
Early SoC Security Validation by VP-based Static
Information Flow Analysis

Muhammad Hassan1,2 Vladimir Herdt2 Hoang M. Le2 Daniel Große1,2 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
muhammad.hassan@dfki.de {vherdt,hle,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Security is one of the most burning issues in embed-
ded system design nowadays. The majority of strategies to secure
embedded systems are being implemented in software. However,
a potential hardware backdoor that allows unprivileged software
access to confidential data will render even the perfectly secure
software useless. As the underlying SoC cannot be patched after
deployment, it is very critical to detect and correct SoC hardware
security issues in the design phase. To prevent costly fixes in later
stages, security validation should start as early as possible. In this
paper, we propose a novel approach to SoC security validation
at the system level using Virtual Prototypes (VP). At the heart of
the approach is a scalable static information flow analysis that
can detect potential security breaches such as data leakage and
untrusted access; confidentiality and integrity issues, respectively.
We demonstrate the applicability of the approach on real-world
VPs.

I. INTRODUCTION

The increasing functionality and connectivity of embedded
devices such as in the Internet-of-Things have raised their
requirements on security significantly. This is due to the
increasing amount of sensitive information and personal data
being stored in those devices as well as the security-critical
functions they perform. Secure embedded systems cannot be
achieved by focusing on just the software or the hardware
part, but rather require holistic approaches. As the number
of vulnerabilities in software/firmware historically dominates,
security strategies and validation approaches for embedded
software have received considerably more attention and also
benefited from traditional software security research. Formally
verified operating systems (e.g. seL4) and compilers (e.g.
CompCert) or mature information flow tracking approaches
are just to name a few. However, hardware security is at least
equally important, since a potential hardware backdoor that
allows unprivileged software access to confidential data will
render all software/OS-level protection mechanisms useless.
Consider for example a recent discovered exploitable bug [1]
in the Actel ProASIC3 FPGA, which is claimed to be one
of the most secure devices in the industry and being used in
military and other critical application domains. A backdoor
via JTAG allows an attacker to get hold of cryptography keys
as well as other data from the FPGA.

Furthermore, fixing hardware security issues after deploy-
ment is always associated with very high cost. The reason is

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project CONVERS under contract
no. 16ES0656, the German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1, and the University of Bremen’s graduate
school SyDe, funded by the German Excellence Initiative.

that the underlying SoC cannot be patched after production.
Therefore, it is very critical for the embedded industry to
move rapidly from considering security as an afterthought
to integrating it in the SoC design process. Still, current
practice and research on SoC security validation focuses
mostly on the Register-Transfer Level (RTL) and below.
Many approaches for Trojan/backdoor identification and IC
counterfeit detection exist. Verification of hardware security
architectures (e.g. ARM TrustZone) and security modules
starts only with the availability of RTL designs. While these
steps are indispensable, ample opportunities to save time and
cost by prioritizing security earlier at the system level have not
been yet fully exploited. One of the promising directions is to
leverage Virtual Prototypes (VPs) that are now an established
industry practice for early software development and early
software/hardware validation. VP models, typically written in
SystemC [2], [3] using Transaction Level Modeling (TLM)
techniques, are abstract, executable models of underlying SoC
hardware components and available much earlier than RTL.
Thus, VP-based security validation would enable to detect and
correct many SoC hardware security issues very early.

Information Flow Tracking (IFT) has become one of the key
techniques in security research. The basic idea is to control
how (labeled) information is propagated by the system under
consideration. This tracking allows to enforce policies for
secure information flow such as confidentiality and integrity.
Both dynamic and static approaches have been proposed (see
e.g. [4] for a survey on IFT approaches for software security).
For hardware designs, researchers have also started to apply
IFT in the last decade [5], [6], [7]. More recently, approaches
for RTL have been emerging [8], [9], [10]. At the system level
using VPs, IFT has to the best of our knowledge not yet been
considered.

In this paper, we present a novel VP-based IFT approach,
which is to the best of our knowledge the first of its kind.
Essentially, our approach operates directly on the SystemC
VP models by combining several passes of static analysis.
The main difficulties to be overcome here are to deal with
the challenging language C++, which SystemC is based on, as
well as the specific semantics of TLM on-chip communication
via TLM-2.0 payload. To this end, we build on the flexible
compiler infrastructure provided by LLVM/Clang to perform
in interleaved manner connectivity analysis, access control
extraction, call-graph analysis, data flow analysis and static
taint tracking to identify static paths that violate specified

secure information flow properties. These potential vulnerable
paths are reported back to user for further inspection. Our
static analysis is sound, i.e. it never misses a violating path if
such exists.

The remainder of the paper is structured as follows. The
paper starts with introducing the literature review in Section II.
Then, the overview of our proposed approach with a mo-
tivating example is presented in Section III. The proposed
methodology for static information flow analysis is introduced
and explained in Section IV. Experiments on a real-world
VP to show the efficacy of our approach are presented in
Section V, followed by limitations in Section VI. Finally, the
paper is concluded in Section VII.

