
From UML/OCL to Base Models:
Transformation Concepts for

Generic Validation and Verification

Frank Hilken1, Philipp Niemann1, Martin Gogolla1, and Robert Wille1,2

1 University of Bremen, Computer Science Department, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{fhilken,pniemann,gogolla,rwille}@informatik.uni-bremen.de

Abstract. Modeling languages such as UML and OCL find more and
more application in the early stages of today’s system design. Validation
and verification, i.e. checking the correctness of the respective models,
gains interest. Since these languages offer various description means and a
huge set of constructs, existing approaches for this purpose only support
a restricted subset of constructs and often focus on dedicated description
means as well as verification tasks. To overcome this, we follow the idea
of using model transformations to unify different description means to
a base model. In the course of these transformation, complex language
constructs are expressed by means of a small subset of so-called core
elements in order to interface with a wide range of verification engines
with complementary strengths and weaknesses. In this paper, we provide
a detailed introduction of the proposed base model and its core elements
as well as corresponding model transformations.

Keywords: model transformation, UML, OCL, metamodel, validation
and verification, base model.

1 Introduction
In recent years, Model-Driven Engineering (MDE) has become more and more
popular, and modeling languages are more and more used in early stages of
today’s system design. In this context, the Unified Modeling Language (UML)
and the Object Constraint Language (OCL) are de facto standards to describe
systems and their behavior. They provide formal descriptions of system models
which, besides others, can be applied for purposes of validation and verification.
Indeed, identifying flaws and errors early in the design of such systems using
validation and verification techniques is an important task. In our work, we
focus on automatic (i.e. push button) methods which require almost no further
knowledge on the underlying verification technique and, thus, can be used by
every system designer.

However, developments in the previous years led to an “inflation” of different
verification approaches for designs given in terms of modeling languages (this is
discussed in detail later in Sect. 2). Finding an appropriate verification approach

is a non-trivial task, since most approaches focus on one particular UML diagram
type and additionally restrict the set of supported language constructs. This
poses a severe problem, as complex system designs often consist of a variety
of different diagram types interacting with each other. Moreover, often these
approaches address specific verification tasks only.

In order to overcome this, the idea of a generic verification framework has
been presented in [35]. Instead of considering each description mean separately,
the underlying idea of this framework is a transformation into a uniform/nor-
malized description: a base model. Moreover, in the course of this transformation
complex language constructs are expressed by means of a small subset of so-called
core elements in order to interface with a wide range of verification engines with
complementary strengths and weaknesses. The base model is integrated in the
validation and verification process in a way that the designer does not need to
have knowledge of it. The results of verification engines which are derived using
the base model are mapped back to the source model and represented to the
developers in their domain.

In this work, we provide a detailed introduction of the proposed base model
and its core elements. Roughly speaking, the base model is a UML class diagram
enriched with OCL constraints with a reduced feature set that only contains es-
sential and atomic language constructs. However, we will show that this reduced
feature set is sufficient to express many complex language constructs by pro-
viding the corresponding model transformations. We focus on transformations
within class diagrams because transformations from alternative diagram types,
e.g. sequence diagrams or activity diagrams, to class diagrams have already been
considered, e.g. in [20] and [19], respectively.

The remainder of this work is structured as follows: motivation for the
generic verification framework and a discussion about related work is presented
in Sect. 2. A detailed introduction of the base model and its core elements is
provided in Sect. 3, while the actual transformations of complex class diagram
features into the base model are discussed in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2 Motivation and Related Work
The development of automated methods for the verification of UML/OCL mod-
els has intensely been considered by researchers and engineers in the recent
past. For this purpose, several solving techniques have been applied ranging
from a guided enumeration, as done e.g. in the UML-based Specification Envi-
ronment (USE, [14]) together with the language ASSL [13], to the application
of verification engines such as CSP solvers [5], Alloy [1], or SAT solvers [34,33].
Fig. 1 gives an (incomplete) overview of the current state-of-the-art categorized
by their respective support for diagram types and verification task. While this
led to a variety of powerful tools and methods for the verification of UML/OCL
models, the resulting state-of-the-art suffers from three main drawbacks:
1. The resulting solutions often support dedicated verification tasks only. While

e.g. [34] allows for consistency checking of class diagrams, this approach does

Con
sis

ten
cy

Rea
ch

ab
ilit

y

In
dep

en
den

ce

Con
clu

sio
n

Class Diagram

Sequence Diagram

Activity Diagram

State Charts

[34,25]
[11,9,7] [33,4] [29]

[17,14,1,23,5]

[6] [27,10]

[25,12]

[30,24]
[26]

[25,8]

[32,31,2]

Fig. 1. Overview on Related Work

not support sequence diagrams. That is, for each modeling method and each
verification task usually a different verification approach has to be applied.

