Natural Language based Power Domain Partitioning

David Lemma' Daniel GroBel»2

Rolf Drechsler!»2

Unstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{lemma,grosse,drechsle} @informatik.uni-bremen.de

Abstract—The increased importance of power consumption as
a design factor is now undeniable. Power aware design flows are
increasingly targeting high abstraction levels (e.g. ESL), where
optimization gains are bigger. The designers are thus required to
define the power intent already at these levels. Here the major
challenge is to perform power domain partitioning. However, this
is a fully manual step based on reading and understanding the
system specification, and it has to be performed before the Virtual
Prototype (VP) is built.

This paper presents an approach to aid architects in speci-
fying power intent by suggesting coarse-grained power domain
partitioning schemes, as the VP is built. The approach starts with
structural and behavioral information being extracted from the
system specification using Natural Language Processing (NLP)
techniques. Then, a semantic network map is created which
depicts the hierarchical structure and the abstract block level
dependencies that can be used as a foundation for the VP.
Finally, a partitioning scheme is derived from the application
of an extendable set of analytic rules. Experimental results on
an encoding system demonstrate the applicability and efficacy of
the proposed approach.

I. INTRODUCTION

Both the boom of devices running on batteries and con-
tinuous miniaturization have put power-aware design method-
ologies into the spotlight. Design concerns, especially those
concerning static power consumption, are becoming more and
more important each day and are now at the same level of
relevance as functional requirements. The influence of power
concerns extends to the overall design, leading designers to
specify the power intent at higher levels of abstraction, where
the most significant reduction of power consumption can
be achieved [1], [2]. Research on power aware design for
the Electronic System Level (ESL) has grown considerably,
because of its potential to address the increasing system wide
impact of power related decisions [3]-[5]. In a typical ESL
top-down design flow a SystemC-based Virtual Prototype (VP)
is created from the specification. Essentially, a VP is a software
simulation model of the entire hardware platform, formed
by composing SystemC/TLM [6] models of the individual
IP blocks. This VP is then used as a reference for (early)
embedded software development, hardware verification and
power verification.

Designers involved in power aware design efforts need to
decide the power architecture concurrently with creating the
VP, since the prototype will be built conforming to that archi-
tecture. Given the nature of the work, designers in charge of
the decisions effectively act as system architects. In the deci-
sion process undertaken by the system architects, a significant
step is power domain partitioning. This step implies grouping
components in power domains (lists of components sharing

This work was supported in part by the University of Bremen’s graduate

school SyDe, funded by the German Excellence Initiative, and by the German
Academic Exchange Service (DAAD).

the voltage and ground levels) that will be managed through a
power management logic. The goal of the management policy
is to reduce the power consumption without compromising the
functionality of the system.

One natural way to reduce power consumption is to power
off parts of a design not performing any task at a given
time. The procedure (known as power gating) is one of most
powerful and frequently used techniques to curb static and
dynamic power consumption [7]. At a first glance, the sim-
plicity of the technique is striking, but it relies on an adequate
power domain partitioning scheme. When determining such a
scheme, system architects are faced with trade-offs, having to
make a decision at global scale. A coarse-grained partitioning
scheme usually leads to reduced savings, a fine-grained one
to area and verification overhead [8]. Additionally, finding a
suitable power domain partition scheme is fully dependent on
carefully reading and understanding the system specification.

In this paper we propose an approach to address the chal-
lenge of power domain partitioning before the VP is built. To
the best of our knowledge, this is the first approach that derives
a power domain partitioning scheme directly from a natural
language based specification. Our approach assists the system
architects in implementing the VP with a suitable power aware
architecture. The proposed approach consists of four steps.
They cover the analysis of the specification document using
Natural Language Processing (NLP) techniques to extract
structural and behavioral information, forming a semantic
network map to represent the hierarchical structure and the
abstract block level dependencies and defining and applying
analytic rules to determine a coarse-grained power domain
partitioning scheme.

