
Polynomial-Time Formal Verification of
Adder Circuits for Multiple-Valued Logic

Philipp Niemann∗† Rolf Drechsler∗†
∗Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

†Department of Computer Science, University of Bremen, Bremen, Germany
philipp.niemann@dfki.de, drechsler@uni-bremen.de

Abstract—Functional correctness of a circuit implementation
can only be ensured by applying formal verification approaches.
Although the underlying verification problem is NP-complete
and, thus, no efficient verification is possible in general, for
many circuits fast verification is indeed possible. There has been
lots of work on formal verification of arithmetic circuits in
the binary, two-valued logic domain. In this paper, we consider
formal verification of adder circuits for multiple-valued logic and
prove that for different types of adder circuits polynomial-time
verification can be performed based on decision diagrams (DDs).
While it is known that the output functions for addition are
polynomially bounded, we show in the following that the entire
construction process of the corresponding DD representation can
be carried out in polynomial time. This is shown for the simple
Ripple Carry Adder, but also for fast adders like the Conditional
Sum Adder and the Carry Lookahead Adder.

I. INTRODUCTION

Functional correctness is an essential quality measure in
the design of circuits and systems and also one of the major
design challenges. Due to the increasing complexity according
to Moore’s Law, simulation and emulation approaches quickly
reach their limits and only formal proof techniques can ensure
correctness according to the specification (see e.g. [1], [2]).
In these approaches, techniques for efficient function repre-
sentation, e.g. decision diagrams like Binary Decision Dia-
grams (BDDs) or Multiple-valued Decision Diagrams (MDDs,
[3]), or formulations of the verification problem in terms of
Boolean satisfiability (SAT, SMT) are employed together with
highly elaborated proof engines [4].

In [5], it has been shown that polynomial-time verification
is possible for adder circuits in the two-valued, Boolean logic
domain using their representation as BDDs [6].

In this paper, we consider formal verification of adder
circuits in the multiple-valued domain. We show that the
results from [5] can be generalized to the multiple-valued
domain using MDDs, i.e. the multiple-valued generalization
of BDDs.

The remainder of the paper is structured as follows: Sec-
tion II provides basic definitions of multiple-valued adders and
their functional representation in terms of decision diagrams.
In Section III we briefly recall a few adder realizations. In Sec-
tion IV we formally prove that polynomial-time verification is
possible for these adder realizations. Finally, conclusions are
provided in Section V.

II. BACKGROUND AND NOTATION

In this section, we provide basic definitions of multiple-
valued operators and adders and review MDDs as an efficient
mean for representing and manipulating MVL functions.

A. Multiple-Valued Operators

For the construction of the adder circuits we use the
following multiple-valued operators as defined in [7]:

Definition 1. For a, b ∈ {0, . . . , p − 1} we define binary
operators SUM,×,⊕, · as follows:

• SUM(a, b) = (a+ b) mod p

• a× b =

{
1 a+ b ≥ p

0 else
• a⊕ b = max(a, b)
• a · b = max(0, a+ b− (p− 1))

Note that in the binary case, i.e. p = 2, the SUM operator
as well as the ⊕ are equivalent to the logical OR, while the
× and · operators are equivalent to the logical AND.

It is immediately clear from these definitions that all opera-
tors are commutative and SUM as well as ⊕ are associative.
As shown in [7, Lemma 1], associativity also holds for ·, but
clearly not for ×.

B. Multiple-Valued Addition

Let a, b, s ∈ {0, . . . , p − 1}n be p-valued numbers of n
digits with the interpretation as unsigned positive numbers

dp = [dn−1, . . . , d0]p =

n−1∑
i=0

dip
i

and cn−1, c−1 ∈ {0, . . . , p− 1}.
The function that maps (a, b, c−1) 7→ (cn−1, s) such that

[cn−1, sn−1 . . . , s0]p = ap + bp + c−1 is called an n-digit
adder (and is denoted ADDn in the following). Here, c−1 is
called input carry and cn−1 is called output carry.