2. Complex systems are usually not modeled by means of single diagrams only,
but composed of a variety of different diagram types which interact with each
other. For example, while class diagrams specify the structure of a system,
the behavior may be defined by a statechart. But again, most of the available
verification approaches support single diagram types only.

3. Almost all proposed verification approaches are bound to one particular
verification engine. For example, the approach presented in [5] exploits CSP
solvers, whereas e.g. in [33] SAT and SMT solvers find application. This is
disadvantageous as verification engines may behave differently effective for
various models. If additionally, new and better verification engines emerge
in the future, existing transformations to the respective solver input have to
be re-developed.

In order to overcome these drawbacks, a generic verification framework for
UML/OCL models was envisioned in [35]. The general idea is sketched in Fig. 2:
Instead of treating single diagram types separately (as it has mainly been done
in the past; see Fig. 1), it was proposed to transform them to a so-called base
model – a subset of UML/OCL constraints which is expressive enough to describe
most constructs of the UML and OCL, but small enough to allow for a flexible
further processing.

Having this generic description, the development of verification approaches
can focus on the core constructs available in the base model. This allows for
an easier integration of verification engines than before. Moreover, even new
solving technologies which may emerge in the future can be exploited more easily
since a restricted subset of constructs needs to be considered only. In contrast,
transformations from the original description means (class diagrams, sequence
diagrams, etc.) to the base model have to be provided. But since those would
only require a model-to-model transformation to the base model (and e.g. not
to the numerous solver-specific inputs), they need to be developed only once.

Model Description

Class Diagram State Machine Activity Diagram Sequence Diagram ...

Base Model

Verification Engine

Alloy SAT/SMTCSP ...

Fig. 2. General Idea of a Generic Verification Framework

By this separation of concerns, a more generic verification of UML/OCL models
relying on a variety of solving techniques as well as supporting a wide range of
verification tasks, becomes possible at moderate costs.

However, while the principle feasibility of the vision has been demonstrated
on selected examples in [35], no implementation of the generic framework exists
yet. In particular, a precise definition of the base model and a corresponding
transformation scheme from arbitrary description means are still missing1. In
the following, we aim for closing this gap. More precisely, we provide a precise
proposal for a base model and discuss how general constructs can be transformed
into it.

3 A Base Model for UML and OCL Verification
As motivated in the previous section, the purpose of the base model is to provide
a generic interface between heterogeneous UML/OCL model descriptions and
validation and verification tools. This interface shall be flexible and generic at
both the source and the target side. More precisely, it shall be applicable for
a large variety of diagram types and verification tasks on the one hand, while,
on the other hand, it shall allow for a flexible choice of verification engines for
further processing. To this end, the base model needs to be:

– universal, i.e. for each construct in a source model, an equivalent formulation
in the base model must exist, and

– atomic, i.e. the constructs of the base model should be limited to fundamental
modeling concepts such that a uniform further processing as well as the
flexibility of the overall framework is ensured.

Clearly, these are contrary properties as UML and OCL are very powerful lan-
guages with a rich set of language constructs – some of which are very complex
in nature and can hardly be expressed by simpler means. Consequently, the solu-
tion is necessarily a trade-off between universality and atomicity. Nonetheless, we
1 First ideas, leaving numerous details open, have been sketched in a preliminary
version of this paper which has been discussed at a workshop [21].

Table 1. UML Elements in the Base Model

Class features Association features Operation features
XClass XBinary Association XOperation (non query)
◦ Abstract Class ◦ N-ary Association XParameter
◦ Inheritance ◦ Aggregation × Return Value
◦ Multiple Inheritance ◦ Composition XPre-/Postcondition
XAttribute XMultiplicity × Nested Operation Call
◦ Initial Value ◦ Association Class ◦ Query Operation
◦ Derived Value ◦ Qualified Association XParameter

XEnumeration × Redefines, Subsets, Union XReturn Value
X Invariant × Recursion

X core element; ◦ transformed element (using only core elements); × unsupported element

aim to reduce the restrictions to universality to a minimum by (a) employing the
power of model-to-model transformations on the UML/OCL level and (b) only
excluding less relevant UML/OCL features that are hardly used in practice or
conceptually infeasible to be tackled by verification engines at all. Note, how-
ever, that some restrictions are inevitable and have to be applied anyhow when
considering validation and verification of UML/OCL models as, e.g. data types
like Integer are unbounded in the standard UML semantics, while verification
engines often only work on bounded, finite search spaces. These simplifications
are mainly justified by the fact that actual implementations of the models will
also have to run on finite resources.

For the foundation of the base model, we propose to use a reduced UML class
diagram. This diagram type is well-suited as it natively supports structural defi-
nitions in form of classes and associations as well as model dynamics using OCL
expressions for operation pre- and postconditions. Furthermore, transformations
from other diagram types (such as sequence diagrams or activity diagrams) to
class diagrams have already been investigated [20,19] and can be re-used here.

