
Extensible and Configurable RISC-V based
Virtual Prototype?

Vladimir Herdt1 Daniel Große1,2 Hoang M. Le1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{vherdt,grosse,hle,drechsle}@informatik.uni-bremen.de

Abstract—Internet-of-Things (IoT) opens a new world of pos-
sibilities for both personal and industrial applications. At the
heart of an IoT device, the processor is the core component.
Hence, as an open and free instruction set architecture RISC-V
is gaining huge popularity for IoT. A large ecosystem is available
around RISC-V, including various RTL implementations at one
end and high-speed instruction set simulators (ISSs) at the
other end. These ISSs facilitate functional verification of RTL
implementations as well as early SW development to some extent.
However, being designed predominantly for speed, they can
hardly be extended to support further system-level use cases such
as design space exploration, power/timing/performance validation
or analysis of complex HW/SW interactions.

In this paper, we propose and implement the first RISC-V
based Virtual Prototype (VP) with the goal of filling this gap.
We provide a RISC-V RV32IM core, a PLIC-based interrupt
controller and an essential set of peripherals together with
SW debug capabilities. The VP is designed as extensible and
configurable platform with a generic bus system and implemented
in standard-compliant SystemC and TLM-2.0. The latter point is
very important, since it allows to leverage cutting-edge SystemC-
based modeling techniques needed for the mentioned use cases.
Our VP allows a significantly faster simulation compared to
RTL, while being more accurate than existing ISSs. Finally, our
RISC-V VP is fully open source to help expanding the RISC-V
ecosystem and stimulating further research and development.

I. INTRODUCTION

Enormous innovations are enabled by the Internet-of-Things
(IoT) since every device is connected to the Internet. Forecasts
see additional economic impact resulting from Industrial IoT.
In the last years the complexity of IoT devices has been
increasing steadily with various conflicting requirements. On
the one hand IoT devices need to provide smart functions with
a high performance including real-time computing capabilities,
connectivity and remote access as well as safety, security and
high reliability. At the same time they have to be cheap, work
efficiently with an extremely small amount of memory and
limited resources and should further consume only a minimal
amount of power to ensure a very long lifetime.

To meet the requirements of a specific IoT system, a crucial
component is the processor. Stimulated from the enormous
momentum of open source software, a counterpart on the
hardware side recently emerged: RISC-V [1], [2]. RISC-V is
an open-source Instruction Set Architecture (ISA) which is
license-free and royalty-free. The ISA standard is maintained

? This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project CONFIRM under
contract no. 16ES0565 and by the University of Bremens Central Research
Development Fund and by the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative.

by the non-profit RISC-V foundation and is appropriate for
all levels of computing systems, i.e. from micro-controllers to
supercomputers. The RISC-V ecosystem is rapidly growing,
ranging from HW, e.g. various HW implementations (free as
well as commercial) to high-speed Instruction Set Simulators
(ISSs) These ISSs facilitate functional verification of RTL
implementations as well as early SW development to some
extent. However, being designed predominantly for speed, they
can hardly be extended to support further system-level use
cases such as design space exploration, power/timing/perfor-
mance validation or analysis of complex HW/SW interactions.

A major industry-proven approach to deal with these use
cases in earlier phases of the design flow is to employ Virtual
Prototypes (VPs) [3] at the abstraction of Electronic System
Level (ESL) [4]. In industrial practice, the standardized C++-
based modeling language SystemC and Transaction Level
Modeling (TLM) techniques [5], [6] are being heavily used
together to create VPs. Depending on the specific use case,
advanced state-of-the-art SystemC-based techniques beyond
functional modeling (see e.g. [7], [8], [9], [10], [11]) are to be
applied on top of the basic VPs. The much earlier availability
as well as the significantly faster simulation speed in compar-
ison to RTL are among the main benefits of SystemC-based
VPs.

In this paper, we propose and implement the first RISC-V
based VP to further expand and bring the benefits of VPs to
the RISC-V ecosystem. With the goal of filling the mentioned
gap in supporting further system-level use cases, SystemC
is necessarily the language of choice. The VP is therefore
implemented in standard-compliant SystemC and TLM-2.0
and designed as extensible and configurable platform with
a generic bus system. We provide a RISC-V RV32IM core
and a PLIC-based interrupt controller with an essential set
of peripherals. We demonstrate the extensibility of our VP by
two examples: addition of a sensor peripheral and extension by
GDB debug functionality from the application SW perspective.
In the experimental evaluation we show the high simulation
performance of our VP based on several optimizations. Our
RISC-V VP is fully open source1 to stimulate further research
and development.

Related Work: As mentioned earlier, the RISC-V ecosys-
tem already has various high-speed ISSs such as the reference
simulator Spike [12], RISCV-QEMU [13], or RV8 [14]. They
are mainly designed to simulate as fast as possible and

1Available at https://github.com/agra-uni-bremen/riscv-vp, for more infor-
mation and updates also visit www.systemc-verification.org/riscv-vp

https://github.com/agra-uni-bremen/riscv-vp
www.systemc-verification.org/riscv-vp

predominantly employ dynamic binary translation (to x86 64)
techniques. This is however a trade-off as accurately modeling
power or timing information for instructions becomes much
more challenging. The full-system simulator gem5 [15], at
the time of writing also has initial support for RISC-V. gem5
provides more detailed models of processors and memories
and can in principle also be extended for accurate modeling
of extra-functional properties. However, it employs a different
modeling style and thus hinders the integration of advanced
SystemC-based techniques. The project SoCRocket [16] that
develops an open-source SystemC-based VP for the SPARC
V8 architecture, can be considered comparable to our effort.
Finally, commercial VP tools such as Synopsys Virtualizer or
Mentor Vista might also support RISC-V but their implemen-
tation is proprietary.

