = a u t h o r i z e d ;
50 i n t ∗end = a u t h o r i z e d + NUM_AUTH;
51 i f (end == s t d : : f i n d (begin , end , v a l u e)) { re turn f a l s e ; }
52 re turn true ;
53 }
54
55 bool B u i l d i n g : : i n s i d e I n c l u d e s (i n t v a l u e) { re turn i n s i d e [v a l u e] ; }
56
57 void T u r n s t i l e : : checkCard (Magne t icCard∗ c a r d) {
58 i f (! t h i s−>greenLigh tOn && ! t h i s−>redLigh tOn) {
59 i f (t h i s−>b u i l d i n g−>a u t h o r i z e d I n c l u d e s (card−>i d) &&
60 t h i s−>e n t r y != t h i s−>b u i l d i n g−>i n s i d e I n c l u d e s (card−>i d)) {
61 t h i s−>greenLigh tOn = t rue ;
62 t h i s−>c u r r e n t l y A u t h o r i z e d = card−>i d ;
63 } e l s e i f (! t h i s−>b u i l d i n g−>a u t h o r i z e d I n c l u d e s (card−>i d)) {
64 t h i s−>redLigh tOn = t rue ;
65 } e l s e { }
66 } e l s e { }
67 }
68
69 void T u r n s t i l e : : advanceTime () {
70 i f (t h i s−>greenLigh tOn | | t h i s−>redLigh tOn) {
71 t h i s−>timeOpen ++;
72 i f (t h i s−>timeOpen >= 2 && redLigh tOn) {
73 t h i s−>timeOpen = 0 ;
74 t h i s−>redLigh tOn = f a l s e ;
75 }
76 i f (t h i s−>timeOpen >= 30) {
77 t h i s−>timeOpen = 0 ;
78 t h i s−>greenLigh tOn = f a l s e ;
79 }
80 } e l s e { }
81 }
82
83 void T u r n s t i l e : : goThrough () {
84 i f (g reenL igh tOn) {
85 i f (t h i s−>b u i l d i n g−>i n s i d e I n c l u d e s (t h i s−>c u r r e n t l y A u t h o r i z e d) && ! e n t r y) {
86 t h i s−>b u i l d i n g−>i n s i d e [c u r r e n t l y A u t h o r i z e d] = f a l s e ;
87 } e l s e i f (! t h i s−>b u i l d i n g−>i n s i d e I n c l u d e s (c u r r e n t l y A u t h o r i z e d) && e n t r y) {
88 t h i s−>b u i l d i n g−>i n s i d e [c u r r e n t l y A u t h o r i z e d] = t rue ;
89 }
90 t h i s−>greenLigh tOn = f a l s e ;
91 t h i s−>timeOpen = 0 ;
92 } e l s e { }
93 }

Fig. 5. C++ implementation of model.

result in an unspecified program state. The first block of
the if clause contains further if clauses implementing
the various implies postconditions from the model.

Having this implementation, the question remains whether or
not it actually implements the formal model, no matter how
close it seems to be to the model.

B. Comparison to the Formal Model
In order to compare the implementation to its model, the

program’s features need to be available. In particular for
languages such as C++, extracting the respectively required
information is not straightforward. In fact, C++ has a strong
focus on performance. Thus, compilers usually strip as much
information as possible from the code when it is translated

Source
Code

Binary
exe-

cutable

Debug
symbols

Program
state

Static inf.

1

Dynamic
inf.

2

3

4

FSL spec.

5

Fig. 6. C++ information extraction

into a (natively) executable file. Additionally, C++ is not easy
to parse. Over the last decades, several dialects have emerged
which are supersets of the standardized core language – each
offering slightly different tools and frameworks. Hence, before
an actual comparison can be conducted, we need to extract
essential features of the implementation first.