The feature sets of UML and OCL are reduced to a required minimum. This
reduction has a few advantages to it: Flexibility and compatibility to verification
engines is increased, because the feature set which needs to be supported by it
is minimized. In addition, the reduction also enforces an early/high-level trans-
formation of complex constructs into simpler ones which simplifies the analysis
of the model and the determination of an appropriate verification engine. In the
following, the elements of the reduced feature set of the base model are presented
and described in more detail.

3.1 UML Elements in the Base Model

An overview on the different UML class diagram features and how they are in-
cluded in the reduced feature set of the base model is given in Table 1. The
core of the base model is formed of essential and atomic constructs – the so-
called core elements which are marked with a “X” and are natively supported in
the base model. These have been chosen due to their fundamental importance
for UML class diagrams and good compatibility with state-of-the-art verifica-
tion approaches. Note that for a verification engine to support the base model,

corresponding translations to the solver level need to be developed for these core
elements only.

Further class diagram features that can be expressed within the base model,
but do not appear in it as core elements, are marked with a “◦”. These can
be transformed into semantically equivalent representations using only core ele-
ments. Details about these transformations will be presented in Sect. 4.

The last category of elements are marked with “×” and are neither part of
the base model nor do we propose a corresponding transformation for them yet.
These are either (1) hardly used in practice (like Redefines, Subsets, and Union),
or (2) are conceptually infeasible for verification engines anyway (like recursive
and nested operations).2 Consequently, the exclusion of these elements only has
a minor impact on the universality of the base model.

3.2 OCL Elements in the Base Model

As for OCL, it is a lot harder to reduce the feature set without losing univer-
sality. This mostly results from the fact that OCL is a rich language with many
diverse operations. Most operations can only be expressed by similar opera-
tions or their negated counterpart, e.g. the collection operations C→isEmpty()
and C→notEmpty() can be represented using the operation C→size(), and
C→reject(expr) can be represented using C→select(not expr). A promis-
ing candidate to replace many of the standard OCL collection operations, the
iterate operation, is, however, one of the least supported operations by ver-
ification engines – due to its high versatility. Thus, it also does not provide a
satisfying solution regarding the reduction of OCL features in the base model.

Our solution is to accept the majority of standard OCL operations in the
base model, keeping known alternatives at hand. Then, a verification engine is
chosen based on the needs of the model, i.e. one that supports all employed
operations or transformed alternatives, and the base model is prepared to be
compatible before given to the verification engine.

Besides OCL operations, also data types have to be considered. We propose
to use Integers and Sets as core data types. Integers are the mostly used primitive
data type and often sufficient to emulate the functionality of other primitive data
types like enumerations, Reals, and other numeric data types. Even Strings (on
the word-level rather than on the character-level) may be emulated by Integers.
Likewise, Sets are a well-suited representative for collection types. Besides that,
other collection types like Sequence can also be emulated using UML classes as
will be outlined later in Sect. 4 – although with considerable overhead.

Overall, data types are interpolated if necessary and a large set of OCL
operations is accepted in the base model – even if the particular set of operations
may possibly restrict the set of appropriate verification engines to be used for
further processing. Verification engines used in combination with the base model
are expected to support at least basic arithmetic on Set and Integer as well as
the quantifiers forAll and exist (preferably also the closure operation).
2 Note however that OCL provides the closure operation (which can solve some tasks
that are typically formulated recursively) and which is supported by our approach.

4 Transformation to the Base Model
This section defines the transformation of class diagram features in UML/OCL
source models into the target base model. The transformation consists of many
smaller UML and OCL model transformations, some of which have already been
sketched [18]. We focus on selected transformations (◦ elements) from Table 1
that show the concepts of the base model best.

All transformations shown in this section operate on the UML and OCL
layer. Where appropriate, we use instances of the UML metamodel to illustrate
the transformation, showing system states before and after the transformation.
Figure 3 shows the relevant parts of the UML metamodel used in the transfor-
mations. In the top left corner, the class Element is located, defining the base
of every element in the model and on the right side you see the generalization
hierarchy originating from it, defining different abstractions used by several ele-
ments throughout the metamodel. Finally, in the lower left part of the figure, the
classes Class, Association and AssociationClass are defined extending the
general class Classifier. These elements are connected via the class Property
to define, e.g. roles and attributes. Note that transformations mostly concerning
OCL expressions are not shown in the UML metamodel.