II. PRELIMINARIES

A. RISC-V

RISC-V is an open and free instruction set architecture
(ISA). The ISA consists of a mandatory base integer instruc-
tion set and various optional extensions. The integer set is
available in three different configurations with 32, 64 and 128
bit width registers, respectively: RV32I, RV64I and RV128I.
Additionally, the RV32E configuration, which is essentially
a lightweight RV32I with a reduced number of registers, is
available and intended for (very) small embedded devices.
Extensions are denoted with a single letter, e.g. M (integer
multiplication and division), A (atomic instructions), C (com-
pressed instructions), etc. A comprehensive description of the
RISC-V instruction set is available in the specification [1].

The second volume of the RISC-V ISA specification defines
a privileged architecture description [2]. It defines control and
status registers (CSRs), which are registers serving a special
purpose. For example the misa (Machine ISA) register is a
read-only CSR that contains information about the supported
ISA. Another example is the mtvec (Machine Trap-Vector
Base-Address) CSR that stores the address of the trap/interrupt
handler. The privileged architecture description provides a
small set of instructions for interrupt handling (wfi, mret) and
interacting with the system environment (ecall, ebreak).

B. SystemC and TLM

SystemC is a C++ class library that includes an event-
driven simulation kernel. The structure of a SystemC design
is described with ports and modules, whereas the behavior is
described in processes which are triggered by events. The exe-
cution of a process is non-preemptive, i.e. the kernel receives
the control back if the process has finished its execution or
suspends itself by calling wait(). SystemC provides three types
of processes with SC THREAD being the most general type,
i.e. the other two can be modeled by using SC THREAD.
For event-based synchronization, SystemC offers many vari-
ants of wait() and notify() such as wait(time), wait(event),
event.notify(delay), event.notify(), etc.

Communication between modules is implemented through
(TLM) transactions. A transaction object essentially consists
of the command (e.g. read/write), the start address, the data
length, and the data pointer. It allows to implement various
memory access operations. Optionally, a transaction can be

RV32IM
CPU Core (Main)

Memory

PLIC-based
Interrupt Contr.

CLINT

Simple
Sensor

DMA
Controller

Terminal

Other Peripherals/
Controllers

Memory Interface

T

T

T

T T

C/C++
Standard Library

C/C++
Program

(Cross-)Compile
and Link

Executable
RISC-V ELF File

Virtual Prototype
Architecture

TLM 2.0
Transactions

Interrupt Notifications

Load into
Memory

GCC Toolchain

Legend: TLM 2.0 Transaction Interrupt Notification T SystemC Thread

(start=0x00000000,

Address mapping (start,end)
for each attached component

TLM 2.0
Bus

end=0x20000000)

Fig. 1. Virtual prototype architecture overview

associated with a delay (modeled as sc time data structure),
which denotes the execution time of the transaction and allows
to obtain a more accurate overall simulation time estimation.

Fig. 6 shows a basic sensor model implementation in
SystemC that communicates through TLM transactions (the
transport method) to demonstrate the modeling principles. We
will describe the example in more detail later in Section VI-A.

III. RISC-V BASED VP ARCHITECTURE

The VP is implemented in SystemC and designed as exten-
sible and configurable platform around a RISC-V RV32IM
CPU core with a generic bus system employing TLM 2.0
communication and support for the GCC toolchain - including
coverage tracking with GCOV and debugging with GDB, of
the software applications executed on our VP. Overall, the VP
consists of around 3000 lines of C++ code with all extensions.
Fig. 1 shows an overview of the VP architecture. In the
following we present more details.

A. Core
The CPU core loads, decodes and executes one instruction

after another. We provide support for the RISC-V RV32IM
instruction set in the CPU core and target the current version
of the RISC-V machine level ISA as defined in the RISC-V
privileged architecture specification [2]. This includes the
machine level control and status register (CSRs) as well as
instructions for interrupt handling (wfi, mret) and environment
interaction (ecall, ebreak). We will provide more details on
the implementation of interrupt handling and system calls
(environment interaction) in the following sections.

B. Bus
The TLM bus is responsible on routing transactions from

an initiator, i.e. (bus) master, to a target. Therefore, all target
components are attached to the TLM bus at specific non-
overlapping address ranges. The bus will match the transaction
address with the address ranges and dispatch the transaction
accordingly to the matching target. Please note, in this pro-
cess the bus performs a global-to-local address translation
in the transaction. For example, assume that a sensor com-
ponent is mapped to the address range (start=0x50000000,

end=0x50001000) and the transaction address is 0x50000010,
then the bus will route the transaction to the sensor and change
the transaction address to 0x00000010 before passing it on
to the sensor. Thus the sensor works on local address ranges.
The TLM bus supports multiple masters initiating transactions.
Currently, the CPU core as well as the DMA controller are
configured as bus masters. Please note, that a single component
can be both a master and a target, as for example the DMA
controller receives transactions initiated by the CPU core to
configure the source and destination address ranges and also
initiates transactions by itself to perform the memory access
operations without the CPU core.