II. RELATED WORK

The information flow properties used in this paper are in-
spired by [11]. This work verifies these properties on firmware
using symbolic execution. Such an analysis can conceptually
also be applied to SystemC VPs, however, applying symbolic
execution to SystemC VP models is very challenging and
a satisfactory solution still has to be researched. Our static
analysis is a more lightweight solution, which expectedly also
scales better on real-world VPs.

With respect to hardware IFT, it is worth mentioning
the language-level idea pursued by e.g. Sapper [8] or
SecVerilog [9]. They extend the type systems of existing
languages at the RTL abstraction to include security labels.
Then, information flow properties can be verified statically
by performing type checking. Impressive results based on this
idea have been achieved recently in [12]. The approach de-
scribed there is capable to verify a simplified implementation
of TrustZone written in SecVerilog. While such language-level
approach is very amenable for static IFT, it puts a burden on
users to add appropriate security labels as well as to understand
their semantics in combination with the type system, basically
requiring users to learn a new language.

A more practical approach is to perform IFT (with some
trade-offs) on hardware designs written in existing languages
widely used in the industry. GLIFT [6], [7] applies IFT on
gate-level descriptions and recently, RTLIFT [10] on RTL de-
scriptions. These approaches are suited for individual IP cores
and circuits. Our approach, on the other hand, operates on the
higher level of abstraction of SystemC TLM-2.0 and targets
information flow at system level between IP components of a
SoC.

As mentioned earlier, our approach is to the best of our
knowledge the first attempt to leverage VP models for system-
level IFT. We believe this new promising line of research will
prove to be fruitful for making security validation truly a cross-
cutting and cross-level activity in the embedded design flow.

III. APPROACH OVERVIEW

In this section we give a high-level overview of our ap-
proach starting with the threat model we consider. Then, we
discuss a motivating example and show the overall workflow
of the approach.

MPU1

X
Memory1
(Keys)

Memory0
(Regular)

Interconnect

Memory2
(Buffer)

MPU2

Fig. 1. Motivating Example

A. Threat Model

Considering a SoC, we want to protect assets like for
instance: cryptographic keys, digital certificates, signatures,
classified text, authentication data from id sensors or register
settings. Transporting the sensitive data is performed through
buses between the different IP components of the SoC. Hence,
for our proposed VP-based IFT approach the analysis of the
information flow using TLM communication between the IP
blocks is of particular interest. In this context, confidentiality
(an IP creates an unwanted information flow from a target IP in
retrieving secret data which this IP is not allowed to access),
integrity (an IP presents itself as a different IP to create an
information flow to some target IP to modify some data),
availability (an IP may use some shared resource to the extent
that other IPs cannot use that shared resource) and authenticity
(an IP is actually the rightful initiator of the transaction) are
the general security concerns. We focus only on confidentiality
and integrity.

B. Motivating Example

We present here a SystemC TLM-2.0 example (Fig. 2) that
will be used to showcase the main ideas of our approach
throughout this paper. For brevity, we refrain from giving
a proper introduction to SystemC. The SystemC TLM-2.0
constructs and semantics necessary to understand the example
will be explained as needed. The example presents a simplified
SoC consisting of a regular MPU (Microprocessor) (MPU1),
a trusted MPU (MPU2), a regular memory (Memory0) and a
confidential memory with security keys (Memory1) as shown
in Fig. 1. The buffer (Memory2) is initially not available.
The modules are connected to an interconnect which routes
transactions where the MPUs act as initiator and the memories
as target. The communication uses a 32-bit address mode as
follows: 1) bits 0 to 7 - local address inside a memory; 2)
bits 8 to 15 - memory address; 3) bits 16 to 23 - MPU ID;
4) bits 24 to 31 - unused. Their behavior is implemented
in thread functions (MPU1: thread_proc() Line 3 - MPU2:
thread_proc() Line 16), and b transport functions (Intercon-
nect: b_transport() Line 26 - Memory: b_transport() Line 46).

The MPUs execute instructions that initiate TLM-2.0 trans-
actions (i.e. read or write) to the memory. In this illustrative
example, the actual instruction behavior is abstracted away
as we only focus on the communication. The Interconnect
receives the transaction and checks the address generated by
MPUs (Line 27, to Line 35), accordingly routes the TLM
2.0 transaction to the corresponding memory. The memory
receives the transaction, checks the cmd from transaction, and
writes to (Line 56) or reads from (Line 54) the memory.

A more formal representation of the information flow poli-
cies of the SoC will be given later in Section IV-A1. The

1 struct MPU1: sc_module {
2 //...
3 void thread_proc() {
4 tlm::tlm_generic_payload* trans = new

tlm::tlm_generic_payload;
5 //...
6 trans->set_data_ptr(reinterpret_cast<unsigned

char*>(&data));
7 //...
8 socket->b_transport(*trans, delay);
9 //...