The transformation definitions on the UML metamodel are required to im-
plement the transformations using tools like QVT [28] or ATL [22]. Along with
the transformations, some further aspects have to be considered for the base
model to work properly:

Tracability As mentioned earlier, the base model is a “bridge” between the
developer’s source model and the verification engine, and results from the

NamedElement

name : String

Feature

Association

isDerived : Boolean

Classifier

isAbstract : Boolean

AssociationClass

Constraint

Element

StructuralFeature

TypedElement

Type

MultiplicityElement

isOrdered : Boolean

isUnique : Boolean

lower : Integer

upper : Integer

Class

«enumeration»
AggregationKind

none

shared

composite

Property

aggregation : AggregationKind

isDerived : Boolean

isDerivedUnion : Boolean

RedefinableElement

isLeaf : Boolean

navigableOwnedEnd {subsets ownedEnd}

 /endType {ordered,
subsets relatedElement}

/inheritedMember {subsets member}

attribute {union, subsets feature}

classifier {union,
subsets featuringClassifier}

feature {union}featuringClassifier {union}

constrainedElement {ordered}

ownedElement {union}

owner {union}

memberEnd {ordered, subsets member}
association
{subsets notNavigableMember}

type

typedElement

 ownedEnd {ordered, subsets feature,
subsets ownedMember, subsets memberEnd}owningAssociation

{subsets namespace,
subsets featuringClassifier,
subsets association}

Fig. 3. Excerpt of relevant parts from the UML Metamodel

verification engine are presented in terms of the source model. Therefore,
tracability is an important requirement for the base model. It has to be
possible to transform models into the base model and solutions found by
verification engines back into the source model. The easiest solution is to
use bidirectional transformation methods (e.g. QVT relational [28]) and del-
egate the tracing to their built-in methods. However, the difference in the
meta layers of the transformations usually require further adjustments. Ad-
ditionally, some transformations (mainly those operating on the UML layer)
are simple enough to be traced by the names of the elements involved, e.g. an
invariant name hinting at the corresponding element in the source model.
Finally, to be consistent with the base model idea, having all information in
the UML/OCL model, UML comments can be applied during the transfor-
mation to provide further tracing information.

Equivalence While general interactive model verification techniques are in
principle available [3], we propose to check transformation equivalence by
automatically building test cases. As many of the transformations work on
the UML metamodel, transformation test cases in form of object diagrams
can be constructed by instantiating the left and right hand side of the trans-
formation. Afterwards the desired equivalence properties are checked by for-
mulating OCL properties on the union of left and right hand side as has
been studied in [15,16]. While we know the importance of these tests, in this
paper, we do not study them in detail and focus on the transformations.

4.1 Transformation of Ternary (n-Ary) Associations

A rather simple model transformation is the replacement of ternary associations
by a class and binary associations plus constraints. Figure 4 gives an overview
of the transformation. The source model is on the left having a ternary associa-
tion ABC connecting three classes. The model after the transformation is shown
on the right side. Instead of the association, there is a new class named ABC
connecting the three classes using three binary associations. The role names are
carried over for the corresponding association ends and new ones are added where
necessary. By this, ternary associations can be transformed into core elements.

ABC
A

rA
rAmin .. rAmax

B
rB

rBmin .. rBmax

C
rCrCmin .. rCmax

ABCA 1
rA rA

B1
rBrB

C
1 rC

rC

+ constraints

Fig. 4. Class Diagram View of Ternary to Binary Association Transformation

Figure 5 shows the same models as instances of the UML metamodel3. The
ternary association form the left-hand side is located in the top left area of
3 Many attributes, (derived) links and objects are not relevant for the transformation
and, hence, are hidden for a better overview and understandability.

rA
:P

ro
pe

rt
y

na
m

e=
'rA

'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

ab
c:

A
ss

oc
ia

tio
n

na
m

e=
'A

B
C

'

a:
C

la
ss

na
m

e=
'A

'

rC
:P

ro
pe

rt
y

na
m

e=
'rC

'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

c:
C

la
ss

na
m

e=
'C

'

rB
:P

ro
pe

rt
y

na
m

e=
'rB

'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

b:
C

la
ss

na
m

e=
'B

'

c3
:C

on
st

ra
in

t

na
m

e=
'm

ul
tip

lic
ity

-r
A

'

c4
:C

on
st

ra
in

t

na
m

e=
'm

ul
tip

lic
ity

-r
B

'

c2
:C

on
st

ra
in

t

na
m

e=
'm

ul
tip

lic
ity

-r
C

'

rC
:P

ro
pe

rt
y

na
m

e=
'rC

'
/lo

w
er

=
1

/u
pp

er
=

1
ag

gr
eg

at
io

n=
#n

on
e

rB
:P

ro
pe

rt
y

na
m

e=
'rB

'
/lo

w
er

=
1

/u
pp

er
=

1
ag

gr
eg

at
io

n=
#n

on
e

b_
ab

c:
A

ss
oc

ia
tio

n

na
m

e=
'B

_A
B

C
'

a:
C

la
ss

na
m

e=
'A

'

a_
ab

c:
A

ss
oc

ia
tio

n

na
m

e=
'A

_A
B

C
'

rB
_b

ac
k:

P
ro

pe
rt

y

na
m

e=
'rB

_b
ac

k'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

ab
c:

C
la

ss

na
m

e=
'A

B
C

'

b:
C

la
ss

na
m

e=
'B

'

rA
_b

ac
k:

P
ro

pe
rt

y

na
m

e=
'rA

_b
ac

k'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

c1
:C

on
st

ra
in

t

na
m

e=
'n

oD
ou

bl
eL

in
ks

' c_
ab

c:
A

ss
oc

ia
tio

n

na
m

e=
'C

_A
B

C
'

rC
_b

ac
k:

P
ro

pe
rt

y

na
m

e=
'rC

_b
ac

k'
/lo

w
er

=
0

/u
pp

er
=

*
ag

gr
eg

at
io

n=
#n

on
e

rA
:P

ro
pe

rt
y

na
m

e=
'rA

'
/lo

w
er

=
1

/u
pp

er
=

1
ag

gr
eg

at
io

n=
#n

on
e

c:
C

la
ss

na
m

e=
'C

'

source model target model

Fig. 5. Ternary Association to Class plus Binary Associations in UML Metamodel

the picture with the association object abc and its three connected classes.
The role information is contained in the Property objects connected in be-
tween the classes and the association. The multiplicities shown by the attributes
/lower and /upper for the roles are derived values from elements hidden in the
figure. The links between the association and the properties define ownership
and navigability as present in the metamodel. Dashed lines symbolize derived

links, showing relations between objects that are indirectly related via other
objects, i.e. Property objects. In the UML metamodel from Fig. 3, these links
are instances of the association going from the class Association upwards and
right to the class Type (role /endType), showing the Type objects linked with
the association. For example, the derived link between the objects a and abc
offers direct access to one of the end types of association abc.

In the lower right of Fig. 5, the right-hand side of the transformation is
shown. The association object abc was transformed into a class and three new
associations are created. The original properties are still present, however the
multiplicities are changed and properties have been added to fill the missing
roles. Furthermore, to ensure semantic equivalence between the models from the
left and right hand side, two types of constraints, representing the properties of
the ternary association, are added to the classes. First, three objects (a, b, c) can
only be connected once by the association ABC. And second, multiplicities for the
roles of the ternary association have to hold, i.e. the number of pairs of objects
b and c that are connected to a objects must be within the specified multiplicity
of role rA. If a multiplicity is specified as 0..*, no constraint is required. The
following two invariants exemplify these two properties:
context r, r’ : ABC inv noDoubleLinks: -- one link per tuple (A,B,C)
(r.rA = r’.rA and r.rB = r’.rB and r.rC = r’.rC) implies r = r’

context b : B inv multiplicity-rA: -- multiplicity for role rA
C.allInstances()→forAll(c | let linkCount =

ABC.allInstances()→select(r | r.rB = b and r.rC = c)→size()
in linkCount >= rAmin and linkCount <= rAmax)

Finally, all expressions refering to role navigations that are now transformed
have to be adjusted. Also, while this example concentrated on a ternary asso-
ciation, the concepts are applicable to n-ary associations with more than three
association ends as well.

4.2 Transformation of Association Classes

Next the transformation of UML association classes into base model compati-
ble description means is considered. Existing model transformations suggest the
conversion into ternary associations plus OCL constraints, however only binary
associations are allowed in the base model. To overcome this issue, the trans-
formation rules for the base model can be combined together to sequentially
transform the source model into a proper base model, i.e. after the transforma-
tion into the ternary association the transformation from the previous section is
able to simplify it into binary associations.

The transformation from association classes into ternary associations is de-
picted in Fig. 6. The class and association information is split into a class and an
association. Implicit definitions are made explicit, e.g. the implicit role name C
in the source model for the association class has been made explicit on the
right side. The semantic properties are expressed with OCL constraints. Fig-
ure 7 shows the transformation with instances of the UML metamodel. The
separation of the association class into class and association is clearly visible.

A
rA

B
rB

C

Association_C
A

rA
*

B
rB
*

C
C0..1

+ constraints

Fig. 6. Association Class to Ternary Association Transformation

rB:Property

name='rB'
/lower=0
/upper=*
aggregation=#none

c:AssociationClass

name='C'

a:Class

name='A'

rA:Property

name='rA'
/lower=0
/upper=*
aggregation=#none

b:Class

name='B'

b:Class

name='B'
rA:Property

name='rA'
/lower=0
/upper=*
aggregation=#none

a:Class

name='A'

c1:Constraint

name='uniqueLink'

rB:Property

name='rB'
/lower=0
/upper=*
aggregation=#none

association_c:Association

name='Association_C'

rC:Property

name='C'
/lower=0
/upper=*
aggregation=#none

c:Class

name='C'

source model

target model

Fig. 7. Association Class to Class plus Ternary Association in UML Metamodel

Similar to the previous section, the association class has properties that this
transformation has to adhere to. In particular, for every two objects a and b
there may be at most one association class linking them. The following invariant
is showing this property as an OCL invariant:

context c : C inv uniqueLink: -- one link per pair (A,B)
c.rA→size() = 1 and c.rB→size() = 1 and C.allInstances()→forAll(c’ |

(c.rA = c’.rA and c.rB = c’.rB) implies c = c’)

Finally, multiplicity constraints and adjustments to other OCL expressions re-
lying on transformed navigations are similar to those of the transformation in
the previous section.

4.3 Transformation of Aggregations and Compositions

Aggregations and compositions are special types of associations that specify a
whole-part relationship. They have unique properties that distinctly define their
semantics within the class diagram. However, these properties are not explicitly
modeled in the UML metamodel, only the enumeration attribute aggregation
of the class Property indicates whether an association is treated as an aggrega-
tion or composition. Thus, the transformation in the UML structure is trivial.

A
a*

A
a* context A inv:

self.a→closure(a)→excludes(self)

Fig. 8. Aggregation Example and its Semantics Expressed in OCL

A B

C

D

b

a

b

c

b
d

Fig. 9. Complex Aggregation Model

The challenge is to express the inherent properties as OCL constraints. In the
following, we will illustrate the generic transformation by means of examples.

The property of aggregations define that an aggregate cannot be part of
itself (cycle freeness), i.e. navigating to a part results in “smaller” objects than
the whole. Looking at compositions, a few more properties exist: Each part may
at most have one whole (forbidding sharing); and when a composite is destroyed
all its connected parts are destroyed as well, thus the composite is responsible
for its parts (ownership).

The cycle freeness property is a special one because it can be affected by mul-
tiple aggregations at once. In the easiest case, a reflexive aggregation forms a
cycle as pictured in Fig. 8 and the corresponding OCL expression to describe the
property is straightforward. However, cycles can span over an arbitrary amount
of links and the complexity of the OCL expression rises with the amount of ag-
gregations connected. These constellations are commonly found in metamodels,
when an aggregations connect elements related via a generalization hierarchy.

As an example, consider the model in Fig. 9. At a first glance there are three
independent cycles. But these cycles all share a common class B. This affects how
cycles can occur in a system state. For example, starting from class A, a cycle
can be as simple as connecting to a B object and back to the original A object.
However, since B is also connected to C and D, there can be an arbitrary amount
of links in between. A single closure operation, as pictured in Fig. 8, does not
cover all possible cases allowed by the class diagram. To consider all paths going
from class B to itself, a second, nested closure operation is required. The full
invariant ensuring cycle freeness for class A looks as follows:

context self : A inv:
self.b→closure(c.b→union(d.b)).a
→closure(b→closure(c.b→union(d.b)).a)→excludes(self)

The repeating4, highlighted expression in lines 2 and 3 is the essential part.
Instead of only considering all navigations from class A to B and back, the nested
4 The lack of a non-reflexive transitive closure operation in OCL forces the repetition
of the expression here.

closure operations (line 3) cover all intermediate navigations from class B to
itself. Note that not all cycles of class B are inside the nested closure expression,
since the one between classes A and B is already covered by the initial navigation.

The previous examples for cycle freeness shown with aggregations are also
valid for compositions. Additionally, the other previously defined properties have
to be considered. Figure 10 shows an example for the forbidding sharing property
as an OCL invariant. The constraint ensures that none or exactly one of the
possible composites is linked with every Part, thus preventing multiple links at
the same time.

Part

C1

c10..1

C2

c20..1

Part

C1

c10..1

C2

c20..1
context Part inv:
(c1 = null and c2 = null)

or (c1 <> null and c2 = null)
or (c1 = null and c2 <> null)

Fig. 10. Composition Forbidding Sharing Property Expressed in OCL

Finally, the ownership property is left. This property is different from the
previous ones, since it defines behavior, e.g. during operation calls, instead of
structure. Therefore, this property cannot be expressed as a structural invariant.
To represent it in a class diagramm, we use operation pre- and postconditions.
However, since the full transformation requires different description means not
discussed in this work, we leave the details for future work.

4.4 Transformation of Query Operations

Query operations are side-effect free OCL expressions assigned to classes as
operations. The transformation of such operations in the base model is mainly
operating on OCL expressions. In general, all calls to the query operation in any
expression can be expanded into the expression associated with the operation.
Parameter expressions are obtained from the respective operation call and the
return value is simply the result of the expression.

In case of recursively defined query operations, the expansion never termi-
nates. However, a general idea for these situations is to transform the expressions
into closure expressions or expand the expression a fixed amount of times, de-
pending on the estimated requirements, but this approximation is not always
possible. Nevertheless, in terms of compatibility and performance, this transfor-
mation has next to no drawbacks.

4.5 Transformation of OCL Collection Types

In case that a verification engine cannot be used for a certain source model – due
to incompatibilities on the OCL level, e.g. an unsupported collection type – a
last resort can be the representation of such a type in the class diagram itself.
Figure 11 shows a class with a Sequence typed attribute on the left side. The
resulting model is extended by a (simplified) representation of such sequence as
classes in the diagram. The sequence is connected to the class IntegerValue,

Class
attr : Sequence(Integer)

Class
attr : SequenceInteger

SequenceInteger

at(n : Integer) : Integer

IntegerValue
index : Integer
value : Integer

values
*

+ constraints

Fig. 11. Sequence Transformation into UML Structure

which has an index and the actual integer value. Constraints are applied to
ensure semantics, e.g. a well-defined order exists.

The query operation SequenceInteger::at(Integer) shows an example for
the transformation of the functionality of the modelled type. The OCL definition
looks as follows:
context SequenceInteger::at(n : Integer) : Integer =

self.values→any(index = n).value

Other common standard OCL operations can be defined accordingly. Also, the
definition of a sequence is reusable for multiple occurrences of the same type in
the source model.

This transformation is mostly interesting when no verification engine is able
to handle a given model without this transformation. While the overhead is
considerable, being able to apply validation and verification techinques to a
previously incompatible model demonstrates the universality of the base model.

4.6 Combination of the Transformation Concepts

Using the transformations discussed above, source models can be transformed
into base models by applying the transformations until no further matches can
be found. That way, the resulting model consists of core elements (X) only, while
the semantics of all transformed elements (◦) is preserved (see Table 1). Along
with the transformation of the respective model elements, all OCL expressions
using these elements are transformed as well, to match the modifications.

5 Conclusion and Future Work
In this paper, we have proposed a transformation of UML/OCL models to base
models. By this, we closed a significant gap for generic UML and OCL model val-
idation and verification. The base model increases compatibility between source
models and verification engines, by unifying various diagram types and express-
ing them using a reduced feature set, the so-called core elements. The result
is a universal base model consisting of atomic elements only. We have also
presented the corresponding transformation concepts for an important set of
complex UML/OCL constructs like association classes, compositions, and OCL
collection types. In order to transform a given source model into the correspond-
ing base model representation, transformations are applied successively until the
model only consists of core elements.

When in the future, verification engines support more complex features di-
rectly, it might be preferable to use those direct translations instead of perform-
ing the proposed transformations. However, an evaluation of the performance
gain of direct translations by the verification engines versus the base model

transformations is left for future work. If case studies reveal benefits for chosing
different core elements, the base model can easily be adapted, due to the modu-
lar combination of transformations. Finally, transformations are required to be
able to map verification results on the base model back to the source model.

Acknowledgement. Thanks to Lars Hamann for the constructive discussions
about the model transformations, in particular the aggregation transformation.
We also thank the reviewers for their useful feedback. This work was partially
funded by the German Research Foundation (DFG) under grants GO 454/19-1
and WI 3401/5-1 as well as within the Reinhart Koselleck project DR 287/23-1.

References
1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model

Transformation. In: MoDELS. pp. 436–450. Springer (2007)
2. Banerjee, A., Ray, S., Dasgupta, P., Chakrabarti, P.P., Ramesh, S., Ganesan,

P.V.V.: A Dynamic Assertion-Based Verification Platform for Validation of UML
Designs. ACM SIGSOFT Software Engineering Notes 37(1), 1–14 (2012)

3. Brucker, A.D., Wolff, B.: Semantics, calculi, and analysis for object-oriented spec-
ifications. Acta Inf. 46(4), 255–284 (2009)

4. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL Operation Contracts. In:
IFM. pp. 40–55. Springer (2009)

5. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93, 1–23 (2014)

6. Chen, Z., Zhenhua, D.: Specification and Verification of UML2.0 Sequence Dia-
grams Using Event Deterministic Finite Automata. In: SSIRI. IEEE (2011)

7. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML Mod-
els Consistency Using the OCL Environment. Electr. Notes Theor. Comput. Sci.
102, 99–110 (2004)

8. Choppy, C., Klai, K., Zidani, H.: Formal Verification of UML State Diagrams: A
Petri Net based Approach. Softw. Eng. Notes 36(1), 1–8 (2011)

9. Demuth, B., Wilke, C.: Model and Object Verification by Using Dresden OCL. In:
IIT-TP. p. 81. Technical University (2009)