The structure of the paper is as follows: Section II re-
views related work. In Section III the used NLP techniques
are explained succinctly. Section IV introduces the proposed
approach. The experimental evaluation is given in Section V.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

Determining a suitable power domain partitioning scheme
is a challenging task along the design [9]. The unavoidable
trade-off involving the power reduction achieved and the added
complexity becomes noticeable for non-trivial designs. Given
the general intractability of the problem [10], researchers have
approached it using sophisticated optimization algorithms, see
e.g. [11]-[13]. Methodologies using these algorithms rely
on the assumption that the designers have access to circuit-
level information. However, this limits the applicability of the

methodologies for architectural system-level exploration and
consequent decision making [14].

Other research lines involving system-level space explo-
ration focus on the information contained in specifications.
Several works have highlighted the benefits of specification
analysis [15], usually through NLP or related techniques [16].
For instance, concept mining applied to a set of specifica-
tions can help designers extract knowledge of architectural
value [17]. Research and development of proper ontologies
for knowledge extraction from specifications is, unfortunately,
still in its infancy [18].

Singh et al. [19] have based themselves on previous work
on specification analysis to peform pre-design power analysis.
Their work is one of the few approaches on system level power
aware design related to natural language. However, they target
power estimation via a knowledge base generated through an
ontology, not power domain partitioning.

Our paper focuses on how to extract knowledge from spec-
ifications (or parts of it) by focusing on the relations between
components. These relations contain relevant information used
by our approach to aid system architects in reaching a suitable
power domain partitioning scheme. The output of the approach
(the partitioning scheme) can be fed to optimization algorithms
if desired.

III. NATURAL LANGUAGE PROCESSING TECHNIQUE

In this section we describe the NLP techniques used to
analyze the system specification. While the focus is on the
context of a system specification, some aspects are presented
from a general viewpoint.

A system specification describing the behavior (an algo-
rithm) or the block structure of a system contains information
in the form of entities. An entity can be broadly defined as
a self standing notion. A conceptual entity can be taken as a
notion that represents a concept in the system specification (for
example, an object). To retrieve this information it is necessary
to use techniques such as Information Extraction (IE) which
we will explain in the following.

IE is the task that consists of automatically eliciting relevant
data from free texts. The texts do not need to be entire
documents, as a few sentences may be enough to extract
the information desired. IE is composed of several subtasks,
among which two are central: entity extraction and relationship
extraction. The former can be described as retrieving the
relevant entities and the later is characterized by obtaining
the links that these entities have to each other. The output of
both subtasks taken together constitutes information useful to
conduct further analysis on the meaning of the text.

In order to showcase the two subtasks, we will take the
following sentences from the specification of the FIR filter
example shipped with the official SystemC distribution:

The filter is a 16 tap FIR filter(fir.cc). The test bench feeds
simply ascending values into the FIR(stimulus.cc) and the

output is sampled (display.cc) and displayed with print
statements.

Based on this excerpt entity extraction and relationship
extraction work as follows:

TABLE I
ENTITY EXTRACTION
display.cc
fir.cc
fir
output
print
statement
stimulus.cc
testbench
value
TABLE II
RELATIONSHIP EXTRACTION
Entity 1 Type of relationship Entity 2
print associatedWith statement
Fir associatedWith fir.cc
fir associatedWith stimulus.cc
Fir hasDeterminer the
statement hasQuantifier multiple
value hasQuantifier multiple
Fir hasDataValue 16
fir hasDeterminer the
output hasDataValue the
Fir hasQuality Tap
tesbench hasDeterminer the

1) Entity Extraction (EE): This subtask happens after
chunking (parsing of sentences using syntactic rules). Ontolo-
gies are heavily preferred if they are available, but the step
can still be carried out without domain specific knowledge.