C. Interrupts

Two sources of interrupts are available: 1) local and 2)
external. Essentially, there are two sources of local interrupts:
traps/exceptions encountered during software execution as
well as timer interrupts generated by a special built-in timer
component. The timer is part of the core local interrupt
controller (CLINT) and can be configured through memory
mapped IO. Local interrupts are processed with higher priority
than external interrupts. External interrupts are all remaining
interrupts triggered by the various components in the system.
To handle external interrupts, we provide a PLIC-based inter-
rupt controller (IC), based on the description from [2]. The
IC will collect and prioritize all external interrupts and then
route them to the CPU core one by one. We will describe the
interrupt handling process in more details later.

D. VP Initialization

The main function in the VP is responsible to instantiate,
initialize and connect all components, i.e. setup the archi-
tecture. An ELF loader is provided to parse and load an
executable RISC-V ELF file into the memory and setup the
program counter in the CPU core accordingly. Finally, the
SystemC simulation is started. The ELF file is produced by the
GCC toolchain by (cross-)compiling the application program
and optionally linking it with the C/C++ standard library
(we also support a bare-metal execution environment without
C/C++ library).

IV. VP INTERACTION WITH SW AND ENVIRONMENT

In this section we present more details on the HW/SW in-
teraction, in particular on interrupt handling, and environment
interaction via system calls in our VP.

A. Interrupt Handling and HW/SW Interaction

In the following we present an example application that
periodically accesses a sensor to demonstrate the interaction
between hardware (VP-side) and software with a particular
focus on interrupt handling. We first describe the software
application running on the VP and then present a minimal
assembler boostrap code to initialize interrupt handling and
describe how interrupts are processed in more details. Later
in Section VI-A we present the corresponding SystemC-based
sensor implementation in our VP.

1 #include "stdint.h"
2 #include "irq.h"
3
4 static volatile char * const TERMINAL_ADDR = (char *

const)0x20000000;
5 static volatile char * const SENSOR_INPUT_ADDR = (char *

const)0x50000000;
6 static volatile uint32_t * const SENSOR_SCALER_REG_ADDR =

(uint32_t * const)0x50000080;
7 static volatile uint32_t * const SENSOR_FILTER_REG_ADDR =

(uint32_t * const)0x50000084;
8
9 _Bool has_sensor_data = 0;

10
11 void sensor_irq_handler() {
12 has_sensor_data = 1;
13 }
14
15 void dump_sensor_data() {
16 while (!has_sensor_data) {
17 asm volatile ("wfi");
18 }
19 has_sensor_data = 0;
20
21 for (int i=0; i<64; ++i) {
22 *TERMINAL_ADDR = *(SENSOR_INPUT_ADDR + i);
23 }
24 }
25
26 int main() {
27 register_interrupt_handler(2, sensor_irq_handler);
28
29 *SENSOR_SCALER_REG_ADDR = 5;
30 *SENSOR_FILTER_REG_ADDR = 2;
31
32 for (int i=0; i<3; ++i)
33 dump_sensor_data();
34
35 return 0;
36 }

Fig. 2. Example application running on the VP to demonstrate the
hardware/software interaction

1 .globl _start
2 .globl main
3 .globl level_1_interrupt_handler
4
5 _start:
6 la t0, level_0_interrupt_handler
7 csrw mtvec, t0
8 li t1, 0x888
9 csrw mie, t1

10 jal main
11
12 loop:
13 j loop
14
15 level_0_interrupt_handler:
16 csrr a0, mcause
17 jal level_1_interrupt_handler
18 mret

Fig. 3. Bare-metal bootstrap code demonstrating interrupt handling

1) Software Side: Fig. 2 shows an example application that
reads data from a sensor and copies the data to a terminal
component. The sensor and terminal are accessed through
memory mapped (MM) IO. Their addresses are defined at the
top of the program. They need to match with the configura-
tion in the VP. The sensor periodically triggers an interrupt,
denoting that new data is available. The main function starts
by registering an interrupt handler for the sensor interrupt
(Line 27). Again, the interrupt number specified in SW has
to match the configuration in the VP. Next, the sensor is
configured in Line 29-30 using MMIO. The scaler denotes
how fast sensor data is generated and the filter setting what
kind of post-processing is performed on the data. Finally, the
copy process is iterated for three times (Line 32-33) before the
program terminates. Each iteration starts by waiting for sensor
data (Line 16-18). The global boolean flag has sensor data

is used for synchronization. It is set in the interrupt handler
(Line 12) and unset again immediately after the waiting loop
(Line 19). Please note, the wfi instruction will power down the
CPU core until the next interrupt occurs.