10 }
11 int data;
12 };
13
14 struct MPU2 : sc_module {
15 //...
16 void thread_proc(){
17 //...
18 }
19 //...
20 };
21
22 struct Interconnect : sc_module {
23 SC_HAS_PROCESS(Interconnect);
24 Interconnect(sc_module_name name) { ... }
25 //...
26 void b_transport(int id, tlm::tlm_generic_payload&

trans, sc_time& delay) {
27 masked_addrs = trans.get_address();
28 mpu_nr = (masked_addrs >>16) & 0xFF;
29 address = masked_addrs & 0xFF;
30 mem_nr = (masked_addrs >> 8) & 0x3;
31 if ((mpu_nr == 1) && (mem_nr == 0))

32 (*initiator_socket[0])->b_transport(trans,delay);
33 else if ((mpu_nr == 2) && (mem_nr == 1))
34 (*initiator_socket[1])->b_transport(trans,delay);
35 else
36 trans.set_response_status(tlm::TLM_OK_RESPONSE

);
37 }
38 sc_dt::uint64 addrs;
39 sc_dt::uint64 masked_address;
40 unsigned int mem_nr;
41 int mpu_nr;
42 };
43
44 struct Memory : sc_module {
45 //...
46 virtual void b_transport (tlm::tlm_generic_payload&

trans, sc_time& delay) {
47 tlm::tlm_command cmd = trans.get_command();
48 sc_dt::uint64 adr = trans.get_address();
49 unsigned char* ptr = trans.get_data_ptr();
50 unsigned int len = trans.get_data_length();
51 unsigned char* byt = trans.get_byte_enable_ptr();
52 unsigned int wid = trans.get_streaming_width();
53 //...
54 if (cmd == tlm::TLM_READ_COMMAND)
55 memcpy(ptr, &mem[adr], len);
56 else if (cmd == tlm::TLM_WRITE_COMMAND)
57 memcpy(&mem[adr], ptr, len);
58 //...
59 trans.set_response_status(tlm::TLM_OK_RESPONSE);
60 }
61 int mem[MEMORY_SIZE];
62 };

Fig. 2. SystemC TLM 2.0 example with two MPUs and two memories

intuition here is that MPU1 should not be able to access
Memory1 which holds the security keys. The access control
policies that are implemented in the Interconnect to enforce
this are as follows:

1) if ((mpu nr == 1) && (mem nr == 0))
2) if ((mpu nr == 2) && (mem nr == 1))

Such access control policies are commonly implemented in
components with routing functions. Intuitively, the access con-
trol policies, when properly implemented, would be enough
to achieve the isolation of the untrusted MPU1. This will be
confirmed later by our analysis as detailed in Section IV-C.
Now consider a new scenario that a designer decides to add
an additional buffer (Memory2), shared by both MPUs, for
buffering data for overall performance enhancement. However,
with the shared buffer indirect information flow between
Memory1 and MPU1 exists. A software adversary can use
MPU2 to read the confidential keys from Memory1 and write
them into the buffer. Then MPU1 can read the keys from the
buffer. Such indirect information flow (via another IP) is not
trivial to detect, especially without an automated analysis like
our proposed VP-based IFT approach.

C. Overall Workflow

The overall workflow of our data flow driven information
flow approach for SystemC TLM 2.0 is shown in Fig. 3.
The approach is based on a static analysis, hence it needs
to be only run once to validate the information flow security
properties. Essentially, our approach uses data flow analysis
to perform static taint analysis, and combines this information
with system binding information and call-graphs to validate
the security properties defined for a SoC.

First the security properties are read, followed by identifi-
cation of source and sink (destination) of each property to be
verified in different paths. From the elaboration phase of the
system, connectivity of VPs is identified (binding information).

This helps in identifying how data flows through the system
(see Section IV-A2).

It is followed by access control information extraction (see
Section IV-A3). It identifies the set of all access control poli-
cies implemented inside a system. In the next step construction
of call-graphs is performed to be used in analysis at the end.

The data flow analysis identifies the set of all data flow
values computed at different points in a system. Due to static
nature, the analysis computes an over-approximation of the
data flow values. This data flow information is extended to
perform taint analysis between source and sink of each prop-
erty. All the tainted variables from the source are identified
wrt. SystemC.

In the next step, all the information from aforementioned
steps is evaluated and combined to obtain the final access
paths and extended paths between source and sink for each
property. Both the paths are then filtered using predicates to
ensure the validation of property. Essentially, the result shows
which security properties have been satisfied and which are not
satisfied at the end. A property is satisfied iff one of the three
following conditions is satisfied : 1) There exists no access
paths or extended access paths between a source and sink. 2)
There exists no access paths or extended access paths between
any tainted variable from source and sink. 3) The predicates
of the property fail completely.

Our approach identifies the failing paths for each unsatisfied
security property, and allows the verification engineer to focus
his efforts to improve the design by improving either access
control policies or information flow policies.

In the following we detail the ingredients of our approach
as well as demonstrate them using the motivating example.