Running the FIR filter specification (see above) through
an EE tool gives a list whose elements are relevant entities
retrieved from the excerpt, as shown in Table I. Some of the
entities in the table may refer to concepts of architectural value
in the domain of the text under analysis. For instance, any
designer familiar with System on Chip (SoC) design would
conclude that the following pairs of entities refer to the same
concept given in brackets: fir.cc and fir (FIR), output and
display.cc (Output), value and stimulus.cc (Input).

While fir.ce, stimulus.cc and display.cc are conceptual
entities which embody the important objects of the design, the
table also contains other entities that represent properties and
actions (print, statement, value) related to the objects.

2) Relationship Extraction (RE): The list of entities ex-
tracted from a text have semantic links between them that
are detected and classified in this step. Semantic links are
the relationships held by the entities. As in Entity Extraction,
ontologies are of great assistance in this activity, but a more
shallow approach can also be taken. This usually implies
lexical semantics and the use of lexical databases [20], which
still gives acceptable results.

An example output applying RE to the FIR specification
text is shown in Table II. Each row in the table shows how an
entity (first column) is related to another entity (third column)
and the type of relationship (second column). As a concrete
example consider the first row: the entity print is associated
with the entity statement. Another example with a different
relationship can be seen in the next to last line: the entity FIR
has a Tap quality. Relationships of the type hasQuanti fier,

TABLE III
RELEVANT RELATIONSHIPS FOR ENTITIES
Entity 1 Type of relationship Entity 2
fir.cc associatedWith Fir
stimulus.cc associatedWith fir
display comesFrom output
display isRelatedTo statement

hasDataV alue or hasDeterminer should be generically
interpreted following the pattern “[Entity 1] has a [Entity 2]
property”.

Some of the relationships extracted may not be useful
to get structural and behavioral information of the design.
For instance, the type of relationships hasDeterminer and
hasQuantifier are generally of the grammatical type and
mostly not useful for system level design understanding.
Relationships of the type hasDataValue and hasQuality,
tend to refer to fixed value properties and may be useful
to distinguish instances of entities of architectural value. In
general, the type of relationship that gives the most valuable
conceptual information is the type associatedWith.

As the final result of RE a list of relevant relationships
between entities is produced. The produced list shows the link
between conceptual entities, as well as the the links these have
to other entities representing relevant properties, notions and
events. A short example of this list can be found in Table III.
The first two rows show that fir.cc and stimulus.cc relate to
each other because they are associated with the same entity
(fir). The last two rows shows how display.cc is linked to
other entities representing notions in the system (output and
statement).

Overall, the output of the described information extraction
process (which combines EE and RE) is further elaborated to
allow for deeper analysis. For that we use a semantic network
map presenting the conceptual structure of the system. For the
FIR example the respective semantic map is depicted in Fig. 1.
This figure only demonstrates the principle. How we further
improve the semantic network in our approach is detailed in
the next section. As can be seen in Fig. 1 there are three square
blocks representing the conceptual entities of architectural
value, with full line arrows representing the links between
them (of sequential nature in this case). In addition, there are
three circular blocks representing notions and associated event
flows for these entities, linked to the square blocks through
dashed lines.

IV. APPROACH FOR COARSE-GRAINED POWER DOMAIN
PARTITIONING

In this section the proposed approach for deriving a power
domain partitioning scheme from the textual specification is
presented. Our approach consists of four steps: block ex-
traction, block relationship extraction, semantic network map
creation and power domain partitioning scheme generation.
The first two steps use the NLP techniques described in
Section IIT with domain specific knowledge being applied to
the results. The third step condenses the information into an

v

stimulus.cc

fir.cc (= display.cc
v

G =

Fig. 1. Semantic network of FIR specification

architectural description of the system, whereas the fourth step
involves a rule-based method to generate a suitable power
domain partitioning scheme for the system.