2) Bootstrap Code and Interrupt Handling: Fig. 3 shows
the essential parts of a bare-metal boostrap code, which is
written in assembler and linked with the application code, to
handle interrupts2. The start label is the entry point of the
whole program. The registers mtvec, mie and mcause are CSRs
that essentially store the interrupt handler address, enabled
interrupts and interrupt source, respectively. The instructions
csrr and csrw read and write a CSR into and from a normal
CPU register, respectively. Before the main function is called
(Line 10), the interrupt handler base address (level-0) is stored
in mtvec (Line 6-7) and all interrupts are enabled (Line 8-9).
After the main function returns, the VP simulation terminates,
because a loop is detected which does not contain any further
instructions (Line 13).

In general, an interrupt can occur at any time during
execution of the application SW. All interrupts propagate to
the interrupt controller (IC) first and are prioritized there. The
CPU core only receives a notification that some interrupt is
pending and needs to be processed. The CPU will first store
the execution context, i.e. program counter and register values,
and then read the base address from the mtvec CSR and set
the program counter to that address, i.e. effectively directly
jumping to the level-0 interrupt handler (first instruction at
Line 16). The interrupt handler (level-0) first in Line 16 reads
the reason (i.e. local or external interrupt) for the interrupt into
the a0 CPU register, which according to the RISC-V calling
convention [17] stores the first argument of a function call.
Then in Line 17 an interrupt handler implemented in C is
called (level-1, not shown in this example). Essentially, this
level-1 handler deals with a local timer interrupt by resetting
the timer and with an external interrupt by asking the IC for
the actual interrupt number with the currently highest priority
(through a memory mapped register access) and then calls the
application provided interrupt handler function (Line 11-13
in Fig. 2, this step is ignored if none has been registered for
the interrupt number). Finally, the mret instruction restores the
previously stored execution context. Please note, that storing
and re-storing the register values can also be implemented
in SW, by pushing and popping them to/from the stack
before/after calling the level-1 handler, respectively.

B. Environment Interaction: Syscalls and C/C++ Library
System calls (syscalls) are executed by redirecting them

to the host system running the VP simulation. This requires
to pass arguments from the guest application into the host
system and integrate the return values back into the guest
application (i.e. memory of the VP). Implementing syscalls
enables support for the C/C++ standard library. Furthermore,
we can directly use GCOV to track the coverage of the
applications simulated on our VP (the GCOV instrumentation
requires syscall support to open and write to files).

2Support for integration with the C/C++ library is also available, e.g. by
executing the instructions at the beginning of the main function or integrating
them directly into the crt0.S file, which is the entry point of the C library and
similarly to the bare-metal code also calls the main function after performing
some basic initialization tasks.

1 #define SYS_write 64
2
3 ssize_t write(int fd, const void *buf, size_t count) {
4 return syscall(SYS_write, fd, (long)buf, count, 0);
5 }
6
7 long syscall(long n, long _a0, long _a1, long _a2, long _a3) {
8 // store arguments in CPU register and trigger ecall
9 register long a0 asm("a0") = _a0;

10 register long a1 asm("a1") = _a1;
11 register long a2 asm("a2") = _a2;
12 register long a3 asm("a3") = _a3;
13 register long a7 asm("a7") = n;
14
15 // special instruction causing a jump to the syscall handler
16 asm volatile ("ecall" : "+r"(a0) : "r"(a1), "r"(a2), "r"(a3),

"r"(a7));
17
18 // store potential error code and return result
19 if (a0 < 0) {
20 errno = -a0;
21 return -1;
22 } else {
23 return a0;
24 }
25 }

Fig. 4. System call handling stub linked with the C library (guest side,
executed on the VP host system)

1 #define SYS_write 64
2
3 // execute syscall on the host system
4 ssize_t sys_write(int fd, const void *buf, size_t count) {
5 const void *p = (const void *)guest_to_host_pointer(buf);
6 return write(fd, p, count);
7 }
8
9 long execute_syscall(long n, long _a0, long _a1, long _a2, long

_a3) {
10 switch (n) {
11 case SYS_write:
12 return sys_write(_a0, (const void *)_a1, _a2);
13 //...
14 }
15 }
16
17 // function inside the CPU core
18 void execute_step() {
19 auto instr = mem_if->load_instr(program_counter);
20 auto op = decode(instr);
21
22 switch (op) {
23 case Opcode::ECALL: {
24 regs[a0] = execute_syscall(regs[a7], regs[a0], regs[a1],

regs[a2], regs[a3]);
25 } break;
26 //...
27 }
28 }

Fig. 5. System call execution on the VP by redirecting to the host system

For example consider the printf function provided by the
C standard library. Most of its functionality is implemented
as portable C code independent of the execution environment.
Essentially, the printf function will apply all formatting rules
and create a simple char buffer, which is then passed to the
write system call. At this point interaction with the execution
environment is required. Fig. 4 shows the relevant part of a
stub that is provided in the RISC-V port of the C library3.
Essentially, the arguments of the system call are stored in the
CPU registers a0 to a3 and the syscall number in a7. Then
the ecall instruction is executed. The VP simulator will detect
the ecall instruction and directly execute the syscall on the
host system as shown in Fig. 54. In case of the write syscall a

3Example based on the newlib port https://github.com/riscv/riscv-newlib.
4It is also possible to execute a trap handler, similar to the interrupt handler

described in the previous section (e.g. essentially, jump to the level-0 interrupt
handler with the mcause CSR being set to a syscall number), and then redirect
the write to e.g. a terminal component.

https://github.com/riscv/riscv-newlib

pointer argument buf is passed. This is a pointer value from the
guest system, i.a. an index in the VP byte memory array mem,
and has to be translated to a host memory pointer in order
to execute the write syscall on the host system. Therefore,
the guest to host pointer function (Line 5) adds the the base
address of the VP byte memory array, i.e. mem + buf. The
result of the syscall is stored in the a0 register and passed
back to the C library. We have implemented other syscalls in
a similar way to the write syscall.