IV. DATA FLOW DRIVEN INFORMATION FLOW ANALYSIS

A. Information Extraction
1) Information Flow Property Specification: Information

flow can be used to model various security properties i.e.,

Clang
Call-graph

Data flow Info

Binding Info

Access Ctrl

Static
Taint

Analysis

Information
Flow

Analysis

Sources
(.cpp)

Properties
(.txt)

Results

1.AST Gen
2.CFG Gen

1.Infomation Extraction
2.Def-Use pairs

1.Tainted variables:
i.In function

ii.Propagation

1.Paths:
i.Access paths

ii.Extended access paths

Fig. 3. Information flow analysis overview

confidentiality, integrity, availability, isolation, and hardware
trojans etc. Our approach focuses only on two widely used
security properties; confidentiality and integrity based on the
principle of non-interference. An information flow property
defines a data flow relation among two entities source, and
sink, where the data is allowed or disallowed to flow under
some certain conditions. These properties need to be defined
in a way to capture the complete flow without missing out
on any information. For SystemC TLM 2.0, the classical
property specification does not work as the classical speci-
fication always considers an input port and an output port of
the system as untrusted/trusted information sources. Whereas
in SystemC TLM 2.0, the VPs interact through transactions,
hence, the property specifications and definitions need to
adapt. Therefore, we define an information flow property as a
tuple (source, sourcep, op, sink, sinkp) which depending on the
property being defined (confidentiality/integrity), comprises of
the following elements:

1) source - The generation point of a transaction / variable
inside a VP.

2) sourcep - a predicate associated with source which
specifies under what condition is the data valid at source

3) op - operator like no flow.
4) sink - The point in program where the source assigns

some value.
5) sinkp - a predicate associated with sink which specifies

under what condition is the data valid at sink
Information is said to flow between source and sink when

there is a static path between the two entities, and sourcep
predicate and sinkp predicate are satisfied. Whereas, informa-
tion is said not to flow when there is no static path even when
sourcep and sinkp are satisfied. This could be due to several
underlying implementation issues.

For our analysis, we only focus on op no flow, which inhibits
the flow of information between source and sink to make the
VP secure. Also, other op like flow can be defined as a dual
of no flow for every case.

2) VP Binding Information: In a SoC, VPs are connected
to each other in a certain way which affects how infor-
mation is propagated. Our analysis defines a connection of
two VPs when their corresponding sockets (initiator socket
and target socket) are connected using SystemC TLM 2.0
b transport function call. The way these functions are reg-
istered, and bound during elaboration phase is vital because
each VP in TLM 2.0 setting contains a b transport function.
If binding information is not available, the connectivity of

modules cannot be identified statically (before execution).
Also, without this information, a b transport function call
from a wrong VP can be analyzed because of similar function
name, resulting in further over-approximation. This binding in-
formation helps in constructing call-graph (see Section IV-A4).

3) Access Control Extraction: Our analysis extracts all the
access control conditions from each function of a VP. An
access control condition is defined as a condition in if-else
control flow structure, or in while and for loops. Our analysis
extracts this information without expanding any functions and
stores it. This is useful for the analysis in that it tells which
VPs are allowed to access which VPs in a complete SoC.
Access control conditions can be based on VP id, VP address,
or the socket id etc. Generally, this information is embedded
in Interconnects which act as transaction routers in SystemC
TLM 2.0.

4) Call-Graph Construction: Our static analysis performs
call-graph construction once in the start. Call-sites are not
expanded at this stage i.e. before data flow analysis. Also, there
are a lot of SystemC specific function calls which are added to
the call-graph but they are never expanded. For the commonly
occurring system function calls, their behavior is already
defined inside the analysis, for e.g., memcpy() etc. This call-
graph is used to guide the analysis to propagate the information
to the correct function. Hence, it uses binding information
from Section IV-A2 to correctly identify the function call from
the correct VP.

B. Static Analysis

1) Data Flow Analysis: A data-flow analysis algorithm
takes as input the SoC under test to compute test objectives for
each VP (i.e., def-use pairs). A reaching uses procedure - an
instance of data flow analysis techniques is used to identify
test objectives (i.e., def-use pairs) for a VP, which actually
answers such a question: for each variable defined, which uses
can potentially use the values?

Our data flow analysis is inspired from [13] but we do
not use the associations as defined. Rather, we only define
definition-use (def-use) pairs according to their classification
to help in our analysis. Like the def-use pairs across threads.
Our static analysis defines a def-use pair as an ordered triple
(x, d, u) such that d is a statement where variable x is defined
and u is a statement where x is used. Furthermore, there is
a static path from d to u in the program without re-definition
of x in-between. Please note, there is a static path from every
context switch statement from one thread to the start of a
transition of every other thread. A transition starts at the
beginning of a thread and right after a context switch. Based
on this general observation, we define a du-path as a static
path between d and u without re-definition of x.

Similarly, we classify event-based synchronization of
SystemC by means of the wait/notify function. This can also
be considered as a data flow relation . The wait can be
considered a definition which suspends the active thread, while
the notify is considered a use.

The analysis identifies all possible def-use pairs of a VP by
performing intra-function analysis, and inter-thread analysis.
Inter-function analysis is deliberately not performed as it will
be compensated for during the taint analysis.