To demonstrate the proposed approach we will use an LZW
encoder design [21]. An excerpt of its specification reads:

The main state machine controls the data movement and
control flow for all the total design including the serial port
and the LZW encoder block. The input RAM is used to store
the data received from the serial port of the PC. The LZW
encoder block implements the LZW algorithm, both the control
and the data path. The code value RAM is the Hash Table
implementation, while the dictionary block implements the
LZW dictionary. The output forming logic breaks and merges
the 13-bit data output from the LZW data path on correct
8-bit boundaries before writing it to the output RAM. The
output RAM is used to store the compressed data which is
than transmitted through the serial port to the host PC to be
displayed on the terminal. '

The four main steps of our approach are detailed in the

following subsections.
A. Block Extraction

In this step the system architect processes the specification
text looking for the functional blocks in the underlying system
design. To retrieve the blocks, the list of conceptual entities
returned by the NLP technique is pruned to only consider
those representing objects in the design. Upon doing this, it
is possible to discover the overall system architecture. For
small designs it is probable that each of functional block is
implemented by a single module, but for larger designs this
may no longer apply, as not only modules but also submodules
may contain the implementation of a functional block.

In the case at hand, 7 blocks have been identified: Main
State Machine, Serial Port, Input RAM, Encoder Block, Hash
Table Implementation, Dictionary Block and Output Block.

B. Block Relationship Extraction

In this step the links, that is, the relationship between
the identified blocks, are extracted. Some relationships reveal
behavioral sequences, others give information about the way
in which the blocks influence each other, including their place
in the system hierarchy, all of relevance to the next step.

Relevant properties and events associated to the blocks are
obtained by applying the type of analysis that was explained
in Section II, for the subtask of Relationship Extraction.

't is a verbatim copy used “as is”, even when it contains typos.

- -+ - -controls - - .|

controls

Tscs(stores in)

Serial Port

‘~

Main State Machine

Input RAM Encoder Block

. _writes , - * are associated

. ‘writes *includes

Hash Table Implementation Dictionary Block

Main Block

Secondary Block

Execution flow

Information flow

Fig. 2. LZW Encoder semantic network map

C. Creation of Semantic Network Map

In this step, the combined information of the two previous
steps is condensed in graphical form within a semantic net-
work map. This allows for easier analysis by the designers
by showing the hierarchy and overall design structure of
the system. Even if the semantic network is incomplete, the
provided information helps decide how to partition the system.

For our design case, the 7 blocks are divided into two
groups: the main blocks and the secondary blocks. The division
is done according to their participation (or non-participation)
in the top level information flow. The division takes into
account the behavioral sequence (that is, the execution flow)
and the system hierarchy that were obtained from the previous
step. According to that information Main State Machine, Serial
Port, Input RAM and Encoder Block are main blocks, whereas
Hash Table Implementation, Output Block and Dictionary
Block are secondary blocks.

The figure shows that the Encoder Block writes to the
Output Block and includes the Dictionary Block, thereby
showing why the latter are secondary blocks. Furthermore, the
information flow as described in specification text between the
main blocks is represented in the semantic network map as can
be seen in Fig. 2. This flow represents a basic understanding
of the nature of the design. Dashed lines with labels indicate
the events that link the blocks. For example, the Main State
Machine controls both the Serial Port and the Encoder Block,
and the Output Block writes to the Serial Port.

In most cases, a semantic network map will be similar
to a block level diagram of the design, as evidenced by
comparing Fig. 2 to the actual diagram block provided by
the documentation of the LZW encoder design in Fig. 3.

D. Generation of Power Domain Partitioning Scheme

This step is both the final and the core step of the approach.
In this step, analytic rules are applied to the information from
the semantic network map. The following set of basic rules
are applied by default (but can be overridden later):

R1: Each block belongs to its own domain (this rule pro-
duces a very basic power domain partitioning scheme,
disregarding hierarchy).

R2: Blocks that are linked to many others are taken to be
part of a power domain that is always on, or that controls
others and, therefore, has a longer active time.

Any two blocks not directly linked to each other through
the execution flow belong to different domains.

Blocks relating to each other through hierarchical depen-
dencies are grouped together in a single power domain.

R3:

R4:

The rule R1 produces the first estimation for an appropriate
power domain partitioning scheme. The rules R1, R2 and R3
refine the initial partitioning into a solid result. The reason
behind the need for a refinement is that the rule R1 neglects the
associated costs of more power management logic embedded
into the design. Each domain requires its own power manage-
ment logic, regardless of the size or importance of the blocks
it contains. The first estimation for the domain partitioning
scheme is fine grained, which means that it will probably
feature several domains with the same power management
logic, thereby implying area/verification/power overhead.

We applied the rules to the LZW encoder to produce
the final suggested power domain partitioning scheme taking
into account that the blocks refered to as before can be
implemented by modules and/or submodules of the system.
To take into account the structure of the design we consider
the following tenets:

o Hash Table Implementation has a relationship to Input
RAM, but it is not a submodule of it and is not a top
level functional block/module. Not being able to know
its place in the hierarchy of the system, it will not count
as a possible power domain.

e Main State Machine has control over both the Serial
Port and the Encoder Block, leading to the existence of
an always on power domain to which the Main State
Machine belongs.

e Input RAM is related to Serial Port and to Encoder
Block by means of the execution flow, which shows
the sequential nature of the design. These three modules
mostly do not share their active/inactive states, hence they
are placed in three different power domains.

By following the above, the output of the approach is a power
domain partitioning scheme consisting of four power domains,

clk
Wirite part 1
RX - .
—_—
‘7TX = Read Port 2 Hash o Lzw
Input RAR: [i Generation - encoder
Control Black Slat_a
Maching
Serial Port
'y 1
Y
-—festeon] foond Prefix Code
MRQA\EIUE Character RAM
recy_done A RAM
- start_frans
Y =
Dictionary
lg—=E
Main State
Machine
. Output
Output RAM - Write port 2 Eo .
Logic
LZW Encoder Block

Fig. 3. Block Level Diagram of LZW encoder, based on [21]

namely: Main State Machine, Serial Port, Input RAM and
Encoder Block. Each of the power domains consists of one
module in the design. The validity and quality of this power
partitioning scheme is evaluated in the next section.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
proposed partitioning scheme for the LZW encoder. The
scheme determined by our NLP-based approach is ready to
be implemented within the VP, but before this is done it is
necessary to assess its validity. While the quality (clarity) of
the specification text has a direct impact on the output scheme,
the effect can be partially offset by intelligently applying the
rules, as we did by following the tenets in the previous section.
While an intelligent application of the rules requires system
architects to have basic knowledge of the expected modules
for the design, this is already the case for most (if not all)
designers and does not represent a significant barrier.

In order to carry on the qualitative evaluation of the sug-
gested power partitioning scheme, we run the testbenches
associated with the LZW encoder SystemC based VP. During
the runs, functional checks are performed and information
about the model execution is logged. This allows us, for
example, to determine the time when the Serial Port is active
as well as when certain states of the Main State Machine have
been visited.

We extended the logging to get a complete picture, in
particular to also get the time points in which the Input RAM
module and the Encoder Block module are active. By ana-
lyzing the logged simulation data together with determining
the signals that control the activity/inactivity of a module,
we construct a basic Power State Table (PST) for each of
the power domains. Essentially, the PST stores the times for
which a power domain is on or off, according to the value of
the determined control signals. In the case of the Main State

Machine, the PST consists of a single “always on” state, as
this module controls the execution flow of the entire system.

Now, the PST is fed into the PKTool, a power estimation
tool for SystemC [22]. We use the fixed_power model from
PKTool, which calculates the energy following the equation
E = PT, where E is the energy, P is a fixed power value
(provided by the us) and T is the simulation time for each
state (calculated by the tool through the PST). We adopted a
value of 0.005 mW as a static power consumption value for an
inactive module and 1 mW for the fixed power consumption
of an active module. These values are not based on the actual
consumption of the design’s modules, but serve to illustrate
the differences in power consumption of a power domain when
active and when inactive. Accurate estimation of consumption
is beyond the scope of this paper.

So as to show that the scheme determined by our approach
is a solid decision, we compare the following three schemes:

e Single domain scheme: it consists of only one power
domain that includes all four of the main blocks and is on
an active state throughout the entire time. Essentially, this
is equivalent to performing no power domain partitioning.

e Four domain scheme: it consists of four power domains
(one for each of the main blocks). This is the partitioning
determined by our approach.

e Six domain scheme: it consists of six power domains
(one for each of the main blocks, one for the Output
Block and one for the Dictionary Block). This somewhat
corresponds to the output of the approach if only rule R1
is applied.

First we compare the single domain scheme to the four
domain scheme by analyzing the results presented in Table IV.
The rows in the table represent the schemes under comparison
while the columns show the energy consumption for each of
the modules and also the total energy consumption. As the
single domain scheme simply neglects the activity profile of

TABLE IV
COMPARISON BETWEEN SINGLE DOMAIN AND FOUR DOMAIN SCHEME

Energy consumption [n]J]
Partitioning scheme Main State Machine | Serial Port | Input RAM | Encoder Block Total
Single domain scheme 389.23 389.23 389.23 389.23 | 1556.94
Four domain scheme 389.23 388.03 21.77 26.58 825.75

TABLE V
OUTPUT BLOCK, DICTIONARY BLOCK AND ENCODER BLOCK

Block
Encoder Block
Output RAM Block
Dictionary Block

Energy consumption [nJ]
26.58
22.40
20.76

the modules, the total energy consumption for it is consider-
ably higher than that of the four domain scheme in the second
row (15556.94 nJ vs 825.75 nJ, respectively). The first row
shows that the consumption of each module (each representing
a block) for the single domain scheme is the same, implying
that all the modules belong in the same power domain (which
follows the activity profile of the Main State Machine module).
The second row shows that the four domain scheme considers
the activity profile of the modules. Both the Encoder Block and
the Input RAM have activity profiles which show that they are
inactive for longer periods of time, thereby consuming less
energy than the Main State Machine.

From the evaluation above we conclude that the four domain
scheme is better than the single domain scheme. We will
show that the four domain scheme also compares favorably
to the six domain scheme via the comparison of the energy
consumption of the Output Block, the Dictionary Blocks (two
secondary blocks) and the Encoder Block (a main block). To
do this we assume that the Output RAM module corresponds
to the Output Block, while the Dictionary module corresponds
to the Dictionary Block, following Fig. 3. The Output RAM
module and Dictionary module are active at different periods,
but the total time in which they are active is comparable to the
active time of Encoder Block. That is why the consumption of
the three blocks under comparison is similar. We present the
comparable values in Table V, where the first row shows the
Encoder Block consuming 26.58 nJ, the second row shows the
Output Block consuming 22.40 nJ and the third row shows the
Dictionary Block consuming 20.76 nlJ.

If both the Output Block and the Dictionary Block con-
stituted extra power domains themselves, there would be a
reduction in the overall energy consumption. However, the
magnitude of the possible savings does not compare favorably
to the associated costs of adding power management logic
to these new power domains. The result of the analysis of
tradeoff between power consumption reduction and overhead
costs leads us to conclude that a six domain scheme brings
no real benefit over a four domain scheme. Hence, the four
domain scheme is the best scheme among the three compared.

VI. CONCLUSION

We have introduced an approach to derive a power domain
partitioning scheme from the textual specification of the sys-
tem before a Virtual Prototype (VP) is built. Our approach uses
NLP techniques within an Information Extraction framework
to extract structural and behavioral information from the
specification. Then, a semantic network map is created as the
basis for a rule-based power domain partitioning scheme. The
approach is applied to a LZW encoder VP, with the soundness
of the suggested partitioning scheme shown when compared
to alternative schemes.

In the future, we want to integrate more powerful informa-
tion extraction techniques and more refined partitioning rules.

REFERENCES

[1]1 Z.Zhang, D. Chen, S. Dai, and K. Campbell, “High-level synthesis for low-
power design,” IPSJ Transactions on System LSI Design Methodology, vol. 8,
pp. 12-25, 2015.

[2] Y. Samei, “Automated power-aware system-level design with the mavo frame-
work,” Ph.D. dissertation, University of California, Irvine, 2014.

[3] S. Ahuja, “High level power estimation and reduction techniques for power
aware hardware design,” Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2010.

[4] A. Agarwal, “Use of high-level design information for enabling automation
of fine-grained power gating,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2014.

[5] V. Herdt, H. M. Le, D. Grof3e, and R. Drechsler, “Towards early validation of
firmware-based power management using virtual prototypes: A constrained
random approach,” in FDL, 2017, pp. 1-8.

[6] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2011.

[7]1 H.Jiang, M. Marek-Sadowska, and S. R. Nassif, “Benefits and costs of power-
gating technique,” in /ICCD, 2005, pp. 559-566.

[8] E. Sperling. How Many Power Islands Is Too Many? Semiconductor
Engineering. [Online]. Available: http://semiengineering.com/how-many-
power-islands-is-too-many/

[91 M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power
methodology manual: for system-on-chip design. Springer, 2007.

[10] A. Dobriyal, R. Gonnabattula, P. Dasgupta, and C. R. Mandal, “Workload
driven power domain partitioning,” in Progress in VLSI Design and Test.
Springer, 2012, pp. 147-155.

[11] N. Agarwal and N. Dimopoulos, “FSMD partitioning for low power using
simulated annealing,” in ISCAS, 2008, pp. 1244-1247.

[12] A. Agarwal and Arvind, “Leveraging rule-based designs for automatic power
domain partitioning,” in /ICCAD, 2013, pp. 326-333.

[13] L.-Y. Chiou, Y.-S. Chen, and Y.-L. Jian, “Energy-aware partitioning for on-
chip bus architecture using a multi-objective genetic algorithm,” in VLSI-DAT,
2011, pp. 1-4.

[14] B. Wang, Y. Xu, R. Hasholzner, C. Drewes, R. Rosales, S. Graf, J. Falk,
M. GlaB, and J. Teich, “Exploration of power domain partitioning for
application-specific SoCs in system-level design,” in MBMV, 2016.

[15] B. Singh, A. Shankar, Y. Shiyanovskii, F. Wolff, C. Papachristou, D. Weyer,
S. Clay, and J. Morrison, “Knowledge-guided methodology for specification
analysis,” in ICTAI, 2013, pp. 749-754.

[16] I. G. Harris, “Extracting design information from natural language specifica-
tions,” in DAC, 2012, pp. 1252-1253.

[17] A.Shankar, B. P. Singh, F. Wolff, and C. Papachristou, “NEFCIS: Neuro-fuzzy
concept based inference system for specification mining,” in /CTAI, 2013, pp.
337-343.

[18] A. Shankar, B. Singh, F. Wolff, and C. Papachristou, “Ontology-guided
conceptual analysis of design specifications,” in DAC, 2014, pp. 1-6.

[19] B. Singh, A. Shankar, F. Wolff, and C. Papachristou, “An expert system based
tool for pre-design chip power estimation,” DVCon, 2014.

[20] G. A. Miller, “Wordnet: a lexical database for english,” Communications of
the ACM, vol. 38, no. 11, pp. 3941, 1995.

[21] Orahyn Ltd. An implementation of LZW encoder in SystemC and verified in
FPGA. [Online]. Available: https://github.com/arshadri/lzw_systemc/

[22] G. B. Vece, M. Conti, and S. Orcioni, “Pk tool 2.0: a SystemC environment
for high level power estimation,” in /CECS, 2005, pp. 1-4.