In general the guest and host system have a different
architecture with different word sizes, e.g. in our case the guest
system (which is simulated in the VP) is a 32 bit and the host
system (which runs the VP) is a 64 bit system. Therefore,
one has to be careful when data is passed between the guest
and the host. Primitive types, e.g. int and bool, can be passed
directly from the guest to the host, because our host system
running the VP uses data types with equal or larger sizes,
thus no information is lost when passing the arguments. When
passing values back from the host a check can be performed, if
necessary, to ensure that no relevant information is truncated,
e.g. due to casting a 64 bit value into a 32 bit one. Pointer
arguments need to be translated to host addresses, as described
above, before accessing them on the host system. A write
access is thus directly propagated back to the guest application.
Structs can be accessed and copied recursively, considering the
rules for accessing primitive and pointer types.

V. VP PERFORMANCE OPTIMZATIONS

In this section we discuss two performance optimizations
for our VP that result in significant simulation speed-ups.
The first optimization is a direct memory interface to fetch
instructions and perform load/store operations from/to the
(main) memory more efficiently. The second is a temporal
decoupling technique with local time quantums to reduce the
number of costly context switches, especially, in the CPU core
simulation. We describe both techniques in the following.

A. Direct Memory Interface

The CPU core translates every load and store operation into
a transaction which is routed through the bus to the target.
Most of the time the main memory is the target of the access.
Always accessing the memory through a bus transaction can
be very costly. Even more so, because fetching the next
instruction requires to load it from the memory too. Thus,
at least one bus transaction is executed for every instruction.
To optimize the access of the main memory and in particular
instruction fetching, we provide two proxy classes with a
direct memory interface. The direct memory interface stores
the address offset where the memory is mapped in the overall
address space as well as the size and pointer to the start of
the memory. We have a proxy class for fetching instructions
and one to access the memory in general, i.e. to perform
load/store byte/half/word instructions. With the proxy classes
enabled, the CPU core will first query the proxy class. It will
match in case the main memory is accessed (for the instruction
proxy class we only allow to fetch instructions from main
memory) and otherwise convert the access into a transaction
and normally route it through the bus.

B. Local Time Quantums

A SystemC-based simulation is orchestrated by the SystemC
simulation kernel that switches execution between the various
threads. While this is not a performance problem for most
components, since they become runnable on very specific
events, context switching can become a major bottleneck
in simulating the CPU core. The reason is that a direct
implementation will perform a context switch after executing
every instruction, because simulation time has passed and the
SystemC kernel needs to check for other runnable threads to
perform synchronization. However, most of the time no other
thread becomes runnable and the CPU thread is resumed again.
Even if some other thread would become runnable it is still
fine to keep running the CPU thread for some time (ahead of
the global simulation time of the system). For example, even
if the sensor thread would be runnable and trigger an interrupt
once executed, delaying the sensor thread execution for a
small amount of time and keeping the CPU thread running
should not have influence on the functional behavior of the
system. In general the software does have no knowledge of
the exact timing behavior and thus is written in such a way,
e.g. by employing locks and flags, to always wait for certain
conditions.

VI. VP EXTENSION AND CONFIGURATION

Our VP is designed as a configurable and in particular
extensible platform. It is very easy to add additional compo-
nents (i.e. peripherals/controllers including bus masters) and
attach them to the bus system at a new address range, or
change the address mapping of the existing components. This
allows for an easy (re-)configuration of the VP. By following
the TLM 2.0 communication standard, transactions can be
annotated with optional timing informations to obtain a more
accurate timing model of the executed software. Support for
additional RISC-V ISA extensions (beyond I and M) can
be added inside the CPU core by extending the decode
and execute functions accordingly. In general the compact
implementation size (around 3000 lines of C++ code with all
extensions) makes the VP very manageable and thus suitable
as foundation for different application areas. In the following,
we demonstrate the extensibility of our VP by two concrete
examples: addition of a sensor peripheral and extension by
GDB debug functionality from the application SW perspective.

A. Extending the VP with a Sensor Peripheral

This section presents the SystemC-based implementation of
the VP sensor peripheral, which is used by the SW example
presented in Section IV-A. It shows the principles on modeling
peripherals and extending our VP as well as demonstrates the
TLM communication and basic SystemC-based modeling and
synchronization. The sensor is instantiated in the main function
of the VP alongside the other components and attached to the
TLM bus.