1) Exctracting the Features from the Implementation:
Due to the reasons mentioned above, C++ offers no support
for reflection and introspection. Hence, the respectively re-
quired information needs to be extracted directly during the
compilation process. The approach presented in [30] offers
a methodology for this purpose, which exploits debugging
symbols generated by an off-the-shelf compiler in combination
with the existing C++ API2. Figure 6 illustrates the respective
steps. More precisely:

1) The compiler generates debug-symbols during the compi-
lation. These contain the static information which can be
gained by analyzing the source code (e. g., which classes
are part of the system and which fields and methods are
parts of these).

2) The source code is compiled in order to generate an ex-
ecutable. This file can be executed on a system, building
the simulated design and simulating it afterwards.

3) While the system is running, instances of certain program
states (called snapshots in the following) are extracted.

4) The information obtained in the step before can be stored
on the disk. At this point, this information is basically the
state of the program at the time of the extraction.

5) Both the static structure of the program and (if available)
the extracted program state can then be compared to
the formal model. Differences between the program state
and the formal model may indicate discrepancies. This
pinpoints designers to certain parts which may require
further inspection or adaptation.

For the implementation from Fig. 5, the static information
obtained in Step 1 is shown in Fig. 7. Compared to the original
formal model from Fig. 2, this information of course does not
contain any OCL constraints and is restricted to the struc-
tural information present in the implementation. Moreover, it
contains several classes that are not defined in the original
formal model (e. g., the basic_string class, which is used
to name the objects and part of C++’s standard namespace).
They are a result of extracting anything the compiler keeps
in a given program. Nevertheless, it already provides a good
basis for a comparison to the formal model.

Next, behavioral information of the implementation are con-
sidered. This can be obtained using the executable generated
by the compiler in Step 2. If a set of instances is available to

2Note that relying on the C++ API and additional debugging symbols allows
for utilizing the approach within different C++ frameworks as well as dialects.

Fig. 7. Retrieved model from the implementation in Fig. 5.

the extraction algorithm, the internal state of an implementa-
tion can be extracted by reading the classes’ structure infor-
mation from the debug symbols while the program is running
(Step 3). Using this extraction scheme repeatedly extracts a set
of program states, i. e., snapshots (Step 4). These states can
be seen as the cornerstones of a behavior: if a certain protocol
is invoked and the snapshots after each communication step
represent the state the program is expected to be in, the
communication can be interpreted to be correct. This way, a
series of program snapshots serves as a simple way to check
the correctness of a system. If no framework is available, using
Aspect Oriented Programming techniques [31] can be used to
solve this problem by previously refactoring the code to give
access to the given structures [32]. Eventually, this leads to
structural and behavioral information to be compared to the
originally given model.

2) Model Comparison:
With a given formal model and an extracted set of information
from the implementation, a comparison of both descriptions
can be conducted. Although this would not provide a formal
proof, it may lead to a validation of whether the resulting
implementation indeed realizes the given model. With the
extraction methods still being an active field of research, how
to actually perform the comparison remains in its infancy as
well.

One solution introduced in [25] is a direct comparison of
the two models. While this method suggests that the added
complexity (such as the explicitly modeled std namespace
in the extracted model) can safely be ignored, it otherwise
simply compares the two models and locates any differences
that go beyond added complexity as potential errors. In this

case, the added Structure class that forms a base class for
all subclasses already represents a structural difference that
would be reported, suggesting that either the implementation
or the formal model should be altered in order to make them
comply with each other’s structure.

The comparison from [25] is able to match all elements
from the formal model to the elements from the implemen-
tation but not vice versa. The algorithm issues warnings for
all subpackage records (i.e. the std, the __gnu_cxx, and
__gnu_debug namespaces) and the respective sub nodes.
It also reports that the operations Building, ~Building,
MagneticCard, ~MagneticCard and Turnstile (i.e.
the constructors and destructors which are required to setup a
working C++ implementation) are missing, just as no corre-
sponding Structure element can be located.

Besides these warnings (which can easily be ruled out),
the approach confirms that the structural features of the
formal model are a subset of the structural features of the
implementation. That is, the implementation is in line with
the notion of the formal model. Comparing various testcases
from the formal model to the generated snapshots, similar
conclusions can be drawn with respect to the behavior.

V. DISCUSSION AND CONCLUSION

In this work, we provided a case study showcasing the
state-of-the-art in verification-driven design of hardware and
software. We started with a specification of an access control
system in natural language and derived a formal model from
it. Before commencing any implementation steps, we showed
that the initial model contains flaws and, thus, prevented an
implementation phase based on an erroneous model. With the

help of various approaches for model verification, we revised
the model and eventually implemented it in C++. Finally, the
compatibility of the resulting implementation with respect to
the formal model has been shown.

By this, we explicitly showed how the combination of all
the different verification methods proposed in the past may
aid designers not only in detecting flaws as soon as possible,
but also in improving the quality of the resulting intermediate
steps, i. e., the model and the initial implementation. Besides
that, the case study unveiled open gaps to be addressed in
future work including, e. g.,
• When an inconsistency in a model is detected, debugging

approaches determining reasons for this are available.
Thus far, the analysis of inconsistencies has focussed on
static behavior only. How to determine reasons for flaws
in dynamic behavior, e. g., deadlocks, remains an open
question.

• The mentioned approaches for checking the behavior of
a model can be applied for a lot of different checks,
however, it remains an open question how coverage,
i. e., the guarantee that the model has completely been
checked, can be ensured.

• Solutions for the (automatic) determination of frame
conditions are still in their infancy and depend on the
designers experience. Hence, more elaborated methods
which require only a minimum of interaction with the
designer are desired. In the best case, the designer directly
gets examples and counterexamples for a specific model
in order to decide which one is to be added to an
invariability clause.

• Checking whether the implementation indeed realizes
the model is mainly done by validation, i. e., structural
features of an implementation are compared against
the originally given model. While this gives a strong
indication whether or not an implementation sticks to
the features that were previously designed, verification
methods which actually prove the correct implementation
of operations by, e. g., comparing their internal logic
to the original pre- and postconditions are yet to be
developed.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project SPECifIC
under grant no. 01IW13001, the German Research Foundation
(DFG) within the Reinhart Koselleck project under grant no.
DR 287/23-1, and a research project under grant no. WI
3401/5-1, as well as the Siemens AG.

REFERENCES

[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage reference manual. Addison-Wesley Professional, 2004.

[2] Object Management Group, OMG Unified Modeling Language TM
(OMG UML), Infrastructure, Object Management Group.

[3] G. Martin and W. Müller, UML for SOC Design. Springer, 2005.
[4] T. Weilkiens, Systems Engineering with SysML/UML:Modeling, Analy-

sis, Design. Morgan Kaufmann, 2007.
[5] Object Management Group, UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems. Object Management Group,
2011.

[6] H. Foster, “Why the design productivity gap never happened,” in
The IEEE/ACM International Conference on Computer-Aided Design,
ICCAD’13, San Jose, CA, USA, November 18-21, 2013, J. Henkel, Ed.
IEEE/ACM, 2013, pp. 581–584.

[7] M. Gogolla, F. Büttner, and M. Richters, “USE: A UML-based specifi-
cation environment for validating UML and OCL,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 27–34, 2007.

[8] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, independence
and consequences in UML and OCL models,” in TAP 2009, 2009, pp.
90–104.

[9] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der
Zwaag, T. Arons, and H. Kugler, “Formalizing UML Models and OCL
Constraints in PVS,” Electronic Notes in Theoretical Computer Science,
vol. 115, pp. 39–47, 2005.

[10] A. D. Brucker and B. Wolff, “A Proposal for a Formal OCL Semantics
in Isabelle/HOL,” in TPHOLs, ser. Lecture Notes in Computer Science,
V. Carreño, C. A. Muñoz, and S. Tahar, Eds., vol. 2410. Springer,
2002, pp. 99–114.