2) Static Taint Analysis: Static taint analysis identifies how
a single VP or a variable inside a VP affects or taints other
VPs inside a system. The core idea behind the taint analysis
wrt. SystemC TLM 2.0 is that any VP inside the SoC when
generates a transaction, all the entities and paths it takes to
reach the destination entity are also compromised. Because
if the generated transaction is malicious, the malicious value
can propagate throughout the system and at the end leak
some data. Not only does the transaction leaks the data, but
all the variables in between also become potential security
risks. Static taint analysis may be viewed as a conservative
approximation of the full verification of non-interference or
the more general concept of secure information flow. Because
information flow in a system cannot be verified by examining
a single execution trace of that system, the results of taint anal-
ysis will necessarily reflect approximate information regarding
the information flow characteristics of the SoC to which it is
applied. Our taint analysis uses the data flow information (def-
use) pairs from Section IV-B1, and combines it with security
properties information from Section IV-A1.

The source of each property acts as a taint source, it can
be a transaction generated in a VP, or it can be an internal
variable or register. The sink in each property acts as the
final destination where taint source propagates. We define a
tainted variable as a variable that is affected by taint source
directly or indirectly, for e.g., direct assignment from source
or an assignment from a variable which was tainted by source.
Hence, for a taint to propagate to sink, it is not necessary that
the taint source itself has to propagate, rather any of its tainted
variables can also propagate. Our static analysis builds a graph
of all tainted variables belonging to one taint source. The
transfer function for assignments taints the left-hand side if any
of the operands on the right-hand side is tainted. Assignments
to arrays and memories are treated conservatively by tainting
the entire array/ memory. Because at static time we do not
know the exact address location which will be accessed.

3) Information Flow Analysis: Our information flow anal-
ysis interleaves call-graph information, access control infor-
mation, VP binding information, security properties and data
flow analysis to detect vulnerable paths. We define two kinds
of paths, 1) Access paths - a path between source and sink.
2) Extended access paths - combination of access paths.

Each access path is defined as a combination of nodes where
each node represents an entity. A node can be from one of the
four categories: 1) Taint source node - tsrc. 2) Function call
node - fcall. 3) Access control node - actrl. 4) Taint sink node
- tsink.

A taint source node always defines a starting point of an
access path, and taint sink node always ends the access path.
If there is no taint sink found (i.e., the information does not
reach it) the access path is not created at all. A function call
node is created when taint propagates to the next function, and

an access control node is created when the path encounters
access control condition. Each node carries with itself some
useful information which helps in the analysis. For example,
the node contains the taint source name, the calling function’s
name, the called function’s name, their corresponding classes,
and ids etc (see Fig. 4).

The analysis is done in three stages: 1) Forward analysis,
2) Backward analysis, 3) Predication. The forward analysis
is carried out first, starting from first function where the
taint source is defined. By definition of a taint source, we
mean when the source is created (formal parameters of a
function definition do not qualify for that). A taint source
node is added as the starting point of the path. Then data flow
analysis information i.e., def-use pairs information is used to
deduce if taint sink lies in the same function. If it does, a
taint sink node is added to the path, hence, an access path
created between these two points. If the sink is not in the
same function, the call-graph information is combined with
data flow information to find the taint propagation. In case of a
function call, a function call node is added to the path, and the
actual parameters are mapped on to the formal parameters of
the function followed by retrieving the data flow information
of the callee. If an access control exists, a corresponding node
is inserted in the path. Once the complete access paths for
all the security properties are created, the backward analysis
starts. During the creation of an access path, all the irrelevant
information is abstracted away, i.e., if a function is being
called without taint source / variables, or if there exists an
access control not affecting taint source / variable. Because
such information does not help in any way in information
flow analysis.

The purpose of backward analysis is to detect if there is
any other access path leading to the same taint sink. Our
analysis uses forward analysis information and overlaps the
access paths to check which access path ends at the sink. The
starting point of the path can be any point, except the taint
source. Because in that case a loop will be created. When the
path is found, it is added to the path found by forward analysis.
Then it is checked if this new path propagates this information
anywhere else. If it propagates, the paths are added to the
initial path and at the end, a complete extended access path
is created. One thing to keep in mind, extended paths will
always be equal to or greater than access paths, but never
less. Because, essentially extended paths are a combination of
access paths, and if there is only one combination possible for
each path, then access paths equal extended paths.

In the last stage, predication is performed by applying the
sourcep predicates and destp predicates for each property on
to the extended paths found. A property is satisfied if the
predicates are true and there is no static path between source
and sink, or if the predicates are false.
C. Illustration

We use the same SystemC TLM 2.0 example as shown
in Fig. 2 to illustrate our methodology. The information
flow properties are deduced from the policies defined in
Section III-B, i.e.:

tsrc fcall actrl fcall actrl

trans
thread_proc
MPU1
Id: 1
loc: 4

trans
b_transport
Interconnect
thread_proc
MPU1
loc: 8

trans
(mpu_nr == 1) &
(mem_nr ==0)
b_transport
Interconnect
loc: 31

tsink

trans
b_transport
Memory
b_transport
Interconnect
loc: 32

trans
(cmd == write)
b_transport
Memory
loc: 56

mem
b_transport
Memory
Id: 0
loc: 57

Fig. 4. One access path for example shown in Fig. 2

1) source: trans, sourcep: mpu nr == 1, op: no flow, sink:
mem, sinkp: mem nr = 1

2) source: trans, sourcep: mpu nr == 2, op: no flow, sink:
mem, sinkp: mem nr = 0

When the information flow analysis is executed, the first
property is picked and all the paths with trans as source and
mem as sink are searched. The availability of paths signify that
there is a static path between a source and a sink, it can be
within one function or spread over multiple functions, and it
can be passing through various access control mechanisms.
The analysis identifies four paths originating from MPU1
and four paths originating from MPU2. One of the paths
originating from MPU1 and terminating at Memory0 is shown
in Fig. 4.

The starting node, i.e., tsrc contains the information that
it represents variable trans, and its originating function is
thread proc, which belongs to class MPU1 with registered id
1 (id extracted from elaboration phase). Similarly, other nodes
also contain useful information.

In the next step, the analysis picks first path and checks
if the sink of first path overlaps with the sink of any other
path, and finds that MPU2 access mem. So, this new path is
appended to the actual path. In the third step, the analysis
checks if the newly added path access sink mem at any other
location in the system, and finds that MPU2 access mem in
Memory1. It recursively checks for any other similar paths
and does not find anything. The analysis finds all the extended
paths in similar fashion and stores them. The same is done for
second property. We get the following extended paths for first
property:

1) MPU1 −→ Memory0 −→ MPU2 −→ Memory1
2) MPU1 −→ Memory1 −→ MPU2 −→ Memory0
3) MPU2 −→ Memory0 −→ MPU1 −→ Memory1
4) MPU2 −→ Memory1 −→ MPU1 −→ Memory0
Due to space limitation, each extended path is shown by

the VP it originates from and where it propagates. The long
arrows signifies flow of information between two VPs. This
information flow could be passing through access control
policies or it could be a direct path. For example, for the first
extended path trans generates in MPU1, and it propagates to
mem in Memory0. Then this mem in Memory0 can be accessed
by MPU2’s trans. Finally, trans in MPU2 can propagate to
mem in Memory1. Essentially, each VP’s name shown in
extended path is an access path as shown in Fig. 4. If more
VPs are connected in between source and sink, this extended
path would also get long.

At the end predication is performed by applying source
predicates sourcep and sink predicates sinkp. This process

1
2 if ((mpu_nr == 1) && (mem_nr == 0))
3 (*initiator_socket[0])->b_transport(trans,delay);
4 else if ((mpu_nr == 2) && (mem_nr == 1))
5 (*initiator_socket[1])->b_transport(trans,delay);
6 else if (mem_nr == 2)
7 (*initiator_socket[2])->b_transport(trans,delay);
8 else
9 trans.set_response_status(tlm::TLM_OK_RESPONSE);

10

Fig. 5. SystemC TLM 2.0 example with two MPUs and three memories

narrows down the number of paths as the predicates are
applied. For example, initially first extended path related to
first property is analyzed. The sourcep predicate states that
the trans is from MPU1, hence using the information gathered
in aforementioned sections, it is deduced that indeed this
predicate is true. Because sourcep has been satisfied, the next
predicate sinkp is checked, which states that mem should
be in Memory1. The analysis does not find mem in MPU1.
It proceeds further to Memory0 while passing through the
access control policies. It checks if MPU1 is allowed to access
Memory0 (Line 31 - Fig. 2), and finds that it is allowed.
Then, the analysis deduces that Memory0 is not allowed to
be accessed by MPU2 (Line 33 - Fig. 2), and returns false.
When the access control condition is false, that means the
information will not be allowed to flow further, and hence
we stop searching in this path further. The second path is
analyzed and again it is found that MPU1 is not allowed to
access MEMORY1. Hence, there exists no path that allows
MPU1 to access Memory1. In the similar fashion, property 2
is also satisfied. Hence, the the system is shown to be secure.

Now consider a new scenario that a designer decides to
add an additional buffer (Memory2), shared by both MPUs,
for buffering data for overall performance enhancement. The
b transport() function of Interconnect (Line 26 - Fig. 2) is
updated with the following information as shown in Fig. 5.
The rest of the function implementation remains the same.

When our analysis is executed once again, it detects that
both the security properties fail now. Upon inspection of
the extended paths, it is found that now MPU1 can access
Memory1 using the shared buffer - Memory2. Similarly, MPU2
can access Memory0. This indirect information flow (via
another IP) is not trivial to detect. To solve the problem, for
example, another buffer should be added and the sharing of
resources is prohibited using the b transport code shown in
Fig. 6 where each memory is given exclusive access. A more
general solution is to add a memory management unit.

1
2 if ((mpu_nr == 1) && (mem_nr == 0))
3 (*initiator_socket[0])->b_transport(trans,delay);
4 else if ((mpu_nr == 2) && (mem_nr == 1))
5 (*initiator_socket[1])->b_transport(trans,delay);
6 else if ((mpu_nr == 1) && (mem_nr == 2))
7 (*initiator_socket[2])->b_transport(trans,delay);
8 else if ((mpu_nr == 2) && (mem_nr == 3))
9 (*initiator_socket[3])->b_transport(trans,delay);

10 else
11 trans.set_response_status(tlm::TLM_OK_RESPONSE);
12

Fig. 6. SystemC TLM 2.0 example with four memories

The information flow properties are also updated with two
new properties:

1) source: trans, sourcep: mpu nr == 1, op: no flow, sink:
mem, sinkp: mem nr = 3

2) source: trans, sourcep: mpu nr == 2, op: no flow, sink:
mem, sinkp: mem nr = 2

After executing the analysis again, all the properties are
found to be satisfied again. This example demonstrates the
capability of our approach to detect omission of access control
policies.

D. Implementation Details

In this section we describe the implementation details of
our methodology briefly. The static information flow analysis
is implemented using the LibTooling library for Clang com-
piler [14]. Clang generates an Abstract Syntax Tree (AST)
of the SystemC TLM 2.0 source code. The AST is parsed
to extract the required information to perform static analysis.
The implementation parses the AST multiple times, and in
each iteration extracts a different set of information. We next
discuss important implementation details.

In the first iteration, the VP binding information is extracted
by looking for the AST nodes related to elaboration phase.
The binding of VPs is possible in different ways depending
on the implementation of the SystemC design, i.e., using bind
keyword or using AMBA binders.

In the next iterations, access control information and call-
graph information is extracted using the aforementioned data
extraction methods. The locations of use are also extracted to
help with the analysis. Specially the bounds of access control
information which define a context of program statements.
All the extracted information is stored in data structures for
performing data flow analysis, taint analysis, and information
flow analysis.

V. EXPERIMENTAL RESULTS

In this section we present a case study to demonstrate
our information flow analysis approach for SystemC. We
consider the LEON3-based VP SoCRocket [15] which has
been modeled in SystemC TLM 2.0. The complete VP consists
of more than 50,000 lines of code. The VP combines several
IPs working together in master or slave mode. The VP is
designed to be bus-centric, i.e. the IP cores are connected
through an on-chip bus. The AMBA-2.0 AHB/APB (Advanced
High-performance Bus / Advanced Peripheral Bus) bus is used
as the common on-chip bus. In the VP, the LEON3 processor
is directly connected with AHB as AHBMaster device, and
AHB/APB Bridge is connected as a AHBSlave controller
which controls the communication between AMBA AHB
and AMBA APB devices. Various TLM IPs are connected
to the AMBA APB bus like UART, GPTimer, and IRQMP.
A memory controller is connected as AHBSlave with AHB
bus which serves several memories. Essentially, AMBA-2.0
AHB/APB buses are complex interconnects which take in the
transactions generated by the connected IPs, and forwards
them to the intended IP based on the address and/or sockets.
In the following we report results for three experiments
integrating different IPs into SoCRocket.

A. CRYPTO AES IP

In the first case study, we consider the case of integrating
two TLM IPs with SoCRocket: 1) A TLM IP CRYPTO-AES,
a cryptographic hardware accelerator implementing AES-128
algorithm designed specifically to compute cipher text for
the given plain text efficiently; 2) A secure memory IP
SEC-MEMORY pre-loaded with cipher keys.

The CRYPTO-AES engine works in Cipher Block Chaining
(CBC) mode, i.e. an initialization vector, and a plaint text
are given as input to the IP, where plain text and initial-
ization vector are XORed before being written on input of
IP, key is read from SEC-MEMORY, and the IP generates
a cipher text. This cipher text is fed back to the crypto-
graphic engine as the new initialization vector for the next
iteration. The IP CRYPTO-AES computes its round keys on
the fly, instead of computing them beforehand and storing
them in SEC-MEMORY . The LEON3 processor initializes
CRYPTO-AES by configuring its configuration registers.

Because of the nature of SEC-MEMORY, i.e. it stores cryp-
tographic keys, our information flow policy is that the LEON3
processor should not be allowed to read (confidentiality) or
write (integrity) these keys from SEC-MEMORY. Hence, the
following security property covering both confidentiality and
integrity is derived:

1) source: trans, sourcep: IP ADDR == 0x1, op: no flow,
sink: memory buffer, sinkp: MEMORY ADDR == 0x4

IP ADDR = 0x1 refers to the address of LEON3 and
MEMORY ADDR = 0x4 to the address of SEC-MEMORY.
With our approach we observed that the security property
failed. Our methodology was able to report information flow
between LEON3 and SEC-MEMORY through the debug in-
terface. Normally, the debug interface is constrained to out-
put limited information or dummy information in case of
cryptographic algorithms, but it was not the case. We fixed
the failing path by restricting the debug interface access
to CRYPTO-AES only. The property was satisfied on next
analysis run. Sometimes, these intentional (supposedly non-
malicious) flaws can occur in hardware designs, specially
when the design team includes undocumented features for
assistance in testing. These flaws can be exploited to get access
to trusted data. The analysis reported a computation of 37
access paths, and 79 extended access paths. In these paths,
only two extended paths (one for read access, and one for
write access to debug interface) allowed the information flow
while the others did not. The analysis took 51.63 seconds to
report the results. 0% false positives were reported because of
concrete path conditions.

B. NFC IP

For the second case study, we integrate a Near-Field Com-
munication (NFC) interface IP with SoCRocket. Essentially,
it is a communication protocol that enables two devices
to communicate when brought in close proximity. NFC is
now widely used in smartphones as a mode of contactless
payment system, for sharing files and photos between two

devices, and as e-ids (electronic ids) etc. Because of high-
speed communication, the data is stored in memory using
DMA (Direct Memory Access). Most current SoCs involve
DMA to the memory through a dedicated DMA controller to
reduce the workload on the processor cores.

Due to the nature of NFC IP and overall system security, the
security policy states that system-specific addresses (could be
pointing to configuration registers of SoC) in memory should
not be accessed by the NFC IP (read or write). Therefore, we
derive the following security property:

1) source: trans, sourcep: IP ADDR == 0x5, op: no flow,
sink: main memory, sinkp: MEM SPACE ADDR <
0x000F0000

IP ADDR = 0x5 refers to NFC IP in SoCRocket, whereas
MEM SPACE ADDR < 0x000F0000 classifies the system-
specific addresses the NFC IP shall not access.

Our approach detects an access path between NFC and
main memory via DMA, thus the security property is violated.
The reason is that the requested DMA address (from the NFC
IP) is not checked against disallowed address ranges (missing
bounds). The reported number of access paths, and extended
access paths was 37 and 80, respectively. The analysis took
55.01 seconds to invalidate the property. 0% false positives
were reported because of concrete path conditions. It clearly
shows that IP development team and SoC integration team
should collaborate actively to avoid such security vulnerabili-
ties.

C. Smart Card Reader IP

For the third case study we integrate a smart card reader
into the system. It reads the data from card and stores it in a
secure section of on-chip memory (access control implemented
by address range specification). Three security policies are
specified: 1) The on-chip processor (LEON3) should not be
allowed to read (confidentiality) / write (integrity) this secure
portion of memory. 2) Smart card reader should not read
(confidentiality) or write (integrity) SRAM. 3) Smart card
reader should not read (confidentiality) or write (integrity)
ROM (Read Only Memory - contains LEON3 configuration
etc.).

After running our analysis, we observed that the first and
second security properties are satisfied because of the strict
access control policy implemented in the Memory Controller
(MCtrl) in SoCRocket. But the third property fails. The MCtrl
disallows regular ROM accesses by any IP other than LEON3,
but this constraint is not present on DMA. This violation of the
security property, reported by our analysis, could potentially
be exploited by a hardware trojan to get DMA access for
ROM. The reported number of access paths, and extended
access paths was 37 and 83, respectively. The analysis took
74.35 seconds to validate all three properties. Due to the use
of concrete path conditions, 0% false positives were reported.

VI. LIMITATIONS

Although our methodology is an overall sound analysis,
it does share the inherent limitations that come with most

other static-analysis tools due to over-approximation i.e., false
positives. For example, during predication phase in analysis,
the path predicates cannot be compared accurately if the access
control policy is dependent on a dynamic variable, instead of a
constant. In case of a dynamic variable, it always suggests that
a path exists and shows it to the testing engineer. This over-
approximation is still better than false negative. The analysis
heavily relies on binding information, hence, if the binding
information is given in an obscure way, it might be missed.

VII. CONCLUSION

In this paper we presented the first VP-based IFT approach
for security validation. At the heart of the approach is a scal-
able static information flow analysis that operates directly on
the SystemC VP models. The analysis performs in interleaved
manner connectivity analysis, access control extraction, call-
graph analysis, data flow analysis and static taint tracking to
identify static paths that violate specified secure information
flow properties. These potential vulnerable paths are reported
back to user for further inspection. We have demonstrated the
applicability of the approach on real-world VP SoCRocket.

REFERENCES

[1] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discov-
ers backdoor in military chip,” in CHES, 2012, pp. 23–40.

[2] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2011.

[3] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

[4] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,”
in Software Safety and Security - Tools for Analysis and Verification,
2012, pp. 319–347.

[5] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in ASPLOS, 2004,
pp. 85–96.

[6] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ASPLOS, 2009, pp. 109–120.

[7] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” TCAD, vol. 30, no. 8, pp. 1128–1140, Aug 2011.

[8] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper:
A language for hardware-level security policy enforcement,” SIGPLAN
Not., vol. 49, no. 4, pp. 97–112, Feb. 2014.

[9] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in ASPLOS,
2015, pp. 503–516.

[10] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 1691–1696.

[11] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying
information flow properties of firmware using symbolic execution,” in
DATE, 2016, pp. 337–342.

[12] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh, “Ver-
ification of a practical hardware security architecture through static
information flow analysis,” in ASPLOS, 2017, pp. 555–568.

[13] M. Hassan, V. Herdt, H. M. Le, M. Chen, D. Große, and R. Drechsler,
“Data flow testing for virtual prototypes,” in 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2017, pp.
380–385.

[14] C. Lattner, “LLVM and Clang: Next generation compiler technology,”
in The BSD Conference, 2008, pp. 1–2.

[15] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic,
“SoCRocket - A virtual platform for the European Space Agency’s SoC
development,” in ReCoSoC, 2014, pp. 1–7.