The sensor implementation is shown in Fig. 6. The sensor
model has a data frame of 64 bytes that is periodically updated
(overwritten with new data, Line 83-92) and two 32 bit
configuration registers scaler and filter. The update happens in
the run thread (the run function is registered as SystemC thread
inside the constructor in Line 26). Based on the scaler register

1 struct SimpleSensor : public sc_core::sc_module {
2 tlm_utils::simple_target_socket<SimpleSensor> tsock;
3
4 interrupt_controller *ic = 0;
5 uint32_t irq_number = 0;
6 sc_core::sc_event run_event;
7
8 // memory mapped data frame
9 std::array<uint8_t, 64> data_frame;

10
11 // memory mapped configuration registers
12 uint32_t scaler = 25;
13 uint32_t filter = 0;
14 std::unordered_map<uint64_t, uint32_t *> addr_to_reg;
15
16 enum {
17 SCALER_REG_ADDR = 0x80,
18 FILTER_REG_ADDR = 0x84,
19 };
20
21 SC_HAS_PROCESS(SimpleSensor);
22
23 SimpleSensor(sc_core::sc_module_name, uint32_t irq_number)
24 : irq_number(irq_number) {
25 tsock.register_b_transport(this, &SimpleSensor::transport);
26 SC_THREAD(run);
27
28 addr_to_reg = {
29 {SCALER_REG_ADDR, &scaler},
30 {FILTER_REG_ADDR, &filter},
31 };
32 }
33
34 void transport(tlm::tlm_generic_payload &trans,

sc_core::sc_time &delay) {
35 auto addr = trans.get_address();
36 auto cmd = trans.get_command();
37 auto len = trans.get_data_length();
38 auto ptr = trans.get_data_ptr();
39
40 if (addr >= 0 && addr <= 63) {
41 // access data frame
42 assert (cmd == tlm::TLM_READ_COMMAND);
43 assert ((addr + len) <= data_frame.size());
44
45 // return last generated random data at requested address
46 memcpy(ptr, &data_frame[addr], len);
47 } else {
48 assert (len == 4); // NOTE: only allow to read/write

whole register
49
50 auto it = addr_to_reg.find(addr);
51 assert (it != addr_to_reg.end()); // access to non-mapped

address

52
53 // trigger pre read/write actions
54 if ((cmd == tlm::TLM_WRITE_COMMAND) && (addr ==

SCALER_REG_ADDR)) {
55 uint32_t value = *((uint32_t *)ptr);
56 if (value < 1 || value > 100)
57 return; // ignore invalid values
58 }
59
60 // actual read/write
61 if (cmd == tlm::TLM_READ_COMMAND) {
62 *((uint32_t *)ptr) = *it->second;
63 } else if (cmd == tlm::TLM_WRITE_COMMAND) {
64 *it->second = *((uint32_t *)ptr);
65 } else {
66 assert (false && "unsupported tlm command for sensor

access");
67 }
68
69 // trigger post read/write actions
70 if ((cmd == tlm::TLM_WRITE_COMMAND) && (addr ==

SCALER_REG_ADDR)) {
71 run_event.cancel();
72 run_event.notify(sc_core::sc_time(scaler,

sc_core::SC_MS));
73 }
74 }
75 }
76
77 void run() {
78 while (true) {
79 run_event.notify(sc_core::sc_time(scaler,

sc_core::SC_MS));
80 sc_core::wait(run_event); // 40 times per second by

default
81
82 // fill with random data
83 for (auto &n : data_frame) {
84 if (filter == 1) {
85 n = rand() % 10 + 48;
86 } else if (filter == 2) {
87 n = rand() % 26 + 65;
88 } else {
89 // fallback for all other filter values: random

printable
90 n = rand() % 92 + 32;
91 }
92 }
93
94 ic->trigger_interrupt(irq_number);
95 }
96 }
97 };

Fig. 6. SystemC-based configurable sensor model that is periodically filled with random data - demonstrates the basic principles on modeling peripherals.

value this thread is periodically unblocked (Line 79) by calling
the notify function on the internal SystemC synchronization
event. Thus, scaler defines the speed at which new sensor data
is generated. The filter register allows to select some kind of
post-processing on the data. After every update an interrupt is
triggered, which will propagate through the interrupt controller
to the CPU core up to the interrupt handler in the application
SW. Therefore, the sensor has a reference to the interrupt
controller (IC, Line 4) and an interrupt number provided
during initialization (Line 23 and Line 24).

Access to the data frame and configuration registers is
provided through TLM transactions. These transactions are
routed by the bus to the transport function (Line 34). The
routing happens as follows: 1) The sensor has a TLM target
socket field, which is bound in the main function (i.e. VP
simulation entry point) to an initiator socket of the TLM bus.
2) The transport function is bound as destination for the target
socket in the constructor (Line 25).

Based on the address and operation mode, as stored in the
generic payload (Line 35-36), the action is selected. It will
either read (part of) the data frame (Line 46) or read/write
one of the configuration registers (Line 61-67). In case of a
register access a pre-read/write validation and post-read/write

action can defined as necessary. In this example, the sensor
will ignore invalid scaler values (Line 54-58) and reset the
data generation thread on a scaler update (Line 70-73). Please
note, that the transaction object (generic payload) is passed
by reference and provides a pointer to the data, thus a write
access is propagated back to the initiator of the transaction.
Optionally, an additional delay can be added to the sc time
delay parameter (also passed by reference) for a more accurate
timing model.

