Checking Concurrent Behavior
in UML/OCL Models

Nils Przigoda' Christoph Hilken?

Robert Wille!3

Jan Peleska? Rolf Drechsler!»?

!Group for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Research Group Operating Systems & Distributed Systems, University of Bremen, 28359 Bremen, Germany
3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{przigoda,chilken,rwille,jp,drechsle } @informatik.uni-bremen.de

Abstract—The Unified Modeling Language (UML) is a de-
facto standard for software development and, together with
the Object Constraint Language (OCL), allows for a precise
description of a system prior to its implementation. At the
same time, these descriptions can be employed to check the
consistency and, hence, the correctness of a given UML/OCL
model. In the recent past, numerous (automated) approaches
have been proposed for this purpose. The behavior of the systems
has usually been considered by means of sequence diagrams,
state machines, and activity diagrams. But with the increasing
popularity of design by contract, also composite structures,
classes, and operations are frequently used to describe behavior in
UML/OCL. However, for these description means no solution for
the validation and verification of concurrent behavior is available
yet. In this work, we propose such a solution. To this end, we
discuss the possible interpretations of “concurrency” which are
admissible according to the common UML/OCL interpretation
and, afterwards, propose a methodology which exploits solvers
for SAT Modulo Theories (i.e., SMT solvers) in order to check
the concurrent behavior of UML/OCL models. How to address
the resulting problems is described and illustrated by means of a
running example. Finally, the application of the proposed method
is demonstrated.

I. INTRODUCTION

The Unified Modeling Language (UML) supports designers
in the description of complex systems in early design phases
and is considered as a de-facto standard for software devel-
opment [1]. By providing several diagram types, it allows the
description of a system in different fashions. This includes the
global view of the system as a whole as well as the detailed
description of one particular component. For the purpose of
behavioral descriptions, e.g., the behavior of an operation,
the UML also offers different description means including
sequence diagrams, state machines, and activity diagrams.
Besides that, the Object Constraint Language (OCL) [2] can
be used to extend a UML model with additional textual
constraints that define further properties and relations between
the respective parts of the model. Analogously, pre- and
postconditions can be added to an operation describing (1) the
prerequisites for calling an operation and (2) the desired
system state after the execution of the operation. As a result,
it is possible to provide a design by contract description
(i.e., a formal description of what the system is supposed
to do), while sequence diagrams, state machines, and activity
diagrams focus on the realization (i. e., how an operation shall
be implemented). In this work, we focus on the design by
contract description scheme.

A crucial requirement in the design process of a complex
system is its validation and verification, i.e., the question of
how to check whether the given system is consistent and

described as intended. With increasing design complexity, it is
decisive how and when verification is firstly being employed.
Due to shortening time-to-market demands, design flaws need
to be detected efficiently and as early as possible. Being an
abstract methodology, UML/OCL serves as a good starting
point for this purpose.

Consequently, numerous (automated) approaches for the
validation and verification of UML/OCL models have been
proposed (a detailed review on related work is provided later
in Section III-A). While these approaches considered both
structural and behavioral verification tasks, the concurrent
execution behavior of composite structure diagrams, class
diagrams, and operations have not yet been analyzed in detail
until today. This may be due to the fact that composite
structures and class diagrams have long been considered
as structural elements of the UML only (while behavioral
aspects have long been modeled by sequence diagrams, state
machines, and activity diagrams only).

However, design by contract becomes more and more
popular and relies on a description by means of pre- and
postconditions as well as invariants. Consequently composite
structures, classes, and operations are increasingly used to
describe complete systems including their behavior.! But,
to our best knowledge, no comprehensive methods for the
validation and verification of concurrent behavior described
by means of such UML/OCL models have yet been proposed.

In this work, we propose a methodology which addresses
this problem, i.e., a solution is presented which is capa-
ble of checking concurrent behavior of UML/OCL models
consisting of composite structure diagrams, class diagrams,
and operation specifications. To this end, we first discuss
which of the alternative interpretations of “concurrency” —
both admissible variants of the UML/OCL specification — shall
be considered (i.e., whether an interleaving semantic or a
true-parallelism interpretation shall be applied). Afterwards,
a symbolic formulation is proposed which represents arbitrary
concurrent behavior that is possible according to a given
UML/OCL model. Solvers for SAT Modulo Theories (i.e.,
SMT solvers) are eventually applied to derive the respective
validation/verification result. The resulting problems as well
as the proposed solutions are thereby described and illustrated
by means of a running example.

The remainder of this work is structured as follows. The
next section introduces the notation used in this paper and
briefly reviews the basics on Boolean satisfibility and SAT

In the remainder of the paper, we just use the term “UML/OCL models”
for this subset of UML.

Modulo Theories. Related work on concurrency in general as
well as concurrency in UML/OCL in particular is discussed
in Section III. This also motivates the considered problem and
defines the interpretation of concurrent behavior as applied in
this work. The proposed solution is then described in detail
in Section IV and Section V: First a (simple) extension of
existing approaches for validation and verification of sequen-
tial behavior is proposed; afterwards, explicit problems caused
by concurrent behavior are addressed. Finally, the application
of the proposed methodology is demonstrated in Section VI
before the paper is concluded in Section VIIL.

II. PRELIMINARIES

In order to keep the paper self-contained, this section pro-
vides a brief review on UML/OCL and introduces the notation
used in this paper. Furthermore, the Boolean satisfiability
problem and corresponding solvers are briefly reviewed.

A. Applied Notation for UML/OCL Models and States

In this work, we are using the following notation in order
to refer to elements of a UML/OCL model:

Definition 1. A model m = (C,R) is a tuple of classes C
and relations R (also known as associations). A class ¢ € C'
with ¢ = (A,0,1) is a 3-tuple composed of attributes A,
operations O, and invariants I*. An operation o € O is
a 5-tuple o = (P,r,<,r>,F) composed of a set of pa-
rameters P, a return value r, preconditions <, postcondi-
tions 1>, and frame conditions F. The invariants I from
a class as well as pre- < and postconditions > of an
operation are sets of OCL constraint expressions. A relation
r = (c1,co, (l1,u1), (l2,u2)) € R consists of two classes ¢,
and cy in C as well as two tuples representing the multiplicities
between the classes (i. e., its lower and upper bounds).

Note that frame conditions are applied in order to precisely
define which model elements may change their value during
an operation. The definition of frame conditions might be
required since, otherwise, unintended side effects may occur.
In the past, various approaches for specifying frame conditions
have been proposed, e.g., the implicit assumption that only
model elements may change their value which are part of the
postcondition, invariability clauses, or an explicit coverage of
this issue in the postconditions (see, e. g., [3], [4], [5]).

Instances of a UML/OCL model represent a system state
for which the following notation is applied:

Definition 2. For a given model m = (C,R), a system
state o = (Y, A) is a tuple composed of object instances T
derived from the classes C and a set of links A derived from
the associations R. An instance v € Y is a precise assignment
of values to the attributes of the respective class ¢ € C
respecting the domain of the attribute. A link A\ € A is a
precise instance of an association, i.e. a connection of two
instances vy,vs € Y derived from cy,co € C and with c1,co
being connected by an association.

In the following, we are assuming a restricted state space
in the considered models. A problem bound is defined for a
given system state, i. e., the number of instances for each class
and the values for infinitely large attribute domains (such as

’In the remainder of this paper, it is not important to understand that the
attributes rely on a precise underlying type system. Hence, we omit this fact.

integers) are restricted. This restriction leads to a finite search
space which makes the problems considered in this work
decidable. However, the proposed approach can be applied on
an infinite state space to solve some problems, for example to
find a witness for a bug. Furthermore, under certain conditions
an infinite state space can be rearranged and reduced to a finite
one using additional techniques, e. g. equivalent classes.

Further notations for a model m = (C,R) are introduced
for convenience as follows: All instances of a class ¢ € C in
a given system state o are referred to by Y(c). The set of all
operations of a class ¢ € C is denoted by ops(c). The set of
all model elements of a system state o (e.g., attributes and
links), are denoted by m(o).

The Object Constraint Language (OCL) is a declarative
language which allows for the definition of constraint ex-
pressions. Constraint expressions are applied together with
the model in order to add further restrictions that cannot be
expressed by the given model notation itself. The OCL mainly
consists of

e navigation expressions to access elements in the model,
¢ logic expressions (i.e., conjunction, disjunction, etc.),
« arithmetic expressions (i.e., addition, division, etc.), and
« collection expressions (i. e., intersection, union, etc.).

A comprehensive overview of all OCL expressions as well as
its keywords is given in [2]. A precise semantic definition can
also be obtained from [2]. For a model m, a system state o,
and an arbitrary OCL expression e, we define [e]?, as the
evaluation of e in system state o derived from the model m.
When it is clear from the context, we drop the system state o
and/or the model m and write [e] for the sake of convenience.

Definition 3. Ler m = (C,R) be model and 0,0’ two system
states. Then an operation call w is a pair w = (v,0) where
v is an object instance in o of a class ¢ € C which has an
operation o. In order to invoke a valid operation call w, the
equation

[<u]?, = true

must hold. Furthermore, each valid operation call must lead
to a successor state o' in which both, the postcondition and

possibly applied frame conditions, are satisfied, i. e.,
[>.157 A RIS = true.

Obviously, for each operation several operation calls may
exist in a system state depending on the number of objects.

The set of all operation calls) for a model m = (C,R) and
system state o is determined by

o= U {wor

ceC o€ops(c)
veT(c)

Note that, in the case of a postcondition, the invoking state o
as well as the succeeding state o’ may be needed in order to
evaluate the navigation expression @pre. Again, for the sake of
convenience, we simply drop the system states in the notation
when the context is clear.

When enforcing a total order on 2, each operation call
can be assigned a distinct index between 0 and || — 1. A
function rq : @ — {0,...,|Q] — 1} maps an operation to
its index. This assumption is valid since the problem bounds
need to be determined before the considered system state

is created. Dynamic allocation and destruction of objects is
handled by select variables as described in [6]. Furthermore,
a total order on the model elements can be defined by the
following function 7,,(,y : m(co) — {0,...,|m(o)| — 1}.

B. Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is defined as
follows: Let f : B™ — B be a Boolean function. Then, the SAT
problem is to determine an assignment for the variables of f
so that f evaluates to 1 or to prove that no such assignment
exists.

Example 1. Let f(z1,22,23) = (21 +T2+7T3)(T1 +22) (T2 +
x3). Then, 1 = 1,29 = 1, and x3 = 1 is a satisfying
assignment for f. The value of x1 ensures that the first clause
becomes satisfied, the value of x5 ensures this for the second
clause, and the value of x3 ensures this for the remaining
clause.

The SAT problem is one of the central A'P-complete prob-
lems. In fact, it was the first known N’P-complete problem
that was proven by Cook in 1971 [7]. But, in the past efficient
solving algorithms (so called SAT solvers) have been proposed
(see, e. g., [8]). Instead of simply traversing the complete space
of assignments, intelligent decision heuristics, conflict based
learning, and sophisticated engineering of the implication
algorithm by Boolean Constraint Propagation (BCP) lead
to an effective search procedure. Once it is proven that no
solution exist, an instance is called unsatisfiable (UNSAT),
otherwise satisfiable (SAT). Due to these efficient algorithms,
problem instances composed of hundreds of thousands of
variables, millions of clauses, and tens of millions of literals
can be handled.

Besides Boolean Satisfiability, the Satisfiability Modulo
Theories (SMT) problem is a very similar decision problem.
SMT can be seen as special SAT problem which allows to
work on bit vector logic rather than pure Boolean logic. By
this, e. g. integer attributes of UML/OCL can be represented
by a single (bit vector) variable only. In the following, SMT
instances are provided in SMTIib syntax specified in [9]. Here,
each constraint is provided following the Polish notation, i.e.,
each operation is encapsulated by parenthesis and the operator
is provided before the list of (ordered) operands.

Example 2. Consider the following SMTIib formula, where
bvi and bv2 are bit vectors of size 4:3

1 (not (= bvl bv2))

2 (= ((_ extract 1 1) bv2) #bl)

Line 1 shows a constraint composed of two operations, namely
negation (not) and equivalence (=), and states that the bit
vector bvl and bv2 are not supposed to assume the same
value, i. e., in a symbolical notation bvl # bv2.

Line 2 illustrates a constraint which manages the access
of single bits within a vector. The constraints enforces that
bit number 1 of the bit vector bv2 has to be assigned 1.*
Solving this SMT instance may lead to the assignments
bvl = #b1101 and bv2 = #b1010.

For a detailed list of all operators and the logic descriptions
the reader is refereed to [9].

3The prefix #b indicates that a binary string is following.

4The bits of a bit vector are ordered from right to the left and the numbering
starts with 0.

III. PROBLEM FORMULATION AND RELATED WORK

This section briefly reviews the previous work which has
been conducted on the verification of behavior in UML/OCL
models and, by this, motivates the problem considered in
this paper: How to verify concurrent behavior in UML/OCL
models? Afterwards, a review of the respective models for
concurrent execution in general is provided. The underlying
concepts partially provide the basis for the solution proposed
in this work.

A. Related Work and Considered Problem

Having a model of a design does not necessarily imply that
the actually desired implementation can be derived from it.
In fact, the model may inherit constraints which contradict
each other or may describe unwanted and erroneous behavior.
As a consequence, researchers and engineers intensely inves-
tigated how to validate and verify models given, e. g., in UM-
L/OCL [6], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21]. Automated validation and verification must be
based on formal semantic models. Due to their similarity to
Harel’s Statecharts [22], early definitions of behavioral UML
semantics focused on UML state machines [23]. In [24], [25],
it has been shown how UML/SysML models whose behavior
is encoded by concurrent state machines, operation calls, and
timing conditions can be associated with a formal semantics.
There, it has also been explained how verification by bounded
model checking and automated test data generation can be
performed, if the behavioral semantics are described by means
of a transition relation in propositional form.

For the behavioral interpretation of class diagrams and their
operations, existing approaches utilize the constraints provided
by the pre- and postconditions, as well as the frame conditions
given for each operation in the model, as explained, for
example, in [26]. More precisely, in order to show whether a
specific behavior indeed is represented by the model, all valid
sequences of operation calls are (explicitly or symbolically)
checked. If a sequence of operation calls can be determined
which satisfies the respective constraints and eventually leads,
e.g., to previously defined bad states or good states, the
erroneous or correct behavior has been shown, respectively. In
order to conduct these checks, various approaches relying, for
example, on the so-called film-strip model [27], satisfiability
solvers [28], or alternative solving techniques (e. g., ILP) have
been proposed. A comparison on these approaches has been
conducted, e. g., in [29].

Most of these approaches, however, rely on a sequential
behavioral interpretation. This means that in each transition
from one system state to another, only a single operation
call is considered. This contrasts with modern systems which
typically rely on the parallel execution of operation calls
and, hence, concurrent behavior. To our best knowledge,
no comprehensive method for the validation and verification
of concurrent behavior described by means of UML/OCL
models consisting of composite structures, class diagrams, and
operations have been proposed yet.

A multitude of solutions for modelling concurrent designs
and associated tool support have been introduced in other
formalisms outside the UML domain. Popular tools are, e. g.,
FDR for the CSP process algebra [30] and the more recent
mCRL2 process algebra with its tool set [31]. Despite their

expressive power and their noteworthy tool capabilities, how-
ever, these and similar formalisms have the disadvantage that
they do not represent industrial de-facto standards, as it is the
case of UML, SysML, and OCL.

Besides that, there exists a wide variety of tools for checking
the concurrent behavior represented in terms of (1) Harel’s
statecharts (see, e.g., [22], [32], [33], [34]), (2) variants of
Petrinets (see, e. g., [35]), as well as (3) graph transformations
(see, e.g., [36]). Since these representations are quite similar
to UML state machines (for (1)) and UML activity diagrams
(for (2) and (3)), they may, in principle, offer a solution for
checking the concurrent behavior of these UML description
means. However, UML state machines and UML activity dia-
grams serves an entirely different purpose than the definition in
terms of contracts (i. e., pre- and postconditions) considered in
this work. In fact, they focus on implementation aspects while
contracts provide a specification of the intended behavior.

Overall, to the best of our knowledge there is no solution
available which can automatically verify the concurrent be-
havior defined by UML models enriched with OCL pre- and
postconditions. In this work, we are proposing such a solution.

B. Considered Computational Model

Obviously, an approach aiming for checking the behavior
of a system description has to rely on a proper computational
model. With respect to concurrency, a significant amount of
corresponding theoretical foundations to be used have been
considered — [37] and [30] provide good overviews of some of
them. Besides that, there are attempts to compare and classify
these models (see, e. g., [38]). In case of the design by contract
scheme considered here, “concurrency” basically translates to
invoking and executing two or more operation calls at once.
In general, such a system is nondeterministic. Therefore, two
options for a computational model are left to be chosen from:

o Interleaving Model: In this model, concurrently called
operation calls are executed in an “interleaved” fashion,
i.e., they are executed sequentially, but their atomic steps
are executed nondeterministically. In this case, it is not
possible to split these operation calls into smaller units.
In other words, one atomic step is the execution of one
operation, another atomic step is the execution of another
operation, and so on. Therefore, concurrently executing
nondeterministic operation calls in interleaving semantics
result in the same state space as if they would be exe-
cuted sequentially. This model is typical for concurrent
processes on a single-core CPU.

o Non-interleaving Model (true-parallelism): In this model,
concurrently called operation calls are executed in a “true
parallel” fashion. The result is the merged result of the
concurrently executed operation calls, or a deadlock, or
an illegal racing condition if those operation calls cannot
run in parallel because they change the same attributes
in contradictory ways. In case of a UML/OCL model,
two operation calls can only be executed in parallel if
all their preconditions are satisfied before and all their
postconditions are satisfied after the call. Moreover, the
frame conditions of all operation calls must be considered
in such a parallel execution. This model is typical for
many real world scenarios.

Figure 1: Transitions with sequential operation calls

In this case, considering a nondeterministic behavior, the
interleaving model results in the same state space as in
sequential execution. Therefore, true-parallelism fits better for
today’s complex systems which run truly parallel. Hence, we
consider the non-interleaving model with its true-parallelism
in the remainder of this work.

IV. APPLIED SMT-BASED
VALIDATION AND VERIFICATION

In order to validate and verify concurrent behavior defined
by means of UML/OCL models, we propose an approach
which relies on previously proposed solutions for check-
ing sequential behavior. In this section, the background on
the respectively utilized approach is reviewed. Afterwards,
corresponding extensions aiming to support concurrency are
introduced. While this provides a first step towards the desired
verification approach, further obstacles remain open. These are
considered afterwards in Section V.

A. Validation and Verification of Sequential Behavior

In the recent past, several approaches for the validation and
verification of sequential behavior have been proposed (see,
e. g., [27], [28], [29]). In this work, we rely on the solution
presented in [28] which makes use of solvers for SAT Modulo
Theories (SMT solvers). They allow for an efficient traversal
of large search spaces and, hence, are suitable to determine
whether certain sequences of operations leading to bad/good
states indeed can be derived from the UML/OCL model.

The general idea is sketched by means of Fig. 1: A
symbolic representation of all possible sequences of system
states (denoted by og,01,...,0, and bounded by n € N)
is considered. Each transition from a system state o; to a
system state 0,11 (with 2 = 0,1,...,n — 1) is triggered by
a (single) operation call which is symbolically defined by &;.
Initial states as well as the following states can be restricted
(e. g., in order to define a bad/good state for which a sequence
of operation calls is to be determined). Then, it remains open
how to explicitly assign all operation calls &; so that, with
respect to the corresponding pre- and postcondition of the
chosen operations, a valid sequence of transitions from oy
to o, is derived.

This formulation is eventually formulated into SMT solver
syntax; here, a representation in terms of bit vector logic. More
precisely, the following formulation is applied:

Formulation 1. For a model m = (C,R) and a sequence of
system states 0q, 01, ...,0y, let Q) be the set of all operation
calls which can be performed within one system state. The
operation call leading to the transition from a system state o;
to a successor state o;41 (with i = 0,1,...,n — 1) is
represented by the bit vector J; of size [log,|Q|].> Then, each
transition is symbolically represented by

N @i=row) = [QLIAAATRD) D

weN

SWe assume that || > 1, i.e., there is more than one operation call.

where
o 7o(w) is a unique identifier representing the operation
call w € Q,
[<w] is a constraint enforcing the precondition for system
state o,
[>w] is a constraint enforcing the postcondition for
system state o;y1, maybe by using o; as well, and
[F.] is a constraint enforcing the frame conditions for
the entire transition (i. e., for both system states).
Besides that, the possible assignments to the bit vector &; is

restricted by
/\ d3¢<:|S2

in order to ensure that the value of wW; is an element of the
image set ro(Q2) = {0,...,|Q —1}.

Using this formulatlon, a satisfying assignment to all
W;-variables must exist if a sequence from the (possibly
restricted) initial system state o to the (possible restricted)
terminal system state o, exist. From this assignment, the
respective operation calls for this sequence can eventually been
obtained. If no such assignment exists, it has been proven that
no corresponding sequence exists. SMT solvers are capable of
determining such assignments or proving their non-existence
in an efficient fashion.

2

Example 3. Consider the model of a simple counter as given
in Fig. 2. The model consists of one class Counter which has an
integer attribute value representing the current value of the
counter and an operation count. Furthermore, one invariant
greaterZero belongs to the class which requires that the
value must be always greater or equal 0. The behavior of
the operation is described by a postcondition, which requires
that the value of the counter of the calling object should be
increased by one, and a postcondition, which requires that all
remaining counters remain their value.

Further, let o be a system state as given in Fig. 3.
There are three object instantiation of the class Counter,
namely Counter@0, Counter@1, and Counter@2. As it is
possible to call the operation count on each object, it fol-
lows that = {(Counter@0, count), (Counter@1, count),
(Counter@2, count)}. Based on that, the resulting SMT syn-
tax of the transition for operation call (Counter@0, count)
can be formulated. The used variable-identifiers are structured
as follows: The state number followed by the object name
and the attributes, further parts are connected with a
The invoking (succeeding) state in denoted with State0
(Statel). Altogether, the formula reads as follows:

1 (=> (= omega #b00)

2 (and (= Statel::Counter0::value

3 (bvadd StateO::CounterQ::value

4 #x01))

5 (and (=> (not (= #b001 #b001))

6 (= Statel::Counter0::value

7 Statel: :Counter0::value))
8 (=> (not (= #b001 #b010))

9 (= Statel::Counterl::value
10 State0: :Counterl::value))
1 (=> (not (= #b001 #b100))

12 (= Statel::Counter2::value
13 StateO: :Counter2::value))
14)

15)

16)

Counter
value: Integer

inv greaterZero: —)_
self.value >= 0

void count()

T
1

context Counter::count () :

post: self.value = self.value@pre + 1
post: Counter.alllInstances()->forAll(c |
(self <> c) implies (c.value = c.valuel@pre)

)

Figure 2: A model of a simple counter

Counter@0
value =0
void count()

Counter@1
value =0
void count()

Counter@2
value =0
void count()

Figure 3: A system state for the simple counter model

The first line, realizes the left-hand side of the implication
sketched in Eq. 1 (assuming that 00 is the unique identi-
fier ro(w) representing the operation (Counter@0, count)).
Afterwards, the postconditions (which inherently also rep-
resent the frame condition) of the operation are enforced
(see Line 24 and Line 5-13). Hereby, the system states
are represented by the assignments to the respective at-
tributes of the instantiated classes. For example, the value
of the attribute value of the object instance Counter@Q
is represented by State0::Counter0O::value and
Statel::Counter0Q: :value for the initial system state
and the succeeding system state, respectively. Based on that,
the first postcondition (defining the increase of the value)
is enforced by the SMT constraint in Line 2—4. The other
postconditions are realized in a similar fashion.

B. Supporting Concurrent Behavior

The approach reviewed in the previous section obviously
does not support the consideration of concurrent behavior.
In fact, the SMT formulation allows for the execution of a
single operation call per transition only. In order to extend this
concept accordingly, a revised formulation has to be applied.

Fig. 4 sketches the general idea of such an extended
formulation. Again, a symbolic representation of all possible
sequences of system states (denoted by og,01,...,0, and
bounded by n € N) is considered. But instead of having a
variable &; which symbolically represents a (single) operation
call triggering the transition from o; to o;4; (as in Fig. 1),
we now consider || possible (concurrent) operation calls —
each of them symbolically represented by an array of Boolean
variables denoted by &; and with size |Q2]. More precisely,
the Boolean &J;[k] evaluates to true iff an operation call with
the unique identifier k is executed in the i transition, i.e., a
one-hot encoding is employed. By this, it becomes possible to
apply more than one operation call. Moreover, the total number
of concurrent operation calls can be restricted by limiting the
number of &, [k]-variables which are assigned 1.

Overall, this leads to the extended symbolic formulation of
a each transition as follows:

Formulation 2. For a model m = (C,R) and a sequence
of system states 0g,01,...,0n, let Q) be the set of all opera-
tion calls which can be conducted within one system state.
The (concurrent) operation calls whose parallel execution

Sol0] ©110] @ —1100]
Sol1] & (1] G —101]
g . g . .. : a.
0 Gollol — 2{ 1 syl —2f G109 — 2] n
Follel —1 F1llQ -1 Gp—101Q1 =1

Figure 4: Transitions with concurrent operation calls

— conducted in a true-parallelism fashion — leads to the
transition from a system state o; to a successor state Oit1
are represented by the bit vector @; of size |Q}|. Then, each
transition is symbolically represented by

A @ilra@)]=1) = ([A [l A TFD)

weN

3)

which is almost identical to the formulation from Eq. 1
except for the fact that the operations are now symbolically
represented by means of a one-hot encoding. This in turn
allows for the consideration of more than one operation call
(since the antecedent of the implication may evaluate to true
for more than one operation w €). Moreover, by additionally
enforcing

n—1 Q-1
A di< D @ifk] <dy)
1=0 k=0

with dy,ds € N and di < do, it is possible to restrict the
number of concurrent calls to be between di and ds.

Again, if the resulting formulation leads to a satisfying as-
signment to all the &J; [k]-variables, the existence of a sequence
of corresponding operation calls has been proven. In contrast
to the formulation from the previous section, this sequence
now may include concurrent operation calls in one transition.
More precisely, two operations w,w’ € Q (w # w') with the
unique identifiers ro(w) = k and ro(w’) = k' are executed
in parallel in the i transition iff both J;[k] and &;[k'] are
assigned 1 by the SMT solver.

While this provides a simple solution to support concurrent
behavior in the validation and verification of UML/OCL mod-
els, it does not consider that operations may have contradictory
effects and, hence, provoke conflicts in the succeeding system
state. The following example illustrates the resulting problem:

Example 4. Consider again, the simple counter model from
Example 3. Following the extended formulation, the resulting
SMT syntax of the transition from the system state with respect
to the operation call (Counter@0, count) reads as follows:

1 (=> (= ((_ extract 0 0) omega) #bl)

2 (and (= Statel::Counter0::value

3 (bvadd StateO::CounterQ::value

4 #x01))

5 (and (=> (not (= #b001 #b001))

6 (= Statel::Counter0::value

7 State0: :CounterQ::value))
8 (=> (not (= #b001 #b010))

9 (= Statel::Counterl::value

StateO: :Counterl::value))
(not (= #b001 #b100))
(= Statel::Counter2::value
StateO: :Counter2::value))

2
3
4
5

16

As we are interested in a concurrent execution of operation
calls, additionally also the resulting SMT formulation for the
operation call (Counter@1, count) is considered in detail:
(=> (= ((_ extract 1 1) omega) #bl)
(and (= Statel::Counterl::value
(bvadd StateO::Counterl::value
#x01))
(and (=> (not (= #b010 #b001))
(= Statel::Counter0::value
Statel: :CounterQ::value))
(=> (not (= #b010 #b010))
(= Statel::Counterl::value
StateO: :Counterl::value))
(=> (not (= #b010 #b100))
(= Statel::Counter2::value
StateO: :Counter2::value))

)

Both sets of constraints enforce that, when the respective
operations are called (represented by setting the 0" and the
1% bit of bit vector & to #b1), (1) the attribute value of the
respective object is increased by one and (2) the values of all
remaining attributes remain unchanged. This obviously leads
to a conflict: An attribute cannot be increased by one and, at
the same time, keep its value. While this is in accordance to
the postconditions of the model as shown in Fig. 2, it requires
an explicit handling of contradictory conditions.

Consequently, only extending existing approaches for val-
idation and verification of sequential behavior does not lead
to satisfactory solutions addressing the “concurrent case”. In-
stead, a further analysis on possible contradictions of operation
contracts has to be conducted for each model. The result
of such an analysis eventually has to be incorporated into
an accordingly revised SMT formulation. How this can be
accomplished is covered in the next section.

V. HANDLING CONTRADICTORY CONDITIONS

Conditions defined in contracts (either by means of post-
conditions or frame conditions) are supposed to completely
describe the effect of an operation. As illustrated in the ex-
ample from the previous section, this often also affects model
elements which are not really in the scope of a particular oper-
ation. For example, the operation (Counter@0, count) could
entirely focus on the attribute value of object Counter@0.
But, in order to avoid arbitrary changes to attributes from
all the other objects, the postcondition additionally re-
stricts value from Counter@] and Counter@2.5

As illustrated in Example 4, this constitutes a problem. In
fact, when several operation calls are executed in parallel it
indeed might be acceptable to reduce the scope of the condi-
tions. In other words, postconditions and frame conditions of
a single operation do not necessarily have to cover all model
elements — in particular when another (concurrently executed)
operation already covers those elements anyway. In order to
address this, a modeling scheme is assumed in the following
in which postconditions only restrict model elements that are
relevant to the respective operation. For all remaining model
elements, a “nothing else changes”-assumption is employed as
long as no other (concurrently executed) operation modifies
them.

SNote that, instead of a postcondition, also a frame condition could have
been applied for this purpose.

Counter

inv greaterZero: _ Jvalue: Integer
self.value >= 0

void count()

T
1

context Counter::count () :
post: self.value = self.value@pre +1

Figure 5: Modified model of a simple counter

Example 5. Consider again the example from Fig. 2. Fol-
lowing the “nothing else changes”-assumption, this model
can be defined as shown in Fig. 5. Here, the postcondition
only restricts the attribute of the respectively calling object.
All other attributes are assumed to keep their value (except
another operation is restricting it).

Following this assumption, it remains open to symbolically
represent which model elements are affected by an arbitrary
combination of concurrent operation calls. The values of all
these model elements are already defined by the conditions of
these operations. For all remaining model elements, constraints
have to be employed which ensure that their values are not
supposed to change during the transition. To this end, for each
operation call w € €, a dedicated bit-mask b,, of size |m (o)
is generated where

« each model element . € m(c) corresponds to one bit
within the bit-mask b,, and

e an assignment by, [r,, () (1)) = O states that the model
element p is affected by the operation call w as well as
an assignment by,[r,,(») (1)) = 1 states that the model

element p is not affected by the operation call w.

Note that, if an operation call w € € is not called for a
transition, then the all bits of the corresponding bit-mask b,,
are set to 1 (stating that no model element is affected by the
operation w in this transition).

Then, the conjunction of all bit-masks for all model ele-
ments, represented by 3 and defined by

A (B[Tm<a) (1)) = (/\ bes[T'm (o) (M)])))

pnem(o) weN

leads to a symbolic representation (i. e., for arbitrary operation
calls) which model element ;. € m(o) indeed is affected by
the transition (B[r,,(»)(¢)] = 0) and which model element is
not affected by the transition (B[r, () ()] = 1).

Example 6. Consider again the example from Fig. 5
with three instances of class Counter denoted by
Counter@(, Counter@1, Counter@2. Additionally assume
a transition in which two operations w,w’ € Q with
w = (Counter@0, count) and w' = (Counter@1, count)
are called. Then, Table I shows the resulting bit-masks b,
by, by for each operation. The bit-wise conjunction B
of these bitmasks is shown at the bottom of Table I. From
this, it can be concluded that, in this transition, the model
elements Counter@0: :value and Counter@l::value
are affected (and, hence, restricted by the respective
postconditions), while model element Counter@3: :value
is supposed to keep its value.

Table I: Bit-masks for a transition

Model element p
Operation call w Counter @0 | Counter @1 | Counter @2
:value ::value :value
(Counter@0, count) b, = 0 1 1
(Counter@1, count) b, = 1 0 1
(Counter@2, count) b,,n = 1 1 1
B="1 o0 [o [1

Overall, this leads to a new formulation to be used in order
to check concurrent behavior in UML/OCL models as follows:

Formulation 3. For a model m = (C,R) and a sequence of
system states 0,01, - ..,0n, let) be the set of all operation
calls which can be conducted within one system state, m(o)
the set of all model elements, and B; as well as b;, with
i =0,....,n—1and w €) the bit-masks as introduced
above. Furthermore, the (concurrent) operation calls whose
parallel execution — conducted in a true-parallelism fashion —
leads to the transition from a system state o; to a successor
state ;11 are represented by the bit vector &; of size |S|.
Then, each transition is symbolically represented by

N @ilra@)]=1)=
weN
[<l AT>u] A TFLDA
{0 if u is affected by w
1
(6)

else
which ensures that, if an operation call w € § is
called, its corresponding conditions are applied and the bit-
mask b o, [T (o) (1)) is set accordingly and

/\/J,Em(ai) biw [rm(Ui) (/.LH =

(7

which ensures that, if an operation call w € <) is not called, the
bit-mask b; .1 (o) ()] is set to 1...1 (stating that w does
not affect any model element). Besides that, the number of
concurrent calls is, again, restricted to be between dy and ds,
Le.,

12]-1

dy < Z Gilk] < do
k=0

n—1

A

=0

®)

Finally, all model elements which are not covered by any
operation call have to keep their value, which is ensured by

N Bilrmey (W] =1) = (0i(p) = 0ixa(p)). 9

pem(o)

From satisfying assignments, respective results can be de-
termined as already discussed for the formulations before.

Example 7. Consider again the example from Fig. 5 with
its three instances of class Counter as well as the transition
from a system state represented by StateO to a succeeding
system state represented by Statel in which the oper-
ation calls (Counter@O0, count) and (Counter@1, count)
are called. Following the new formulation, the resulting
SMT syntax of this transition with respect to the operation
(Counter@0, count) reads as follows:

1
2

11
12
13
14
15
16
17
18
19
20
21
22

24

Bank Account Person
" bic: Integer iban: Integer age: Integer
! amount: Integer T
p— N 1| bank T g : 1% [holder 1
inv: bic > 0 + | depositCash(pAmount: Integer): void | « !
inv: Bank.allInstances()->forAll(bank |) WIthdrawCash(pAmount: Integer): void N |
(self <> bank) accounts transfer(accounts |
implies (self.bic <> bank.bic) pAmount: Integer, !
‘) recipientIBAN: Integer, context Person:
inv: Bank.accounts ()->forAll(bl, b2 | recipientB|C: Integer inv: age > 0
(bl <> b2)):VOid
implies (bl.iban <> b2.iban) —— .
) [L N
I I 1| context Account::transfer(
: : : pAmount: Integer,
context Account: Lo recipientIBAN: Integer,
inv: iban > 0 o recipientBIC: Integer
inv: holder->exists(fF-----—---—-—-——-—-—-—-—-—-—-—-—-—-——-—4 [
h | h.age >= 18 bt pre : pAmount > 0
) : : pre : Account.alllInstances()->exists(a |
o a.iban = recipientIBAN
1o and a.bank.bic = recipientBIC
1o)
context Account::depositCash (pAmount: Integer): : : post : self.amount = self.amount@pre - pAmount
pre : pAmount >0 | b post : Account.alllInstances()->select(a |
post : self.amount = self.amount@pre + pAmount | a.iban = recipientIBAN
modifiesOnly: self.amount l and a.bank.bic = recipientBIC
!)—>forAll(a |
: a.amount = a.amount@pre + pAmount
. ewi . . |)
c;zze%tpiiggﬁgt;.xglthdrawCash(pAmount. Integer) : | modifiesOnly: self.amount
post : self.amount = self.amount@pre - pAmount [~~~ = 7 : mOdlfleSOlel; Achuntta;lIrtliéigces()—>select(a |
modifiesOnly: self.amount @.tban = reciplent
and a.bank.bic = recipientBIC
)
Figure 6: Considered model
(=> (= ((_ extract 0 0) omega) #bl) validate UML/OCL models [21], [28]. Using the resulting

(and (= Statel::Counter0::value
(bvadd StateO::Counter0::value

#x01))
(b0 = #b110)))
(=> (= ((_ extract 0 0) omega) #b0)
(b0 = #bl111))
(=> (= ((_ extract 1 1) omega) #bl)

(and (= Statel::Counterl::value

(bvadd StateO::Counterl::value
#x01))
(bl = #b110)))
(=> (= ((_ extract 1 1) omega) #b0)
(bl = #b111))

(= B (bvand b0 bl b2))

(=> (= ((extract 0 0) B) #bl)
(= Statel::Counter0::value
StatelO: :Counter0::value))
(=> (= ((extract 1 1) B) #bl)
(= Statel::Counterl::value
Statel: :Counterl::value))
(=> (= ((extract 2 2) B) #bl)
(= Statel::Counter2::value
Statel: :Counter2::value))

Overall, the resulting formulation allows for automatically
checking the concurrent behavior of UML/OCL models. The
problems discussed in Section IV are avoided by the introduc-
tion of an additional symbolic bit-mask representation together
with corresponding constraints.

VI. IMPLEMENTATION AND APPLICATION

In order to apply the proposed solution, we implemented
the methodology described in the previous sections as an
Eclipse plugin using both, Java and Xtend. As solving engine,
we utilized Satisfiability Modulo Theories (SMT) [9] which
has already been successfully applied in order to verify and

implementation, the concurrent behavior of UML/OCL models
following the design by contract scheme can be checked. In
this section, the application of the resulting tool is illustrated
by means of an example.

A. Considered Model

In order to illustrate the application, we considered a model
of an international banking system in which money may
concurrently be deposited into an account, withdrawn from an
account, and transferred between accounts. The UML model
and its OCL constraints are shown in Fig. 6. The system
consists of three classes: Person, Account and Bank. Every
Person has an age and can have multiple accounts by different
banks. The account has attributes for its International Bank Ac-
count Number (iban), which identifies the account in the
international banking system, and the current account balance
amount. An account is always provided by a bank. Every
Bank has a unique Business Identifier Code (bic). In this
model, bic and iban are represented by a unique positive
number. In addition, the class Account has the following
operations:

e depositCash: A person can call this operation to de-
posit money at the bank. The current balance is increased
by the amount given by the parameter (which has to be
a positive number).

e withdrawCash: A person can call this operation to
withdraw cash. The current balance of the account is
decreased by the amount given by the parameter (which
has to be a positive number).

e transfer: A person can call this operation to transfer
money from his/her account to another account. The
recipient account is identified by its iban and the

p
Person@0

~
Person@4

Person@1 Person@2 Person@3
age =18 age =19 age =22 age = 54 age =72
I I I I I
Account@0 || Account@1 || Account@2 || Account@3 || Account@4
iban =1 iban =2 iban =3 iban =5 iban =9
amount =16 ||amount=17 ||amount=22 ||amount=23 ||amount=27
I
I— Bank@0 4
bic = 42

(Account@O, depositCash(6)) —
(Account@1, depositCash(10))
(Account@2, transfer(10, 2, 42))
(Account@3, withdrawCash(12))
(Account@4, transfer(10,2,42))

= =\

Person@0 Person@1 Person@2 Person@3 Person@4

age =18 age =19 age =22 age = 54 age =72
I I I I I
Account@0 || Account@1 || Account@2 || Account@3 || Account@4
iban =1 iban =2 iban =3 iban =5 iban =9
amount =22 |[|amount =27 ||amount=12 ||amount= 11 amount =17
I
I— Bank@0 4
bic = 42

Figure 7: Considered sequence

corresponding bic. The current balance of the account
calling this operation is decreased by pAmount, while the
account of the recipient is increased by this amount.

For our evaluation, we consider an instantiation of this
model composed of one bank and five persons where each of
them has one account at the bank. We additionally consider
one transition with at most five concurrent operation calls.

B. Application

Using the proposed methodology, various checks can be
conducted on the considered model/instantiation. These checks
can be divided into two classes: universal and problem specific
checks. As a typical example for a universal check, we were
able to validate that the considered configuration does not
run into deadlocks, i.e., if a valid initial state is assumed, no
sequence of transitions exists that leads to a system state out
of which no further operation calls are possible anymore. In
order to check that, we automatically generated the symbolic
formulation proposed above for a total of 50 transitions and,
additionally, constrained the terminal state o5y accordingly
(e.g., by explicitly prohibiting attribute values which may
satisfy a precondition of an operation). Afterwards, we passed
the resulting formulation to a SMT solver which proved that no
satisfying assignment exists for this instance. From this result,
it can be concluded that no deadlock state can be reached from
an arbitrary (but valid) system state within 50 transitions. In
addition to previously conducted consistency checks and by
following k-induction [39], this allows for the conclusion that
the behavior of the considered model is free of deadlocks.

On the other side, also model (or problem) specific checks
can be applied. For the given banking system such a check
would be, e. g., that the overall amount of money with respect
to deposits and withdrawals stays the same. Executing this

check, we obtain the sequence as shown in Fig. 7 in which
five concurrent operation calls are conducted. The upper part
of Fig. 7 shows the obtained (arbitrary but valid) initial
system state, while the bottom shows the resulting state of
the transition when the five operation calls depicted in the
middle of Fig. 7 are invoked. Although all constraints of the
model are satisfied by this sequence, it is very likely that
this does not represent the desired behavior: This is because
Person@?2 as well as Person@4 transfer 10 money units to
the account of Person@ I, and Person@ [additionally deposits
another 10 money units to his/her account, but the total value
of Person@ I::amount increases by 10 only.

Due to the problem specific check, the designer has been
pin-pointed to a serious modeling error which can easily be
fixed afterwards in a manual fashion. In this particular case,
the designer could, e.g., add auxiliary variables for critical
sections to model locking mechanisms or add postconditions
which avoid different amounts of the overall money.

Using the methodology proposed here, all these checks can
automatically be conducted within negligible run-time on a
modern computer (i. e., less than a second) and, hence, provide
useful aid to the designers of such models.

VII. CONCLUSION

In this work, we proposed a methodology for the validation
and verification of concurrent behavior which is possible
based on the design by contract descriptions provided in
UML/OCL models. To this end, a computational model based
on a “true-parallelism”-scheme is assumed and a symbolic
formulation representing arbitrary concurrent operation calls
has been proposed. Solvers for SAT Modulo Theories are
then capable of addressing various checks for a respectively

given UML/OCL model. The addressed problems have been
described and illustrated by means of a running example
and an exemplary application demonstrated how designers are
supported by the resulting tool.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project SPECifIC
under grant no. 01IW13001, the German Research Foundation
(DFG) within the Reinhart Koselleck project under grant no.
DR 287/23-1 and a research project under grant no. WI
3401/5-1, the Graduate School SyDe funded by the German
Excellence Initiative within the University of Bremen’s insti-
tutional strategy as well as the Siemens AG.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]
[10]

(11]

(12]

[13]
[14]

[15]
[16]

[17]
(18]

REFERENCES

J. Rumbaugh, I. Jacobson, and G. Booch, Eds., The Unified Modeling
Language reference manual. Essex, UK: Addison-Wesley Longman
Ltd., 1999.

OMG - Object Management Group, “Object Constraint
Language,” 2014, version 2.4, February 2014. [Online]. Available:
http://www.omg.org/spec/OCL/2.4

P. Kosiuczenko, “Specification of Invariability in OCL,” in Int’l Conf. on
Model Driven Engineering Languages and Systems, 2006, pp. 676—-691.
, “Specification of invariability in OCL - Specifying invariable
system parts and views,” Software and System Modeling, vol. 12, no. 2,
pp. 415-434, 2013.

P. Niemann, F. Hilken, M. Gogolla, and R. Wille, “Extracting frame
conditions from operation contracts,” in Int’l Conf. on Model Driven
Engineering Languages and Systems, 2015.

D. Jackson, Software Abstractions - Logic, Language, and Analysis,
2006.

S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in
Proceedings of the Symposium on Theory of Computing, M. A. Harrison,
R. B. Banerji, and J. D. Ullman, Eds., 1971, pp. 151-158.

R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” in Tools and Algorithms for Construction and
Analysis of Systems, 2009, pp. 174-177.

C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,,” 2010. [Online]. Available: https://www.smt-lib.org

M. Gogolla, F. Biittner, and M. Richters, “USE: A UML-based specifi-
cation environment for validating UML and OCL,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 27-34, 2007.

M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der
Zwaag, T. Arons, and H. Kugler, “Formalizing UML Models and OCL
Constraints in PVS,” Electronic Notes in Theoretical Computer Science,
vol. 115, pp. 3947, 2005.

A. D. Brucker and B. Wolff, “A Proposal for a Formal OCL Semantics
in Isabelle/HOL,” in TPHOLs, 2002, pp. 99-114.

B. Beckert, R. Hihnle, and P. H. Schmitt, Verification of Object-Oriented
Software: The KeY Approach, 2007.

J. Cabot, R. Claris6, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” in Proceedings of Conference
on Software Testing Verification and Validation, 2008, pp. 73-80.

T. Mancini, “Finite satisfiability of UML class diagrams by constraint
programming,” in Description Logics, 2004.

H. Malgouyres and G. Motet, “A UML model consistency verification
approach based on meta-modeling formalization,” in Proceedings of the
Symposium on Applied computing, 2006, pp. 1804-1809.

D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML
class diagrams,” Artif. Intell., vol. 168, no. 1, pp. 70-118, 2005.

R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers, “Using
description logic to maintain consistency between UML models,” in
UML, 2003, pp. 326-340.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems, 2007, pp. 436—450.

E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, O. Grumberg and M. Huth, Eds., vol. 4424.
Springer, 2007, pp. 632-647.

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, 2010, pp. 1341-1344.

D. Harel and A. Naamad, “The statemate semantics of statecharts,”
Transactions on Software Engineering and Methodology, vol. 5, no. 4,
pp- 293-333, 1996.

D. Latella, I. Majzik, and M. Massink, “Towards a formal operational
semantics of UML statechart diagrams,” in Int’l Conf. Conference on
Formal Methods for Open Object-Based Distributed Systems, 1999.

W.-. Huang, J. Peleska, and U. Schulze, “Test automation
support,” COMPASS Comprehensive Modelling for Advanced
Systems of Systems, Tech. Rep. D34.1, 2013, available under
http://www.compass—-research.eu/deliverables.html.

J. Peleska, “Industrial-strength model-based testing - state of the art and
current challenges,” in Workshop on Model-Based Testing, ser. Electronic
Proceedings in Theoretical Computer Science, vol. 111, 2013, pp. 3-28.

C. Hilken, J. Peleska, and R. Wille, “A Unified Formulation of Behav-
ioral Semantics for SysML Models:,” in Int’l Conf. on Model-Driven
Engineering and Software Development, 2015, pp. 263-271.

F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and
OCL models into filmstrip models,” in Int’l Conf. on Theory and
Practice of Model Transformations, ser. Lecture Notes in Computer
Science, vol. 8568, 2014, pp. 170-185.

M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML models,” in Design, Automation and Test in Europe, 2011, pp.
1077-1082.

P. Hilken, Frankand Niemann, M. Gogolla, and R. Wille, “Filmstripping
and unrolling: A comparison of verification approaches for UML and
OCL behavioral models,” in Tests and Proof, 2014, pp. 99-116.

A. W. Roscoe, C. A. R. Hoare, and R. Bird, The
Theory and Practice of Concurrency, 1997. [Online]. Available:
https://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

J. F. Groote and M. R. Mousavi, Modeling and Analysis of Concurrent
Systems, 2014.

J. Lilius and 1. Paltor, “vUML: A Tool for Verifying UML Models,” in
Int’l Conf. on Automated Software Engineering, 1999, pp. 255-258.

A. Knapp and S. Merz, “Model checking and code generation for
UML state machines and collaborations,” Workshop on Tools for System
Design and Verification, pp. 59-64, 2002.

D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231-274, 1987.

T. S. Staines, “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets,” in Int’l Conf. on Workshop on Engineering of Computer Based
Systems, 2008, pp. 191-200.

G. Engels, C. Soltenborn, and H. Wehrheim, “Analysis of UML Ac-
tivities Using Dynamic Meta Modeling,” in Int’l Conf. Conference
on Formal Methods for Open Object-Based Distributed Systems, ser.
Lecture Notes in Computer Science, vol. 4468, 2007, pp. 76-90.

G. Winskel and M. Nielsen, “Models for concurrency,” DAIMI Report
Series, vol. 22, no. 463, 1993.

V. Sassone, M. Nielsen, and G. Winskel, “Models for concurrency:
Towards a classification,” Theor. Comput. Sci., vol. 170, no. 1-2, pp.
297-348, 1996.

M. Sheeran, S. Singh, and G. Stilmarck, “Checking safety properties
using induction and a SAT-solver,” in Conference on Formal Methods

in Computer-Aided Design, 2000, pp. 108-125.