[11] B. Beckert, R. Hähnle, and P. H. Schmitt, Verification of Object-Oriented
Software: The KeY Approach. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007.

[12] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL class di-
agrams using constraint programming,” in Int’l. Conference on Software
Testing Verification and Validation Workshop. IEEE, 2008, pp. 73–80.

[13] T. Mancini, “Finite satisfiability of UML class diagrams by constraint
programming,” in Description Logics, 2004.

[14] H. Malgouyres and G. Motet, “A UML model consistency verification
approach based on meta-modeling formalization,” in SAC ’06: Proceed-
ings of the 2006 ACM symposium on Applied computing. New York,
NY, USA: ACM, 2006, pp. 1804–1809.

[15] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML
class diagrams,” Artif. Intell., vol. 168, no. 1, pp. 70–118, 2005.

[16] R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers, “Using
description logic to maintain consistency between UML models,” in
UML, 2003, pp. 326–340.

[17] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[18] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems. Springer, Oct. 2007, pp. 436–
450.

[19] E. Torlak and D. Jackson, “Kodkod: A Relational Model Finder,” in
Tools and Algorithms for Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, vol. 4424. Springer, Apr. 2007,
pp. 632–647.

[20] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, 2010, pp. 1341–1344.

[21] R. Wille, M. Soeken, and R. Drechsler, “Debugging of inconsistent
UML/OCL models,” in Design, Automation and Test in Europe, 2012,
pp. 1078–1083.

[22] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding Minimal Unsat-
isfiable Cores of Declarative Specifications,” in Int’l Symp. on Formal
Methods, ser. Lecture Notes in Computer Science, J. Cuéllar, T. S. E.
Maibaum, and K. Sere, Eds., vol. 5014. Springer, May 2008, pp. 326–
341.

[23] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML Models,” in Design, Automation and Test in Europe, 2011, pp.
1077–1082.

[24] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France,
“From application models to filmstrip models: An approach to automatic
validation of model dynamics,” in Modellierung 2014, ser. LNI, H. Fill,
D. Karagiannis, and U. Reimer, Eds., vol. 225. GI, 2014, pp. 273–288.

[25] J. Stoppe, R. Wille, and R. Drechsler, “Validating SystemC Implemen-
tations Against Their Formal Specifications,” in Proceedings of the 27th
Symposium on Integrated Circuits and Systems Design. ACM, 2014,
p. 13.

[26] J.-R. Abrial. (1999) System study: Method and example.
[Online]. Available: http://atelierb.eu/ressources/PORTES/Texte/porte.
anglais.ps.gz

[27] N. Przigoda, R. Wille, and R. Drechsler, “Contradiction Analysis For
Inconsistent UML/OCL Models,” in IEEE International Symposium on
Design and Diagnostics of Electronic Circuits & Systems (DDECS)
2015. IEEE, 2015.

[28] P. Kosiuczenko, “Specification of invariability in OCL - specifying
invariable system parts and views,” Software and System Modeling,
vol. 12, no. 2, pp. 415–434, 2013.

[29] P. Niemann, F. Hilken, M. Gogolla, and R. Wille, “Assisted Generation
of Frame Conditions for Formal Models,” in Design, Automation and
Test in Europe, 2015.

[30] J. Stoppe, R. Wille, and R. Drechsler, “Data extraction from SystemC
designs using debug symbols and the SystemC API,” in VLSI (ISVLSI),
2013 IEEE Computer Society Annual Symposium on. IEEE, 2013, pp.
26–31.

[31] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An
Aspect-Oriented Extension to the C++ Programming Language,” in
International Conference on Tools Pacific: Objects for internet, mobile
and embedded applications. Australian Computer Society, Inc., 2002,
pp. 53–60.

[32] J. Stoppe, R. Wille, and R. Drechsler, “Automated Feature Localization
for Dynamically Generated SystemC Designs,” in Design, Automation

and Test in Europe, 2015.