B. Debugging Support Extension
We have implemented the GDB RSP (Remote Serial Proto-

col) interface to provide direct debugging support of applica-
tions running on our VP with the GDB debugger (in particular
the freely available RISC-V port of the GDB, which knows
about the available register set and the CSRs). Our VP acts
as server and the GDB as client. They communicate through
a TCP connection and send text based messages. A message
is either a packet or a notification (a simple single char ’+’)
that a packet has been successfully processed. Each packet
starts with a ’$’ char and ends with a ’#’ char followed by
a two digit hex checksum (the sum over the content chars
modulo 256). For example the packet $m111c4,4#f7 has
the content m111c4,4 and checksum f7. The m command

Fig. 7. Debugging the sensor application with Eclipse (screenshot showing relevant part of the debug view inside the Eclipse IDE)

denotes a memory read, in this case read 0x4 bytes starting
from address 0x111c4. Our server might then for example
return +$05000000#85, i.e. acknowledge the packet and
return the value 5 (two chars per byte). To handle the packet
processing and TCP communication we added a gdb-stub
component to our VP. The whole debugging extension is only
about 500 additional lines of C++ code most of them to
implement the gdb-stub. On the VP side, only the CPU core
has been modified to lift the SystemC thread into the gdb-stub,
to allow the CPU to interrupt and exit the execution loop in
case of a breakpoint and thus effectively transfer execution
control to the gdb-stub.

Debugging works as follows: Start our VP in debug-mode
(command line argument), this will transfer control to the gdb-
stub implementing the RSP interface, waiting for a connection
from the GDB debugger. In another terminal start the GDB
debugger. Load the same executable ELF file into the GDB
(command ”file main-elf”) as in our VP. Connect to the TCP
server of the VP (command ”target remote :5005”, i.e. to
connect to localhost using port 5005). Now the GDB debugger
can be used as usual to set breakpoints, continue and step
through the execution. It is also possible to directly use a
visual debugging interface, e.g. ddd or gdb-dashboard or even
the Eclipse IDE. Fig. 7 shows a screenshot of debugging the
sensor application in Eclipse.

Please note, the ELF file contains information about the
addresses and sizes of the various variables in memory. Thus,
a print(x) command with an int variable x is already translated
into a memory read command (e.g. m11080,4). Therefore, on
the server side, i.e. our VP, an extensive parsing of ELF files
is not necessary to add comprehensive debugging support. In
total we have only implemented 24 different commands of

which 9 can simply return an empty packet and a few more
some pre-defined answer. Relevant packets are for example:
read a register (p), read all registers (g), read memory range
(m), set/remove breakpoint (Z0/z0), step (s) and continue (c).

VII. EXPERIMENTS

In this section we present a performance comparison of our
RISC-V based VP implementation with the RISC-V based
PULPino platform (RTL implementation). For this compar-
ison, the PULPino platform is simulated in a commercial
RTL simulator. The PULPino platform is configured to use
the RISCY core, which, similar to our core also supports the
RV32IM instruction set. We also demonstrate the effectiveness
of our presented VP simulation performance optimization
techniques. All experiments are performed on a Linux system
with an AMD Opteron 2220 SE processor with 2.8 GHz and
32 GB RAM.

For the evaluation we use the following benchmarks from
the RV8 benchmark set: 1) primes computes prime numbers up
to a limit of 33,333,333; 2) qsort sorts an array with 50 million
elements; 3) sha512 applies the sha512 cryptographic hash
function on a 60 MB data set (1 million iterations). The RV8
benchmark set contains some additional benchmarks, which
we have omitted from the comparison due to problems on
executing them on the PULPino platform in the commercial
RTL simulator. In addition to the RV8 benchmarks, we have
added a bubblesort (sorting 50,000 elements) and a recursive
mergesort (sorting 1 million elements) benchmark to the
comparison. Due to timeouts (set to 4 hours, denoted T.O.)
in the RTL simulation we also added down-scaled versions
of the benchmarks (/s appended) to the comparison: primes/s
has a limit of 33,333; qsort/s sorts 5,000 elements; sha512

TABLE I
EXPERIMENT RESULTS - ALL EXECUTION TIMES ARE REPORTED IN SECONDS, TIMEOUT (T.O.) SET TO 4 HOURS (14400 SECONDS)

Benchmark #instr-exec. LOC PULPino Our RISC-V VP
RTL Sim. basic +i dmi +d dmi +q10 +q100 +q1000

bubblesort/s 2022052 20 787.49 0.97 0.71 0.58 0.43 0.41 0.40
mergesort/s 297226 41 56.70 0.39 0.35 0.35 0.32 0.29 0.29
primes/s 4341572 24 823.11 1.73 1.01 0.96 0.59 0.49 0.48
qsort/s 290765 146 64.50 0.40 0.35 0.34 0.31 0.30 0.27
sha512/s 8120416 154 1307.23 3.23 1.87 1.57 0.90 0.71 0.68
bubblesort 200197558 20 T.O. 69.21 44.16 30.71 16.31 11.97 11.35
mergesort 535918604 41 T.O. 197.32 107.89 86.48 41.17 27.77 26.15
primes 7114988801 24 T.O. 2400.34 1214.71 1089.36 542.46 387.09 374.33
qsort 3061611834 146 T.O. 1204.98 698.50 510.70 262.93 162.73 154.93
sha512 8071548963 154 T.O. 2773.6 1556.02 1302.75 616.1 432.52 406.34

operates on a 0.6 MB data set (1,000 iterations); mergesort/s
and bubblesort/s sort 1,000 elements, respectively.