10. Dinh-Trong, T.T., Ghosh, S., France, R.B., Hamilton, M., Wilkins, B.: UMLAnT:
An Eclipse Plugin for Animating and Testing UML Designs. In: Storey, M.D.,
Burke, M.G., Cheng, L., van der Hoek, A. (eds.) ETX. pp. 120–124. ACM (2005)

11. Duran, F., Gogolla, M., Roldan, M.: Tracing Properties of UML and OCL Models
with Maude. In: AMMSE. pp. 81–97. Electr. Proc. Theor. Comput. Sci. (2011)

12. Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams.
IEEE Trans. Software Eng. 30(7), 437–447 (2004)

13. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling
4(4), 386–398 (2005)

14. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Environ-
ment for Validating UML and OCL. Sci. Comp. Prog. 69(1–3), 27–34 (2007)

15. Gogolla, M., Hamann, L., Hilken, F.: Checking Transformation Model Properties
with a UML and OCL Model Validator. In: Amrani, M., Syriani, E., Wimmer, M.
(eds.) VOLT@STAF. pp. 16–25. CEUR Proc., Vol. 1325 (2014)

16. Gogolla, M., Hamann, L., Hilken, F.: On Static and Dynamic Analysis of UML and
OCL Transformation Models. In: Dingel, J., de Lara, J., Lucio, L., Vangheluwe, H.
(eds.) Analysis of Model Transformations (AMT). CEUR Proc., Vol. 1277 (2014)

17. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCL Models. In: Dubois, C. (ed.) Tests and Proofs (TAP).
pp. 90–104. Springer, Berlin, LNCS 5668 (2009)

18. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: Clark, T., Warmer, J. (eds.) Advances in Object Modelling with the OCL, pp.
86–115. Springer, Berlin, LNCS 2263 (2001)

19. Hilken, C., Seiter, J., Wille, R., Kühne, U., Drechsler, R.: Verifying Consistency
between Activity Diagrams and Their Corresponding OCL Contracts. In: Forum
on specification & Design Languages (FDL) (2014)

20. Hilken, C., Peleska, J., Wille, R.: A Unified Formulation of Behavioral Semantics
for SysML Models. In: Modelsward (2015)

21. Hilken, F., Niemann, P., Wille, R., Gogolla, M.: Towards a Base Model for
UML and OCL Verification. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.)
MoDeVVa@MODELS. pp. 59–68 (2014)

22. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72(1-2), 31–39 (2008)

23. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models by
Integrating SAT Solving into USE. In: TOOLS. pp. 290–306. Springer (2011)

24. Kurth, F., Schupp, S., Weißleder, S.: Generating Test Data from a UML Activity
Using the AMPL Interface for Constraint Solvers. In: Tests and Proofs (TAP).
LNCS, vol. 8570, pp. 169–186 (2014)

25. Kuske, S., Gogolla, M., Kreowski, H.J., Ziemann, P.: Towards an Integrated Graph-
Based Semantics for UML. Softw. and Sys. Modeling 8(3), 403–422 (2009)

26. Lam, V.S.W.: A Formalism for Reasoning about UML Activity Diagrams. Nordic
Jrnl. of Comp. 14(1), 43–64 (2007)

27. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: For-
mal Verification and Validation of UML 2.0 Sequence Diagrams using Source and
Destination of Messages. Electr. Notes Theor. Comput. Sci. 254, 143–160 (2009)

28. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
version 1.1 (january 2011) edn., http://www.omg.org/spec/QVT/1.1/

29. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
straints. In: Conceptual Modeling – ER. pp. 497–512. Springer (2006)

30. Rafe, V., Rafeh, R., Azizi, S., Miralvand, M.R.Z.: Verification and Validation of
Activity Diagrams Using Graph Transformation. In: ICCTD. pp. 201–205. IEEE
(2009)

31. Rodríguez, R.J., Fredlund, L., Herranz-Nieva, Á., Mariño, J.: Execution and ver-
ification of UML state machines with erlang. In: Giannakopoulou, D., Salaün, G.
(eds.) Software Engineering and Formal Methods. pp. 284–289 (2014)

32. Schwarzl, C., Peischl, B.: Static- and Dynamic Consistency Analysis of UML State
Chart Models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MoDELS. pp.
151–165. Springer (2010)

33. Soeken, M., Wille, R., Drechsler, R.: Verifying Dynamic Aspects of UML Models.
In: DATE. pp. 1077–1082. IEEE (2011)

34. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL Models Using Boolean Satisfiability. In: DATE. pp. 1341–1344. IEEE
(2010)

35. Wille, R., Gogolla, M., Soeken, M., Kuhlmann, M., Drechsler, R.: Towards a
Generic Verification Methodology for System Models. In: DATE. pp. 1193–1196
(2013)

