
Data Flow Testing for SystemC-AMS Timed Data Flow Models

Muhammad Hassan1,2 Daniel Große1,2 Hoang M. Le2 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
muhammad.hassan@dfki.de {grosse,hle,drechsle}@informatik.uni-bremen.de

Abstract—Internet-of-Things (IoT) devices have significantly
increased the need for high quality Analog Mixed Signal (AMS)
System-on-Chips (SoC). Virtual Prototyping (VP) can be utilized
for an early design verification. The Timed Data Flow (TDF)
model of computation available in SystemC-AMS offers here
a good trade-off between accuracy and simulation-speed at
the system-level. One of the main challenges in system-level
verification of AMS design is to achieve full path coverage. In
the software domain Data Flow Testing (DFT) has demonstrated
to be a powerful testing strategy in this regard. In this paper
we introduce a DFT approach for SystemC-AMS TDF models
based on two major contributions: First, we develop a set of
SystemC-AMS TDF models specific coverage criteria for DFT.
This requires to consider the SystemC-AMS semantics of signal
flow. Second, we explain how to automatically compute the data
flow coverage result for given TDF models using a combination
of static and dynamic analysis techniques. Our experimental
results on real-world AMS VPs demonstrate the applicability
and efficacy of our approach.

I. INTRODUCTION

The Internet-of-Things (IoT) begins where the physical
world meets the digital world. Sensors, converters, micro-
processors, and transceivers, are what gather and transport
the data that fuel the promise and potential of the IoT. This
has introduced a new constraint in the System-on-Chip (SoC)
design cycle: a multi-functional SoC, i.e., analog, mixed-
signal, and digital circuits tightly integrated on one chip.
In the past analog and digital parts have been verified by
separate teams. However, this digital-analog divide fails at
the SoC level. Malfunction of interfaces between the analog
and digital parts is a common problem in AMS design, which
becomes more complex due to the tight integration of digital
and analog today. Hence, it is mandatory to develop method-
ologies which allow to consider analog and digital designs
holistically. Another major challenge in AMS verification is
the simulation speed of the SPICE (Simulation Program with
Integrated Circuit Emphasis) models for the analog part of
the SoC. Their simulation, while slow, is still considered a
golden standard and cannot be ignored. But different levels of
design abstractions can be used to achieve significantly better
simulation performance, and earlier design verification.

That is why Virtual Prototyping (VP) at the abstraction of
Electronic System Level (ESL) is nowadays an established
industrial practice. The Timed Data Flow (TDF) Model of
Computation (MoC) available in SystemC-AMS [1] offers a
good trade-off between accuracy and simulation-speed at the
SoC level. TDF defines time domain processing, and is used
to model the pure algorithmic or procedural description of the
underlying design. Multiple TDF models connect together to
make a TDF cluster, i.e., a SoC. Because of earlier availability,

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project CONVERS under contract
no. 16ES0656, and University of Bremens graduate school SyDe, funded by
the German Excellence Initiative.

the TDF model is used as a golden reference for system
verification in a top-down design flow. Hence, its functional
correctness is of utmost importance. Therefore, the complete
AMS design as a whole is subject to rigorous verification.

Simulation is still the most widely used technique for
functional correctness of VPs. Similarly, for SystemC-AMS
TDF models, a verification environment is constructed by
composing a testbench. To examine as much distinct functional
behavior of the Design Under Verification (DUV) as possible,
constrained random stimuli are applied [2], [3]. For each
stimulus, the behavior of the TDF model(s) is compared
against expected behavior (as given in specification sheet).
Since a TDF model is essentially a software-based model,
techniques from software testing domain can be leveraged
for SystemC-AMS TDF models to improve the verification
quality. One promising technique in the software domain is
Data Flow Testing (DFT) [4], [5], [6] which experienced
renewed interest due to its applicability in fault localization,
security testing, and specification consistency checking [7].

DFT monitors the interactions of a piece of data (a variable’s
definition, and its uses). Essentially, the idea is that a bug is
revealed only if the bug is exercised by a test input signal.
The motivation is that the testsuite should be able to exercise
program paths along which data flows, i.e., traversal of paths
from a variable definition, to either some or all of its uses.
They are generally termed as definition-use pairs or def-use
pairs. Since, DFT brings the promise of a high quality testsuite
in software domain, its importance towards AMS designs
cannot be ignored.

Therefore, in this paper, we propose the first DFT approach
for SystemC-AMS TDF models based on two major contribu-
tions: First, we develop a set of SystemC-AMS TDF models
specific coverage criteria for DFT. This requires to consider
the SystemC-AMS semantics of TDF signals, TDF cluster
modeling, TDF ports, and dynamic TDF. Second, we explain
how to automatically compute the data flow coverage result for
given TDF models using a combination of static and dynamic
analysis techniques. The coverage results guide the verification
engineer to add new testcases to improve the coverage.

II. RELATED WORK

AMS SoC verification has been an active research topic,
both formal, and simulation based. Two symbolic model
checking algorithms for the verification of AMS designs are
proposed in [8]. The first model checker utilizes binary deci-
sion diagrams while the second is a bounded model checker
that uses a satisfiability modulo theory solver. The analysis
is done using VHDL-AMS description. [9], [10] also propose
approaches to formally verify the AMS designs.

Other works, like [11] focus on the abstraction of analog
components implemented in Verilog-AMS and SystemC-AMS
Electrical Linear Networks (ELN) to a C++ based models.

This helps in faster simulations, and quicker system validation.
But it is only limited to the circuits, and not the behavioral
models. [12], [13] focus on the fault testing through abstraction
of Verilog-AMS models to a C++ based model, where the
faults are injected in to the Verilog-AMS model, abstracted to
C++ model and finally simulated to check if the fault has been
detected by the testsuite or not. It targets the analog design,
and does not consider the complete AMS SoC.

[14] focuses on SystemC VPs essentially, and proposes
different coverage criteria w.r.t. SystemC semantics i.e., non-
preemptive thread scheduling, shared memory communication
and event-based synchronization. But it is only limited to
SystemC. In [15], the authors propose mutation analysis for
SystemC-AMS TDF models for testbench qualification.

In [16], the authors propose data flow relations w.r.t., circuit
components, for e.g., transistor configurations etc. It motivated
us to look for similar flows at the system-level. As mentioned
earlier, our approach is to the best of our knowledge the first
attempt to leverage DFT for SystemC-AMS TDF models.

III. BACKGROUND

A. Motivating Example

For brevity, we refrain from giving a proper introduction
to SystemC-AMS, and encourage the reader to go through
SystemC-AMS user guide [1]. Instead, we present here a
simplified example SystemC-AMS program (Fig. 2) extracted
from an IoT device, sensor system (Fig. 1). This example will
be used to showcase the main ideas of our approach throughout
this paper. The sensor system is a typical AMS system which
includes a mixture of analog, and digital components; a
temperature sensor (TS), a humidity sensor (HS), an analog
signal delay (Z−1), a 4×1 analog mux (AMUX), a gain
element (G), a 9-bit analog-to-digital converter (ADC), a small
digital control module, and two LEDs (Light-Emitting Diode).
The sensor system works as follows: TS/HS senses the tem-
perature/humidity (time continuous analog signals), and if the
sensed value crosses a certain threshold, the sensor generates
an interrupt (digital signal) to the control module. The control
module sets the AMUX select line corresponding to the sensor
(Line 66), and reads the temperature/humidity value. It com-
pares the value with a preset threshold (60◦C for temperature,
45RH for humidity), and switches the corresponding LED
(T LED (Line 49)/H LED (Line 62)) on, indicating too hot
or too humid. Please note, if the temperature crosses 50◦C,
the controller halts the sensor output (Line 55), and reads
the delayed value to ensure it read the value correctly in the
first place. The whole system is implemented in SystemC-
AMS TDF MoC, where the necessary parts of the design are
shown in Fig. 2. We omitted the SystemC-AMS code required
for instantiation and initialization, i.e. the elaboration phase.
Please note, the variables with prefix ”ip ”/”op ”, and ”m ”
refer to input/output ports, and member variables of the TDF
model, respectively.

The TS is implemented in function TS::processing() (Line 1
- Line 16). It gives an output signal only when the input is
between a certain threshold (between 30 mV and 1500 mV
(Line 9)). HS behavior is implemented in HS::processing()
(Line 18 - Line 30). Interrupts are additionally added to
both the sensors. AMUX is implemented in AM::processing()
(Line 32 - Line 39), and control in ctrl::processing() (Line 41

TS

Z-1

A

M

U

X

G

C
o
n
tro

l

ADC

H_LED

T_LED

HS

op_intr op_hold, op_clear

op_mux_s

op_intr

Fig. 1. Sensor system - T: Temperature, H: Humidity, XS: X Sensor (X=T,H),
Z−1 = delay, AMUX: Analog mux, ADC: Analog-to-Digital Converter,
X LED: Light-emitting Diode, G: Gain

- Line 68). The control model translates incoming digital
signal from ADC to a temperature reading by dividing the
input (ip DIN) by 10 (the scale factor). For e.g., a signal
of 200 mV translates to 20◦C. Gain (G) and analog delay
(Z−1) (SystemC-AMS library) are instantiated as shown
in Fig. 2 at Line 76, and Line 73, respectively. ADC is
instantiated at Line 79. In order to simplify the showcase of
example, the ADC is assumed to output the same signal in
digital form, it gets on its analog input. A required part of
netlist (binding information) of the TDF cluster is shown in
sense top::architecture() (Line 70 - Line 82). This is important
as will be shown in following sections.

B. Data Flow Association and Testing
Data flow association, a generalization of definition-use

(def-use) association, in general, is a tuple (v, d, u) where
d is a program statement in which the variable v is defined,
and u is a program statement in which v is used. Consider the
variable tmpr defined in Fig. 2 - Line 4, and used in Line 9. It
is considered a def-use association as the variable tmpr is not
redefined between Line 4 and Line 9. A def-use association (v,
d, u) can only be exercised by a testcase t, iff execution of t
goes through definition d and then use u without re-definition
of variable v in-between.

The data flow testing, on the other hand, requires that the
the testsuite should be comprehensive enough to cause the
traversal of maximum paths from a variable definition to its
uses. Meaning thereby, maximum number (all ideally) of data
flow associations should be exercised. Testsuite refinement is
done in the process i.e., addition of more test cases, until a
preset coverage criteria is satisfied. This requires to detect
data flow associations and measure the data flow coverage
of the testsuite. In the following text, data flow associations
and testing w.r.t. SystemC-AMS TDF models will be shown
while considering the TDF semantics. Please, also note that
the term data flow association will be used (alternatively) in
place of def-use association in the following text.

IV. DATA FLOW TESTING FOR SYSTEMC-AMS TDF
MODELS

In this section we start with the overview of our approach.
Afterwards, we provide the ingredients like classification of
data flow associations w.r.t. SystemC-AMS TDF models, and
coverage criteria. At the end, the approach is illustrated to
show its effectiveness.

A. Approach Overview
Our data flow testing approach for SystemC-AMS TDF

models is shown in Fig. 3. It comprises of three stages; 1) static
analysis, 2) dynamic analysis, 3) coverage analysis. All three

1 void TS::processing()
2 {
3 double sig_in = ip_signal_in; // volts
4 double tmpr = sig_in*1000; //millivolts
5 double out_tmpr = 0;
6 bool intr_ = false;
7 if (!ip_hold){
8 if (ip_clear) intr_ = 0;
9 else if ((tmpr > 30) && (tmpr < 1500)){

10 out_tmpr = tmpr;
11 intr_ = true;
12 }
13 op_intr.write(intr_);
14 op_signal_out = out_tmpr;
15 }
16 }
17
18 void HS::processing()
19 {
20 double temp = ip_signal_in*1000; // mV
21 double Tdepend = (B1*42 + B2)*temp + (B3*42+B4);
22 double C = 153e-12; // capacitance
23 double BC = 150e-12; // bulk capacitance at 30%RH
24 double sensitivity = 0.25e-12;
25 bool intr_ = false;
26 double newRH = 30 + ((C - BC)/sensitivity) + Tdepend;
27 if (newRH > 30) intr_ = true;
28 op_intr.write(intr_);
29 op_signal_out = newRH;
30 }
31
32 void AM::processing()
33 {
34 double tmp_out = 0;
35 if (ip_select == 0) tmp_out = ip_port_0;
36 else if (ip_select == 1) tmp_out = ip_port_1;
37 else if (ip_select == 2) tmp_out = ip_port_2;
38 op_mux_out = tmp_out;
39 }
40
41 void ctrl::processing()

42 {
43 if(ip_intr0)
44 if((ip_DIN/10) < 60) {
45 op_clear = 1;
46 m_mux_s = 0;
47 op_hold = 0;
48 } else if (m_mux_s == 1 && (ip_DIN/10)>60){
49 op_T_LED = 1;
50 op_clear = 1;
51 op_hold = 0;
52 m_mux_s = 0;
53 } else if (m_mux_s == 0 && (ip_DIN/10)>50){
54 m_mux_s = 1;
55 op_hold = 1;
56 } else {
57 op_hold = 0;
58 op_clear = 1;
59 m_mux_s = 0;
60 }
61 else if (ip_intr1 && m_mux_s == 2){
62 if(ip_DIN > 45) op_H_LED = 1;
63 m_mux_s = 0;
64 } else if (ip_intr1)
65 m_mux_s = 2;
66 op_mux_s = m_mux_s;
67 if(ip_intr0==0) op_clear = 0;
68 }
69
70 void sense_top::architecture() // netlist
71 {
72 //
73 i_delay_tdf1 -> tdf_i.bind(op_signal_out);
74 i_delay_tdf1 -> tdf_o.bind(op_delay_out);
75
76 i_gain_tdf1 -> tdf_i.bind(op_mux_out);
77 i_gain_tdf1 -> tdf_o.bind(op_gain_out);
78
79 i_adc1 -> adc_i.bind(op_gain_out);
80 i_adc1 -> adc_o.bind(op_adc_out);
81 //...
82 }

Fig. 2. Sensor system - SystemC-AMS TDF model example (B1 = 0.0014/◦C, B2 = 0.1325% RH/◦C, B3 = -0.0317, B4 = -3.0876% RH)[17]

Clang

Binding Info.
Extraction

Def-use assoc.

Instrumented
Code

Executable

Exercised Pairs

Evaluation

Coverage
Result

Te
st C

ase
s

SystemC-AMS
TDF models (.cpp)

Static Analysis

Tests addition
D

yn
am

ic an
alysis

Static an
alysis

Fig. 3. Proposed Data Flow Testing Methodology Overview

stages work together to fully automatically compute SystemC-
AMS TDF models specific data flow coverage results.

The static analysis identifies the set of all data flow as-
sociations computed in the TDF clusters using TDF models
binding information ([1]). This step is executed only once
at the beginning of the analysis. Due to static nature, the
analysis computes an over-approximation of the associations
which may also contain infeasible associations, i.e., dead code
associations. On circuit level, dead code associations can be
mapped to component isolation because of open circuit, wrong
transistor configuration, or a very high/low passive component
value etc. To guide testcase selection (with test input signal),
associations are classified into different disjoint groups based
on the likeliness of being infeasible.

The dynamic analysis (Fig. 3 - right side) identifies the exer-
cised data flow associations w.r.t. the testsuite. The SystemC-
AMS source file with TDF models is instrumented so that rel-
evant runtime information can be captured. The instrumented
file is afterwards compiled and executed against every testcase
from testsuite. For each testcase, different data (signal) flow
information is recorded. The resulting logs are analyzed and
combined to obtain the set of exercised data flow associations.

At the end, the static and dynamic analysis results are evalu-
ated and combined to obtain a coverage result. Essentially, the
result shows which data flow associations have been exercised
by at least one testcase and which have been completely
missed. An association can be missed due to, 1) The testsuite is
insufficient to cover it. In this case a new testcase (test input
signal with different parameters) needs to be added. 2) The
association is infeasible. In this case it can be either inspected
for correct binding, or ignored.

Our classification system, that ranks associations according
to their likeliness of being infeasible, allows the testing engi-
neer to focus his efforts on promising testcases (test input
signals) to efficiently improve the coverage result. In this
work, automated test generation has not been considered. In
the following we describe our classification system and the
coverage result in more detail and demonstrate both using the
running example (Fig. 2).

B. Classification of Data Flow Associations

We define four classifications specific to TDF models of
SystemC-AMS: Strong, Firm, PFirm, PWeak. They are defined
in two categories, 1) within a TDF model, 2) in TDF cluster.
The first category extends the classical notion of data flow
testing that reason about variable definition and use within one
function. First two classifications come under this category. In
SystemC-AMS, a variable defined in one TDF model might
flow to another TDF model for use. This happens when the
defined variable is an output port, and used variable is an
input port. In this case, the classical notion does not apply and
new approach has to be devised. In this scenario, it is also
possible that the defined variable (port) is redefined (signal
amplification, signal delay etc.) outside the TDF model, before
being used. Hence, the two classifications; PFirm, PWeak, are
used to classify the definition and use w.r.t. the SystemC-AMS
TDF model ports (hence P in PFirm and PWeak).

1) Def-Use Association: We define a def-use association as
an ordered tuple (v,d,dm,u,um). For a variable v, there exists
a static path between definition d present in TDF model dm
(defining model), and use u present in TDF model um (using
model) without a redefinition of v in between. We define a du-
path as a static path between d and u without a re-definition of
v, when both d and u can be in same or different TDF models.
Four classifications for def-use associations are proposed:

1) Strong - a) Variable v is an output port of a TDF model
dm, and there exists a du-path between dm and um. b)
Variable v is local to the TDF model, i.e., dm == um,
and every static path between def and use is a du-path.

2) Firm - Variable v is local to the TDF model, and at least
one static path between d and u is not a du-path.

3) PFirm - Variable v is an output port, and there exists at
least one static path which is not a du-path.

4) PWeak - Variable v is an output port, and there exists
no du-path.

Because local variable does not flow out of the TDF model,
it is classified in first two associations; strong or firm. When
ports of TDF models are considered, the data (signal) flowing
towards the connecting TDF model might be a du-path (direct
connection) to the um. It is also possible that the data (signal)
is redefined. The re-definition could occur in the following
two cases (limited to SystemC-AMS library, and only to
single input single output (SISO) components): a) There exists
a delay element in the du-path. The delay element delays
the incoming data (signal) by the preset number of samples
(seconds), and outputs an earlier value instead of the current
value. Because of this reason, we consider it as a redefinition.
b) There exists a gain or buffer element which amplifies the
incoming signal, or regenerates it. More elements can also be
added. Based on this general idea, three data flow associations
are defined: a) If the output port directly connects to another
TDF model, the association is Strong, b) if the output port
connects to another TDF model, and there exists a re-definition
of the port as well, i.e., there are two branches (one original,
and one redefined) and both of them connect to the same TDF
model, the association is called PFirm. Because we are not
doing context aware analysis, we do not know which of the
two definitions will be used inside the TDF model. Maybe
both the definitions are used, or maybe one of them is used. It
is context dependent (if-else, while, for..), and the condition
cannot be evaluated on static time. For e.g., analog mux
behavior, c) if both the branches are redefined, and connect
to same TDF model, it is termed as PWeak. Because the
original port is re-defined no matter which path is taken, or d)
if the branches (original, and redefined) go to different TDF
models, then they are classified according to the individual
cases defined above (Strong or PWeak).

2) Coverage Result and Test Adequacy Criteria: Every
classification defines a disjoint set of data flow associations.
Please, note that the strengths of associations are based entirely
on static characteristics of the underlying SoC. Hence, a
coverage criterion of each classification is required, as follows:

1) all-Strong - the criteria is satisfied iff all data flow
associations termed Strong have been covered.

2) all- Firm - all data flow associations termed Firm are
covered.

3) all- PFirm - all data flow associations termed PFirm are

covered.
4) all- PWeak - all data flow associations termed PWeak

are covered.
5) all- defs - iff at least one def-use association (v, d, dm,

u, um) is covered for every definition.
6) all-dataflow - iff all above criterion are satisfied.

Satisfying all-dataflow criteria is difficult due to limitations
of static analysis, i.e., imprecisions or over-approximation.
But because the associations are disjoint, satisfaction of each
criteria is independent. Hence, it is possible that some of the
(sub-)criteria can be fully satisfied - or at least up to a high
degree, i.e. 90% of the associations have been exercised. In
particular, we expect that all-Strong, all-Firm, and all-PFirm
to be the primarily focused criteria. The Strong, Firm, and
PFirm associations contain at least one du-path, hence, it is
expected from the test input signal to cover them.

3) Illustration: To illustrate our DFT approach for
SystemC-AMS TDF models, we use the example IoT device
given in Fig. 1, and its code in Fig. 2. We show with the help
of three different testcases applied one at a time how the data
flow coverage increases. The final coverage results are shown
in Table I. Table I can be interpreted in the following way: the
column titled Static Pairs lists all the statically identified data
flow associations, the columns titled Testsuite presents three
testcases (TC); TC1, TC2, TC3. The table lists the data flow
associations from Strong (top left), to PWeak (bottom right). If
a TCX (X = 1,2,3) is able to exercise a data flow association,
an ”x” is marked in the corresponding TC column. The data
flow associations which are not exercised are marked with a
”-” in the corresponding TC column. The test input signals or
TC used are: TC1) a constant time continuous signal of 0.1V,
mimicking a temperature of 10◦C, TC2) a time continuous
signal from 0V to 0.65V, i.e. 0◦C to 65◦C, and back to 0V
(0◦C), TC3) a time continuous signal at 0.40V (45◦C). TC1
and TC2 are applied to TS, while TC3 is applied to HS.

To give an idea, the def-use association (tmpr, 4, TS, 9,
TS) is Strong as there exists only one path from Line 4 to
Line 9, without any redefinition of tmpr (a local variable).
The def-use pair is exercised by TC1, and TC2. The def-use
pair (op intr, 13, TS, 43, ctrl) is also a Strong association.
Because, it is not redefined inside the TDF model TS, and
being an output port, it is not redefined while flowing to the
next TDF model ctrl. The def-use pair (out tmpr, 5, TS, 14,
TS) is Firm, because it is local to the TDF model TS, and
there exists multiple paths from Line 5 to Line 14. The def-
use associations (op signal out, 14, TS, 35, AM) is exercised
by both TC1 and TC2, and (op signal out, 74, sense top, 36,
AM) is exercised by TC2 only. There are two paths originating
from op signal out port. One path connects to the AM as
original signal (defined at Line 14), and the second path
is redefined through a delay element at Line 74. Because
both the paths end up in AM, any of them can be used
based on the mux select line. Since, this information cannot
be deduced statically, it is termed PFirm. The def-use pair
(op mux out, 77, sense top, 79, sense top) is termed PWeak,
because the signal at port op mux out always goes through
the gain element at Line 87, hence, it is redefined before it
goes to ADC. It is exercised by all three testcases.

When TC2 was applied, it was expected that ”T LED”
(Line 49) will be switched on (once temperature goes above

TABLE I
SYSTEMC-AMS TDF MODELS SPECIFIC DATA FLOW ASSOCIATIONS - REFERENCE FIG. 2

Static Pairs Testsuite Static Pairs Testsuite Static Pairs Testsuite
TC1 TC2 TC3 TC1 TC2 TC3 TC1 TC2 TC3

Strong (op intr, 13, TS, 67, ctrl) x x - (C, 22, HS, 26, HS) - - x
(m mux s, 65, ctrl, 66, ctrl) - - x (op hold, 55, ctrl, 7, TS) - x - (out tmpr, 10, TS, 14, TS) x x -
(m mux s, 65, ctrl, 48, ctrl) - - - (op hold, 57, ctrl, 7, TS) - x - (ip signal in, 1, TS, 3, TS) - - -
(m mux s, 65, ctrl, 53, ctrl) - - - (op clear, 45, ctrl, 8, TS) x x - (BC, 23, HS, 26, HS) - - x
(m mux s, 65, ctrl, 61, ctrl) - - x (op clear, 50, ctrl, 8, TS) - - - (intr , 27, HS, 28, HS) - - x
(m mux s, 54, ctrl, 66, ctrl) - x - (op clear, 58, ctrl, 8, TS) - x - (temp, 20, HS, 21, HS) - - x
(m mux s, 54, ctrl, 48, ctrl) - x - (op clear, 67, ctrl, 8, TS) x x - (newRH, 26, HS, 27, HS) - - x
(m mux s, 54, ctrl, 53, ctrl) - x - (op hold, 47, ctrl, 7, TS) x x - (newRH, 26, HS, 29, HS) - - x
(m mux s, 54, ctrl, 61, ctrl) - - - (op hold, 51, ctrl, 7, TS) - - - (Tdepend, 21, HS, 26, HS) - - x
(m mux s, 59, ctrl, 66, ctrl) - x - (op intr, 13, TS, 43, ctrl) x x - (op signal out, 29, HS, 37, AM) - - x
(m mux s, 59, ctrl, 48, ctrl) - - - (adc out, 47, adc, 44, ctrl) x x - (sensitivity, 24, HS, 26, HS) - - x
(m mux s, 59, ctrl, 53, ctrl) - - - (adc out, 47, adc, 48, ctrl) - x - (ip signal in, 18, HS, 20, HS) - - x
(m mux s, 59, ctrl, 61, ctrl) - - x (tmpr, 4, TS, 9, TS) x x - (adc out, 47, adc, 53, ctrl) - x -
(m mux s, 63, ctrl, 66, ctrl) - - x (op mux s, 66, ctrl, 35, AM) x x x (adc out, 47, adc, 62, ctrl) - - x
(m mux s, 63, ctrl, 48, ctrl) - - - (op mux s, 66, ctrl, 36, AM) - x x Firm
(m mux s, 63, ctrl, 53, ctrl) - - - (op mux s, 66, ctrl, 37, AM) - - x (intr , 6, TS, 13, TS) - x -
(m mux s, 63, ctrl, 61, ctrl) - - - (sig in, 3, TS, 4, TS) x x - (tmp out, 34, AM, 38, AM) - - -
(m mux s, 46, ctrl, 66, ctrl) x x - (tmpr, 4, TS, 10, TS) x x - (out tmpr, 5, TS, 14, TS) x x -
(m mux s, 46, ctrl, 48, ctrl) - x - (intr , 8, TS, 13, TS) x x - (intr , 25, HS, 28, HS) - - x
(m mux s, 46, ctrl, 53, ctrl) - x - (op intr, 28, HS, 64, ctrl) - - x PFirm
(m mux s, 46, ctrl, 61, ctrl) x x - (op intr, 28, HS, 61, ctrl) - - x (op signal out, 74, sense top, 36, AM) - x -
(m mux s, 52, ctrl, 66, ctrl) - - - (intr , 11, TS, 13, TS) x x - (op signal out, 14, TS, 35, AM) x x -
(m mux s, 52, ctrl, 48, ctrl) - - - (tmp out, 35, AM, 38, AM) x x x PWeak
(m mux s, 52, ctrl, 53, ctrl) - - - (tmp out, 36, AM, 38, AM) - x - (op mux out, 77, sense top, 79, sense top) x x x
(m mux s, 52, ctrl, 61, ctrl) - - - (tmp out, 37, AM, 38, AM) - - x
TC: Testcase (test input signal) (x) = data flow pair exercised (-) = data flow pair not exercised

60◦C). But it did not switch on, and the data flow associ-
ations related to lines between Line 49 and Line 52 were
never exercised. Upon careful inspection, an interface problem
was found between ADC and control. The output of ADC
was saturating because of 9-bit resolution. Any signal above
512mV was saturated to 512mV at ADC output.

TC1, and TC2 alone were not sufficient to achieve a reason-
able data flow coverage. They were not able to exercise many
associations specific to HS. Hence, TC3 is used additionally.
There is still room for coverage improvement. This example
demonstrates that standard def-use coverage criterion alone
are not sufficient for extensive testing of SystemC-AMS TDF
designs. Our proposed SystemC-AMS specific Strong, Firm,
PFirm, and PWeak coverage criterion are important for a high
quality testsuite.

V. IMPLEMENTATION DETAILS

In this section we describe the implementation of our
DFT framework. The framework is implemented using the
LibTooling library for Clang compiler [18]. Clang generates
an Abstract Syntax Tree (AST) of the SystemC-AMS TDF
model’s source code. The AST is parsed to extract the required
information to perform the data flow analysis. We next discuss
important implementation details.

The connectivity (binding) of TDF models is possible
in different ways depending on the implementation of the
SystemC-AMS design, for e.g., using bind keyword. It is im-
portant to extract it knowing the correct semantics. By default,
the implementation of SystemC-AMS TDF models reside in
module::processing() function, but it could also be in a user
defined function. This is registered in the elaboration phase
using register processing() library function. This information
is required for proper analysis, as the framework needs to
know where to look for the TDF model. Afterwards, the AST
of each TDF model is parsed again while the signal definition
and use information to perform static analysis is extracted.
Static analysis is performed in two steps: 1) analysis within
a TDF model, 2) analysis of the TDF cluster. Please note, in
step one, the output ports defined in a TDF model are assigned
X in place of use u, and use model um. In step 2, binding
information is used to map the output ports with X to correct

TDF models. If the use exists inside the TDF model, the X is
replaced with the new use location. Otherwise, it is left as it
is. Similarly, the input ports are assigned the start location of
their TDF model initially, or location of initialize() function.
Later, they are also resolved using binding information.

Finally, dynamic analysis is executed by instrumenting
the TDF model while parsing AST. For every definition/use
detected, a print instruction is written just before the state-
ment. This print instruction logs the information related to
the variable/port (location, TDF model name). But this only
applies to the statements inside a TDF model. As soon
as TDF cluster is analyzed, a print instruction has to be
placed either inside the TDF component (could be a library
component), or inserted in parallel as a separate TDF model.
By parallel insertion, it means that the data (signal) flowing
into the redefinition element (gain, delay etc.) also flows into
the parallel TDF model, termed parallel print(). We found
parallel print() to be less intrusive as the library components
remain unchanged. Once the TDF cluster is instrumented, a
testsuite is executed. Each testcase (test input signal) exercises
different definitions and uses, and data flow associations can
be created using the following way. Each definition is mapped
on to a corresponding use as soon as it is encountered. If there
exists a use, but not definition, it is notified as a warning. The
data flow associations are reported to the verification engineer.

VI. EXPERIMENTAL RESULTS

In this section we present a case study to demonstrate the
proposed DFT approach for SystemC-AMS TDF models. The
experiments were carried out on two real-world AMS systems,
1) Car window lifter system, 2) Buck-boost converter [19].
AMS system design implementation and simulations were
carried out in COSIDE SystemC-AMS tool environment [20].
Both AMS systems are implemented using SystemC-AMS
TDF models. The results are summarized in Table II. In the
following, both experiments are briefly explained.

A. Car Window Lifter System
In the first experiment, we consider a windows lifter system

for cars. The AMS system controls the windows movements
(up and down), while ensuring the passengers are not harmed.

TABLE II
CASE STUDY: CAR WINDOW LIFTER SYSTEM, AND BUCK-BOOST

CONVERTER DATA FLOW ASSOCIATIONS

AMS
Systems Iter. Tests

Data Flow Associations
Static

(#)
Dynamic Def-Use Pairs

T
(#)

S
(%)

F
(%)

PF
(%)

PW
(%)

Car
Window

Lifter

0 17

573

446 86 81 0 67
1 20 467 87 82 0 76
2 23 487 90 84 0 81
3 26 525 93 89 0 93

Buck
Boost

Converter

0 10

362

243 70 65 100 100
1 15 268 76 72 100 100
2 20 282 81 75 100 100
3 24 307 89 81 100 100

T: Total S: Strong F: Firm PF: PFirm PW: PWeak

Current flowing through the lifter motor is measured contin-
uously as the window moves. In case of an obstacle (e.g.,
passenger’s hand), the current flow changes, signaling the
controller to stop. The system contains an Electrical Control
Unit (ECU), and a complete window environment containing
the motor, the mechanical parts including the window, and
the control buttons. The ECU model includes a motor current
filter to remove noise from current measurement, ADC for the
motor current conversion, a current detector for over-current
detection, the button logic (updown decoder) and the micro-
controller. During the simulation, the obstacle is inserted (and
removed) at different times, and different window positions in
to the system.

The car window lifter system has 17 testcases in the
testbench initially, achieving 78% data flow coverage. There
were 573 def-use pairs identified by our static analysis, out
of which 446 were exercised by the dynamic analysis. Out of
446 exercised pairs, 86% Strong, 81% Firm, and 67% PWeak
def-use pairs were exercised. There were no PFirm def-use
pairs identified. The all-defs, all-uses criterion are not satis-
fied, hence, all-dataflow is also not satisfied. Table II shows
four iterations where 9 testcases were added, and coverage
increased. During analysis, two types of bugs were discovered,
1) use of ports in TDF models without definitions, 2) dynamic
TDF induced failures. In this case, the timestep was reduced to
accurately determine the hindrance while closing the window.
Due to the change, the threshold comparisons failed in certain
cases (specially current feedback loop) leading to def-use pairs
being not exercised. These sorts of bugs can prove fatal when
undefined behavior goes unchecked.

B. Buck-Boost Converter
In the second experiment, an energy efficient buck-boost

converter [19] is used. It is a type of a DC/DC converter, and
can operate in two modes, 1) step-down converter (buck), 2)
step-up converter (boost). It is commonly used in IoT devices
that are often powered with a battery. The main challenge
of buck-boost converter is the switching frequency control
algorithm. The algorithm monitors the current flowing. The
controller sets the mode of the converter (buck or boost), the
expected output value, and the maximum current allowed to
flow through the converter. To test the buck-boost converter
model, it is checked how fast the expected output voltage is
reached and how stable it is. Therefore, an input voltage is
applied and a target voltage is programmed via the controller.

The buck-boost converter has 10 testcases in the testbench
initially, achieving 67% data flow coverage. The static analysis

found 362 data flow associations in total, out of which only
243 were exercised by the testcases. The all-defs criteria is
not satisfied, hence, all-dataflow is also not satisfied. Out of
243 exercised pairs, 70% Strong, 65% firm, 100% PFirm, and
100% PWeak def-use pairs were exercised. all-PFirm, and all-
PWeak criterion are satisfied. Table II shows four iterations
with addition of 14 more testcases, which increase coverage.
We found that in some cases, the ports were not defined, but
still used in a different TDF model. This is undefined behavior
according to SystemC-AMS standards [1]. This cannot be
detected by line coverage, as it will still be satisfied.

VII. CONCLUSION

In this paper we presented the first DFT approach for
SystemC-AMS TDF models and a coverage criteria specific
to it. At the heart of the proposed work is a scalable static
analysis which operates directly on the SystemC-AMS TDF
models. It considers the semantics of TDF signal flow, and
dynamic TDF. Four data flow associations w.r.t. semantics
of TDF models are proposed (Strong, Firm, PFirm, PWeak).
In addition, using static and dynamic analysis, automatic
computation of data flow coverage results is explained for
a given DUV. Improvement of coverage results by adding
tests for uncovered data flow pairs is also discussed. We have
demonstrated the applicability in a real world VP showing the
results of one IP model. Furthermore, we plan to investigate
our proposed methodology on system-level verification of
mixed-signal platforms using the RISC-V VP from [21].

REFERENCES

[1] M. Barnasconi, C. Grimm, M. Damm, K. Einwich, M. Louërat, T. Maehne, F. Pecheux,
and A. Vachoux, “Systemc ams extensions user’s guide,” Accellera Systems Initiative,
2010.

[2] T. Vörtler, K. Einwich, M. Hassan, and D. Große, “Using constraints for SystemC AMS
design and verification,” in DVCon Europe, 2018.

[3] F. Haedicke, H. M. Le, D. Große, and R. Drechsler, “Crave: An advanced constrained ran-
dom verification environment for systemc,” in System on Chip (SoC), 2012 International
Symposium on. IEEE, 2012, pp. 1–7.

[4] J. W. Laski and B. Korel, “A data flow oriented program testing strategy,” IEEE Trans.
Softw. Eng., vol. 9, no. 3, pp. 347–354, May 1983.

[5] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow information,”
IEEE Trans. Softw. Eng., vol. 11, no. 4, pp. 367–375, Apr. 1985.

[6] L. Copeland, A practitioner’s guide to software test design. Artech House, 2004.
[7] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A survey on data-flow testing,”

ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 5, 2017.
[8] D. Walter, S. Little, C. Myers, N. Seegmiller, and T. Yoneda, “Verification of

analog/mixed-signal circuits using symbolic methods,” TCAD, vol. 27, no. 12, pp. 2223–
2235, 2008.

[9] K. Lata, S. K. Roy, and H. Jamadagni, “Towards formal verification of analog mixed
signal designs using spice circuit simulation traces,” in ASQED. IEEE, 2009, pp. 162–
172.

[10] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verification of analog
designs,” in ICCAD, 2004, pp. 210–217.

[11] M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, and F. Fummi, “Analog models manipula-
tion for effective integration in smart system virtual platforms,” TCAD, vol. 37, no. 2, pp.
378–391, 2018.

[12] E. Fraccaroli and F. Fummi, “Analog fault testing through abstraction,” in DATE, 2017,
pp. 270–273.

[13] E. Fraccaroli, F. Stefanni, F. Fummi, and M. Zwolinski, “Fault analysis in analog circuits
through language manipulation and abstraction,” in FDL, 2017, pp. 1–7.

[14] M. Hassan, V. Herdt, H. M. Le, M. Chen, D. Große, and R. Drechsler, “Data flow testing
for virtual prototypes,” in DATE, 2017, pp. 380–385.

[15] M. Hassan, D. Große, H. M. Le, T. Vörtler, K. Einwich, and R. Drechsler, “Testbench
qualification for SystemC-AMS timed data flow models,” in DATE, 2018, pp. 857–860.

[16] M.-M. Bidmeshki, A. Antonopoulos, and Y. Makris, “Information flow tracking in
analog/mixed-signal designs through proof-carrying hardware ip,” in DATE, 2017, pp.
1707–1712.

[17] A. Devices, “Relative humidity measurement system,” http://www.analog.com/media/en/
reference-design-documentation/reference-designs/CN0346.pdf.

[18] C. Lattner, “Llvm and clang: Next generation compiler technology,” in The BSD Confer-
ence, 2008, pp. 1–2.

[19] E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck-boost converter for
sensorless power optimization of piezoelectric energy harvester,” TPE, vol. 22, no. 5,
pp. 2018–2025, 2007.

[20] C. Technologies, “Coside R© ,” http://www.coseda-tech.com.
[21] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and configurable RISC-V

based virtual prototype,” in FDL, 2018, pp. 5–16.

http://www.analog.com/media/en/reference-design-documentation/reference-designs/CN0346.pdf
http://www.analog.com/media/en/reference-design-documentation/reference-designs/CN0346.pdf
http://www.coseda-tech.com