Table I shows the results of the experiments. The table is
divided in two halfves: the upper half shows the down-scaled
benchmark versions, while the lower half shows the longer
running versions. All execution times are reported in seconds.
The first column shows the benchmark name. The second
and third columns show the number of executed instructions
(measured on our VP) and LOC of the benchmark, respec-
tively. The fourth column (PULPino) shows the execution
time for running the benchmark on the PULPino platform
(RTL implementation) in the commercial RTL simulator. The
remaining columns show the execution time for running the
benchmark on our VP with various optimization techniques
enabled: no optimization (column: basic), with an instruction
proxy using direct memory interface (dmi) for instruction
fetching (column: +i dmi), additionally with a data access
proxy using dmi for loading/storing data from/to the (main)
memory (column: +d dmi), additionally with a local time
quantum of 10 (column: +q10), 100 (column: +q100) and 1000
(column: +q1000) instruction cycles, respectively.

It can be observed that every optimization technique signif-
icantly improves the simulation performance on our VP. We
observed a factor of improvement between 6.1x and 7.8x on
this benchmark set with all optimization techniques enabled on
the longer running benchmarks. Increasing the time quantum
further beyond 1000 instruction cycles has only a minor
effect on the simulation performance, because the impact of
the SystemC thread context switch becomes marginal on the
overall execution time. It can be observed that our VP is
multiple orders of magnitude faster than the RTL simulation,
especially, with optimizations enabled. Our VP executes up
to 20 million instructions per second on the longer running
benchmarks (between 17.6 and 20.5 millions, depending on
the benchmark) on our evaluation system (AMD 2.8 GHz).

VIII. CONCLUSION

In this paper, we have proposed and implemented the first
RISC-V based VP to further expand the RISC-V ecosystem.
The VP has been implemented in SystemC and designed
as extensible and configurable platform around a RISC-V
RV32IM core with a generic bus system employing TLM 2.0
communication. Our VP is very compact, with around 3000
lines of C++ code including all extensions, making it very

manageable and thus suitable as foundation for various appli-
cation areas, including early SW development and analysis of
interactions at the HW/SW interface of RISC-V based systems.
Finally, our RISC-V VP is fully open source to stimulate
further research and development of ESL methodologies.

For future work we consider two different directions: 1)
further extend our VP, and 2) verify our VP using verification
techniques for SystemC, e.g. [18].

REFERENCES

[1] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual; Volume I:
User-Level ISA, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2017.

[2] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Architecture,
SiFive Inc. and CS Division, EECS Department, University of California, Berke-
ley, 2017.

[3] R. Leupers, F. Schirrmeister, G. Martin, T. Kogel, R. Plyaskin, A. Herkersdorf,
and M. Vaupel, “Virtual platforms: Breaking new grounds,” in DATE, 2012, pp.
685–690.

[4] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann/Elsevier, 2007.

[5] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2011.
[6] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.
[7] M. Streubhr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich, “ESL power

and performance estimation for heterogeneous mpsocs using SystemC,” in FDL,
Sept 2011, pp. 1–8.

[8] K. Grüttner, R. Görgen, S. Schreiner, F. Herrera, P. Peñil, J. Medina, E. Villar,
G. Palermo, W. Fornaciari, C. Brandolese, D. Gadioli, E. Vitali, D. Zoni, S. Boc-
chio, L. Ceva, P. Azzoni, M. Poncino, S. Vinco, E. Macii, S. Cusenza, J. Favaro,
R. Valencia, I. Sander, K. Rosvall, N. Khalilzad, and D. Quaglia, “CONTREX:
Design of embedded mixed-criticality CONTRol systems under consideration of
extra-functional properties,” Microprocessors and Microsystems, vol. 51, pp. 39
– 55, 2017.

[9] G. Onnebrink, R. Leupers, G. Ascheid, and S. Schürmans, “Black box ESL power
estimation for loosely-timed TLM models,” in SAMOS, July 2016, pp. 366–371.

[10] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “On the application of formal
fault localization to automated RTL-to-TLM fault correspondence analysis for
fast and accurate VP-based error effect simulation - a case study,” in FDL, 2016,
pp. 1–8.

[11] ——, “Towards early validation of firmware-based power management using
virtual prototypes: A constrained random approach,” in FDL, 2017, pp. 1–8.

[12] “Spike,” https://github.com/riscv/riscv-isa-sim, accessed: 2018-05-13.
[13] “RISCV-QEMU,” https://github.com/riscv/riscv-qemu, accessed: 2018-05-13.
[14] “RV8,” https://rv8.io, accessed: 2018-05-13.
[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[16] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “Socrocket
- A virtual platform for the European Space Agency’s SoC development,” in
ReCoSoC, 2014, pp. 1–7.

[17] “Calling convention,” https://riscv.org/wp-content/uploads/2015/01/
riscv-calling.pdf, accessed: 2018-05-13.

[18] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Verifying SystemC using
intermediate verification language and stateful symbolic simulation,” TCAD,
2018.

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-qemu
https://rv8.io
http://doi.acm.org/10.1145/2024716.2024718
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf

