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ABSTRACT
We present ProACt, a Processor for high performance on-
demand Approximate Computing. ProACt is a general pur-
pose processor that can dynamically approximate floating
point operations. In ProACt, the approximations are done
in hardware, but the software can directly enable, disable
or control the accuracy of approximations. In addition,
ProACt offers a complete open-source development frame-
work consisting of a hardware processor and associated soft-
ware tool chain. ProACt uses functional approximations and
is proven in FPGA. Further, we show performance improve-
ments of about 30% on case studies in image processing and
scientific computing.

1. INTRODUCTION
Approximate computing can deliver significant performance

benefits (e.g. in speed or energy) over conventional comput-
ing by relaxing the precision of results. In order to harness
the full potential of approximations, both hardware and soft-
ware need to work in tandem [18, 16, 10]. However, in a
general application, there are program segments that can
be approximated and others which should not be approxi-
mated. In addition, it has become good strategy to perform
approximation in certain situations, e.g. when the battery
goes low. Also, decisions such as the duration and degree of
approximations may depend on external factors and input
data set of the application, which may not be fully known
at system design time. All these calls for an on-demand,
rapidly switchable hardware approximation scheme that can
be fully controlled by software. This software-control may
originate from the application itself or from a supervisory
software like the operating system [12, 6].

In this work, we present ProACt, a Processor for high per-
formance on-demand Approximate Computing which full-
fills all the above requirements. The core idea of ProACt
is to functionally approximate floating point operations us-
ing previously computed results from a cache thereby re-
laxing the requirement of having the exact identical input
values for the current floating point operation. To enable
on-demand approximation we add a custom instruction to
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the Instruction Set Architecture (ISA) of the used processor
which essentially adjusts the input data for cache look-up
and by this controls the approximation behavior. Overall
we have devised a ProACt development framework. Our
framework consists of the extended hardware processor1 and
the software tool chain (cross-compiler, linker etc) to build
a complete system for on-demand approximate computing.

In ProACt we target floating point operations for approx-
imation. These operations are essential to modern multi-
media and signal processing engines, and form the basis of
several industry standards [2]. However, complex floating
point operations such as division and square-root are com-
putationally expensive, and usually span over multiple clock
cycles [8, 11]. With ProACt we aim to reduce the number
of clock cycles spent on floating point operations with our
on-demand approximation scheme. Therefore, these oper-
ations and results are stored in an approximation look-up
table. This look-up table is checked first before executing
a new floating point operation. In this step, approximation
masks are applied to the operands before the cache look-
up. These masks are set by the new custom approximation
control instruction (assembly mnemonic SXL2), and they de-
fine the degree of approximation. The SXL instruction also
controls additional flags for approximation behavior such as
enable/disable the cache look-up table. Thus ProACt func-
tions as a normal processor when the approximation look-up
table is disabled.

The custom approximation control instruction SXL is de-
signed as an immediate instruction resulting in very little
software overhead and run-time complexity. SXL is fully re-
solved at the decode stage of the processor pipeline, and
therefore situations such as control and data hazards [15]
are reduced to a minimum. This is significant in a multi-
threaded, multi-process execution environment, and in atomic
operations. Being able to rapidly switch between approxi-
mation and normal modes is an important factor affecting
the throughput of the processor in such contexts.

We have prototyped ProACt in a Xlinix FPGA. Experi-
mental results show the benefits in terms of speed for differ-
ent applications.

To summarize, we make the following key contributions:

• High performance general purpose processor hardware
for on-demand floating point approximation

• Dynamic control of approximation from software

• Complete development framework including processor
hardware and software tool set

1ProACt is based on RISC-V [17], a state-of-the-art open-
source 64 bit RISC architecture
2SXL stands for Set approXimation Level.



The remainder of this paper is structured as follows. In
Section 2 related work is discussed. The ProACt architec-
ture is introduced in Section 3 and details on ProACt evalua-
tion is provided in Section 4. Finally, the paper is concluded
in Section 5.

2. RELATED WORK
There are several works in approximate computing for

hardware and software approximations that range from dual
voltage hardware units, to dedicated programming languages
(see for e.g., [18], [9]). In particular [10] explains a gen-
eralized set of architectural requirements for an approxi-
mate ISA with a dedicated programming language. The
authors discuss approximation variants of individual instruc-
tions that can be targeted to a dual voltage hardware show-
ing the benefits, though only in simulation. Similarly signif-
icant progress has been made on custom designed approxi-
mation processors such as [14], targeted for one particular
area of application. In contrast, ProACt is a general purpose
processor with on-demand approximation capabilities. Ap-
proximations can be even completely turned off in ProACt.
Moreover, our work is focused on functional approximations,
rather than schemes like dynamic voltage/frequency scaling
(DVFS), that involve fabrication aspects, and are tedious to
design, implement, test and characterize. We refer to [18]
for a detailed overview of such techniques.

Several schemes have been presented so far to approxi-
mate a floating point unit. Hardware look-up tables are
used in [8] to accelerate multi-media processing. This tech-
nique called memoing has been shown to be very effective.
Work of [3] extends this further to fuzzy memoization using
approximations. However, none of these approaches use cus-
tom instructions for software controlled approximations and
are limited to the scope of the application it is designed for.
In addition, they do not offer direct support to treat the crit-
ical program segments differently. An example from image
processing is the JPEG image header which contains critical
information, and should not be approximated, whereas the
pixel data content of the image is relatively safe to approx-
imate.

A detailed overview on the ProACt architecture is given
next.

3. ProACt ARCHITECTURE
The ProACt system overview is shown in Fig. 1 on the

left hand side. As can be seen it consists of the processor
hardware and the software units working together to achieve
approximation in computations. To operate the approxima-
tions in hardware we have added the Approximate Floating
Point Unit (AFPU) (a zoom is given on the right hand side
of Fig. 1 and its details are described in the next section). In
normal mode (i.e. approximations disabled), ProACt float-
ing point results are IEEE 754 compliant.

The AFPU is explained next, followed by the ISA exten-
sions for approximation. The ISA and the assembly instruc-
tions are the interface between ProACt hardware and the
applications targeting ProACt. Other details on the proces-
sor architecture and compiler framework is deferred to the
end of this section.

3.1 Approximate Floating Point Unit (AFPU)
The AFPU in ProACt consists of an approximation look-

up table, a pipelined Floating Point Unit (FPU) and an ap-
proximation control logic (see Fig. 1, right hand side). The
central approach used in this work is that the results of the
FPU are stored first, and further operations are checked in

this look-up table, before invoking the FPU for subsequent
computation. The input arguments to the FPU are checked
in the look-up table and when a match is found, the results
from the table are fed to the output, bypassing the entire
FPU. The FPU will process only those operations which do
not have results in the table. This look-up mechanism is
much faster, resulting in significant savings in clock cycles.
Approximation masks are applied to the operands before
checking the look-up table. Thus, the accuracy of the results
can be traded-off using these masks. These approximation
masks are set by the software (via the custom approximation
control instruction SXL, details see next section) and varies
in precision. The mask value (or alternatively called approx-
imation level) denotes the number of bits to be masked from
the LSB, before checking for an entry in the look-up table.

These approximation levels are fully configurable and pro-
vide a bit level granularity to the approximations intro-
duced. The look-up table stores the last N floating point
operations in a round robin fashion. Software controls the
approximation mask, look-up table mechanism, and all these
units can be optionally turned off. This is achieved by ex-
tending the ISA with a custom instruction for approxima-
tion. This ISA extension is presented in the next section.

3.2 ProACt ISA Extension
The software compiler relies on the ISA to transform a

program to a binary executable. Hence the ISA is extended
with a single assembly instruction SXL (Set approXimation
Level) for the software control of approximations. SXL is
designed as an immediate instruction that takes a 11-bit
immediate value. The LSB, when set to ’1’ enables the hard-
ware approximations. The remaining bits are used to set the
approximation level and other special flags. The software
can also enable the approximation unit but set the level as
0. Here it will simply act as a result caching and look-up
mechanism without any approximation.

3.3 ProACt Processor Architecture
The ProACt processor is based on RISC-V architecture [17].

RISC-V is a modern, general purpose, high quality, instruc-
tion set architecture based on RISC principles. Besides,
RISC-V is distributed open source; thus making it well suited
for academic and research work. Moreover several imple-
mentations of this ISA are publicly available. ProACt is
based on one such implementation called Rocket chip [5].
ProACt uses 64-bit addressing scheme with 32 general pur-
pose registers. The pipeline used is a 64-bit, 5-stage, in-order
pipeline. As shown in Fig. 1, the processor has separate L1
and L2 cache memories.

3.4 Compiler Framework and System Libraries
The ProACt compiler framework consists of cross-compiler,

linker, and associated tools based on GNU Compiler Collec-
tion (GCC) [1].

In addition to this compiler framework, a set of system
library routines and macros are provided with the distribu-
tion for the convenient use of on-demand approximations in
software programming. The need for approximations could
be due to a variety of reasons. Architectural choice, ex-
ternal and run-time factors, nature of the algorithm, quick
iterations for initial results, power savings due to approxi-
mations, are only some of these. Moreover, the impact of
approximations may depends on the nature of input data,
as can be seen from the experimental results in Section 4.2.
Thus, by providing a compact set of software routines all
these scenarios are addressed.



Fig 1: ProACt system overview: SW controlled HW approximations

Table 1: ProACt FPGA

hardware prototype details

Platform and Tools:

FPGA: Xilinx Zynq-XC7Z020

Prototype Board: Digilent ZedBoard

FPGA Tools: Xilinx Vivado 2016.2

Hardware Implementation:

Frequency: 100MHz?

LUTs: 42527

Power/MHz: 18.66 mW/MHz

? provided by ZedBoard

4. ProACt EVALUATION
In this section we present the experimental evaluation of

ProACt. First, we give a brief overview of the ProACt
FPGA implementation. The experimental results for dif-
ferent applications using ProACt hardware are presented
afterwards.

4.1 FPGA Implementation Details
We have implemented a ProACt prototype in hardware

using Xilinx Zynq FPGA. We use a fixed 128 entry approx-
imation look-up table throughout our experiments. The ta-
ble size is set to 128 mainly to utilize the FPGA resources for
hardware implementation efficiently. In general, as the table
size increases, the hit-rate and thereby the speed-up result-
ing from approximations increases. The general impact has
already been observed by others [3, 8]. Hence, due to page
limitation we do not repeat the underlying experiments here.
The hardware details of the evaluation prototype is given in
Table 1. This FPGA prototype implementation is the basis
of all experimental results and benchmarks presented in the
subsequent sections.

4.2 Experimental Results
We have used two different categories of applications to

evaluate ProACt. The first one is an image processing appli-
cation and the second set consists of mathematical functions
from scientific computing. These experiments evaluate the
performance of ProACt and also tests the on-demand ap-
proximation switching feature. All applications are written
in C, compiled using ProACt GCC compiler and executed
in the ProACt FPGA hardware prototype. All programs
have a computationally expensive core algorithm which is
the focus of evaluation. A top level supervisor program con-
trols the approximations and invokes this core algorithm.
Thus, the same algorithm is run with different approxima-
tion schemes set by the supervisor program. The scope of
approximations in this experimental evaluation is restricted
to floating point division only. We next discuss the experi-
ments performed in the two categories:

4.2.1 Image edge detection
Table 2 shows the results from a case study on edge detec-

tion [13] using ProACt. Image processing applications are
very suitable for approximations since there is an inherent
human perceptual limitation in processing image details.

The top row of images (Set 1) in Table 2 are generated
with approximations disabled by the supervisory program.
The middle row (Set 2) are generated with approximations

Table 2: Edge detection with approximations
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Set 1: Images with approximation disabled (reference)

Set 2: Images with approximation enabled (20-bit)
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speed-up: 23% speed-up: 35% speed-up: 21% speed-up: 28%
Hardware cycles taken and speed-up with approximations

Images generated from ProACt FPGA hardware
Set 1 reference images are with normal processing
Set 2 images are with approximation enabled (20-bit)

enabled, and the last row shows bar plots for the hardware
cycles taken by the core algorithm, along with the speed-up
obtained. As evident from Table 2, ProACt is able to gener-
ate images with negligible loss of quality with performance
improvements averaging more than 25%. Furthermore, the
speed-up is much higher in images with more uniform pixels,
as evident from the second image, IEEE-754 (35% faster).
This has to be expected since such a sparse input data set
has higher chances of computation reuse.

4.2.2 Scientific functions
We have also evaluated ProACt with several scientific

functions as the core algorithm. A subset of the results is
given in Table 3. The first row (non-shaded) in each set is
the high accuracy version of the algorithms, i.e. with hard-
ware approximations disabled. The second row (shaded)



Table 3: Math functions with approximations

appx cycles |∆y| speed appx cycles |∆y| speed

level n x10-3 up% level n x10-3 up%
(a) (b) (c) (d) (a) (b) (c) (d)

y = sinh(x) y = sinh-1(x)

-1 11083 0.00 0.00 -1 76899 0.00 0.00
20 7791 0.15 29.70 20 72506 3.91 5.71

y = cosh(x) y = cosh-1(x)

-1 10820 0.00 0.00 -1 78616 0.00 0.00
20 7501 0.14 30.67 20 73843 2.14 6.07

y = tanh(x) y = tanh-1(x)

-1 10848 0.00 0.00 -1 7698 0.00 0.00
20 7505 0.10 30.82 20 6135 0.93 20.30

Functions y = f(x) evaluated in ProACt FPGA hardware

Shaded rows are results with approximations enabled.

(a) Approximation level (set with SXL instruction)
-1: high accurate result (approximation fully disabled)
20: 20-bit approximation in float division.

(b) Number of machine cycles (n) taken for computation.
(c) Accuracy, |∆y| = |y-1 - y20| x 10−3

(d) Speed up from approximation =
n-1 − n20

n-1
x 100 %

shows the result with approximations turned on. The abso-
lute value of the deviation of the results (|∆y|) with approx-
imation from the high accurate version is given in the third
column, along with respective speed-up obtained in fourth
column (column d).

The speed-up (d column) and the accuracy loss (c col-
umn) in Table 3 show that on-demand approximations can
significantly reduce the computation load with an accept-
able loss in accuracy. The accuracy loss is only in the 4th

decimal place, or lower in all the experiments. Functions
such as cosh and tanh can be approximated very well with
a speed-up more than 30% with an accuracy of 0.0001

4.3 Discussion
There is a substantial reduction in the run-time and ma-

chine cycles in ProACt with approximations enabled. About
25% speed-up, on an average, is obtained with approxima-
tions in the image edge detection applications shown in Ta-
ble 2. This is also reflected in Table 3, where some of the
mathematical functions are more than 30% faster. The dy-
namic power consumption of the system also decreases when
approximations are enabled since this speed-up directly cor-
responds to a reduction in the whole hardware activity.

The throughput and performance of a system, taken as a
whole, is largely governed by Amdahl’s law [4]. I/O read and
write are the main performance bottleneck in our ProACt
system prototype. Consequently we have implemented all
the algorithms to read the input data all at once, process,
and then write out the result in a subsequent step. To make
a fair comparison, the costly I/O read-write steps are not
accounted in the reported speed-up.

It is worth mentioning that all experimental results pre-
sented in Tables 2, 3 are compiled with GCC flag -ffast-math
[1]. This flag enables multiple compiler level optimizations
such as constant folding for floating point computations,
rather than offloading every operation to the FPU hardware.
Thus, it potentially optimizes the floating point operations
while generating the software binary itself, and the speed up
due to ProACt approximation adds on top of that.

5. CONCLUSIONS
In this work, we presented ProACt - a Processor for high

performance on-demand Approximate Computing. ProACt
is FPGA proven, and comes with a complete open-source de-
velopment framework. Further, we have demonstrated the
advantages of ProACt using image processing and scientific
computing programs, that show up to 30% performance im-
provement with dynamic approximation control. In future
we aim to extend ProACt with formal methods such as [7]
to guarantee the bounds of approximation.
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ProACt repository: https://gitlab.com/arunc/proact-processor
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