Special cases are given by the Half Adder (HA), a 1-digit
adder without an input carry, i.e. c−1 = 0, which realizes
the addition of two p-valued digits, and the Full Adder (FA),
which is a 1-digit adder of two p-valued digits and an input
carry, i.e. ADD1.

a b c−1

cab sab

s0

HA(a, b)

HA(sab, c−1)

SUM

c0

cabc

Fig. 1. Full Adder constructed from Half Adders and SUM operation

Using the operators from Section II-A, the functionality of
Half and Full Adders can be described as follows:

HA(a, b) := (a× b, SUM(a, b)) and

FA(a, b, c−1) := (c0, s0)

where c0 = SUM(a × b, SUM(a, b) × c−1) holds for the
output carry and s0 = SUM(SUM(a, b), c−1)) for the sum.

For the Half Adder, the correctness of the definition can
easily be verified:

[HA(a, b)]p = p · (a× b) + SUM(a, b) = a+ b.

For the Full Adder, the sub-term SUM(a, b) shared by both
outputs c0, s0 allow for a realization using two half adders and
one SUM operation as shown in Fig. 1. This yields:

[c0, s0]p = p · c0 + s0 | SUM(cab, cabc)

= p · [(cab + cabc) mod p] + s0 | cab, cabc ≤ 1

= p · (cab + cabc) + s0

= p · cab + (p · cabc + s0) | HA(sab, c−1)

= p · cab + (sab + c−1)

= (p · cab + sab) + c−1 | HA(a, b)

= (a+ b) + c−1

Example 1. The truth-table of a ternary (3-valued) Full Adder
is given as follows:

Inputs Outputs
c−1 a b c0 s0

0 0 0 0 0
0 0 1 0 1
0 0 2 0 2
0 1 0 0 1
...

...
...

...
...

2 1 2 1 2
2 2 0 1 1
2 2 1 1 2
2 2 2 2 0

ADDmADDn

c−1

b0:m−1a0:m−1bm:m+n−1am:m+n−1

cm−1

s0:m−1sm:m+n−1

cm+n−1

Fig. 2. Concatenating Adders

As can already be seen for this simple example, the output
carry may not only assume the values 0 and 1 (as in the binary
case), but can also become 2 for radices p > 2.

An n + m-digit adder, ADDn+m, can be constructed by
concatenating ADDn and ADDm, i.e. the output carry of
ADDm (summing up the m least significant digits) is used
as input carry for ADDn (which sums of the remaining n
digits) as shown in Fig. 2.

C. Multiple-Valued Decision Diagrams
Multiple-Valued Decision Diagrams (MDDs) [8] are

means for the efficient representation of MVL functions
f : {0, 1, . . . , p − 1}n → {0, 1, . . . , p − 1}. MDDs are Di-
rected Acyclic Graphs (DAGs) with up to p terminal nodes
each labelled by a distinct logic value 0, 1, . . . , p − 1. Each
non-terminal node (labelled xi) has p successors (termed as
children), each representing a co-factor w.r.t. xi. A co-factor
fxi=v (v = 0, 1, . . . , p − 1) of an n-ary function f w.r.t.
variable xi is obtained from f by assuming a fixed value for
that variable, i.e. xi = v. Thus, it is an n−1-ary function over
variables x1 . . . , xi−1, xi+1, . . . , xn.

Typically, we consider reduced ordered MDDs in which
redundant nodes (i.e., multiple nodes representing the same
function or pointing to a single successor node) are removed
and the variables occur in a fixed order on all paths from
the root to the terminal nodes. These constitute canonical
representations of MVL functions, i.e. given a function f and
a fixed variable order there is a unique MDD representing f
(up to isomorphism).

Example 2. Reduced ordered MDDs for the sum and carry
output of the ternary Full Adder from Example 1 are shown
in Fig. 3. Both MDDs adhere to the variable order c−1 <
a0 < b0. Note that the variable b0 is skipped on some paths
in the MDD in Fig. 3b. In fact, some outgoing edges of the
a0 nodes point directly to the terminal nodes indicating that
the corresponding co-factors are constant and do not depend
on b0. For instance, in the case c−1 = a0 = 0 which is
represented by the leftmost path in the MDD, there will be
no output carry regardless of the value of b0. Thus, the edge
from the leftmost a0 node points directly to terminal 0.

The complete function f can be re-constructed from its co-
factors using the CASE operator:

f = CASE(xi, fxi=0, . . . , fxi=p−1)

c−1

a0 a0a0

b0 b0 b0

0 1 2

0 1 2

0 1 2 0 1 2 0 1 2

0 1 20 1 20 1 2

(a) Sum output

c−1

a0 a0a0

b0 b0 b0

0 1 2

0 1 2

0
1 2 0 1

2
0 1 2

0 1 2 0 1 2 0 1 2

(b) Carry output

Fig. 3. MDDs for Ternary Full Adder outputs

Here, the p + 1-ary CASE operator is given by the
mapping (s, f0, . . . , fp−1) → fs such that the first argument
specifies which of the following arguments is selected for
the output. The CASE operator is the MVL generalization
of the well-known ITE operator for Boolean logic. Overall,
MDDs are the multiple-valued generalizations of the well-
known BDDs [6].

Another important property of MDDs is that the synthesis
operations, like MIN, MAX, or composition, can be carried
out in polynomial time and space using CASE [9], [10]. A
sketch of the algorithm is as follows, where CHILD(G, i)
denotes the i-th successor of the top node of the MDD G [8]:

CASE(A,B0,B1,...,Bp-1)
if(terminal(A)) return (BA)
if ((A,B0,...,Bp-1) in computed table)
return result

TOP=top variable of A,B0,B1,...,Bp-1
for 0<=i<=p-1
if(id(A)==TOP) EA=CHILD(A,i)
else EA = A
for 0<=j<p

if(id(Bj)==TOP) EBj=CHILD(Bj,i)
else EBj = Bj

Ci=CASE(EA,EBj, ..., EBj)
R=create node(TOP,C0,...,Cp-1)
insert_computed_table(A,B0,...,Bp-1,R)
return(R)

The CASE-operator has a polynomial worst case behavior,
i.e. for graphs A, B0, . . . , Bp−1 the result is bounded by
O(|A| ·

∏p−1
j=0 |Bj |). This bound holds under the assumption

of an optimal hashing of intermediate results in a computed
table with O(1).

D. Symbolic Simulation

To build the MDDs for the output signals of a circuit, the
circuit is traversed in a topological order starting from the
inputs. For the input signals the corresponding MDDs are
initially generated. Then, for each gate in the circuit the cor-
responding synthesis operation based on CASE is carried out.
This process is called symbolic simulation in the following.

x

10 2

0 1 2

y

10 2

0 1 2

S
U
M

y

x

⇒

x

yy y

0 1 2

0 1 2

0 1 20 1 20 1 2

Fig. 4. Symbolic Simulation

FAFAFAFA
c−1c0cn−3cn−2

s0s1sn−2sn−1cn−1

bn−1an−1 bn−2an−2 b1a1 b0a0

Fig. 5. Ripple Carry Adder

Example 3. The symbolic simulation for a circuit consisting
of a single SUM gate is shown in Fig. 4.

III. CIRCUIT REALIZATIONS

In this section, different realizations for adder circuits are
briefly reviewed. Only the basic principles are reviewed as far
as it is needed for making the paper self-contained. For more
details on the multiple-valued constructions see [7].

A. Ripple Carry Adder

According to the discussion in Section II-B, an n-bit adder
can be constructed by concatenating a series of n full adders.
The resulting circuit is shown in Fig. 5 and is termed Ripple
Carry Adder (RCA), since the cells are connected via a carry
chain.

The RCA is very area efficient, since it only requires a
linear number of gates. But the RCA is also very slow, since
the delay—measured in the number of gates that has to be
traversed—is also linear in the number of inputs.

B. Conditional Sum Adder

The basic idea of the Conditional Sum Adder (CoSA, [11])
is to speed up the computation by splitting up the addition
of 2n digits into multiple additions of n digits (as shown in
Fig. 6) which can be conducted in parallel. While the lower
n digits can be computed straight-away, the addition of the
higher n digits require the value of the input carry at digit
n, i.e. the output carry of the lower n digits. In order to
compute both halves in parallel, the sum of the higher n digits
is computed multiple times in parallel, once for each possible
value of the input carry at digit n, i.e. the output carry of
the lower n digits. Once the correct value of the intermediate

CoSAn/2 CoSAn/2 CoSAn/2 CoSAn/2

MUX
12 0

slsh

ah bh

n/2 n/2n/2 n/2 n/2 n/2

n/2 + 1 n/2 + 1 n/2 + 1

n/2 + 1

n/2

n/2 n/2

al bl

2 1 0 c−1

Fig. 6. Conditional Sum Adder

carry has been computed, a multiplexer is used to select the
outputs of the corresponding addition of the higher n digits.
The computation scheme is shown in Fig. 6.

Note that, while in the binary case the internal carrys may
only assume the values 0 and 1, in the general MVL case they
may also assume the value 2, namely if the input carry c−1 is
greater than or equal to 2 (since ai + bi ≤ 2p− 2). Thus, we
require three computations for the higher n digits and a 3-to-
1 multiplexer (MUX3) can be used to select the appropriate
output. This multiplexer can easily be described in terms of
the CASE-operator: MUX3 = CASE(cl, s

c=0
h , sc=1

h , sc=2
h)

where sc=i
h denotes the sum of the higher n digits given that

the input carry of digit n assumes value i.
This approach can be repeated recursively by using CoSAs

to compute the additions for n, n/2, n/4, . . . digits. For 1-digit
adders, simply full adders can be used. By this, the depth of
a CoSA becomes logarithmic in n, while the cost becomes
worse, i.e. it grows faster than linearly (super-linearly) for
increasing n. For more details on this, see [7].

C. Carry Lookahead Adder

The Carry Lookahead Adder (CLA, [12]) is a more sophis-
ticated adder that combines logarithmic depth and linear cost.
The basic idea of the construction is that it is sufficient to
compute the internal carry signals ci for all i, from which the
output signals can be computed as

si = SUM(SUM(ai, bi), ci−1). (1)

Here, a parallel prefix computation based on the carry gener-
ation and propagation properties for addition is employed to
efficiently compute the carry values (shown as a block Pn in
Fig. 7).

More precisely, generation and propagation properties for
addition can be described by function families g, p with
g = {gj,i | 0 ≤ i ≤ j < n} and p = {pj,i | 0 ≤ i ≤ j < n},
respectively, where

• gj,i indicates whether digits i to j generate a carry,
• pj,i indicates whether digits i to j propagate a carry.

SUM

p0,0

×

g0,0

a0 b0

SUM

p1,1

×

g1,1

a1 b1

· · ·

Pn

· · ·

SUM

pn−1,n−1

×

gn−1,n−1

an−1 bn−1

·
⊕

g0,0 p0,0

SUM

s0

SUM

s1

c0

·
⊕

g1,0 p1,0

c1

·
⊕

gn−1,0 pn−1,0

SUM

sn−1

cn−2

cn−1

c−1

Fig. 7. Carry Lookahead Adder

It is clear that there can only be a carry at digit i if the
digits 0 to i generate a carry (independently from the value of
the input carry c−1) or if they propagate the input carry c−1:

ci = gi,0 ⊕ (pi,0 · c−1) (2)

The required functions gi,0 and pi,0 can be computed as

(gi,0, pi,0) = (gi,i, pi,i) ◦ . . . ◦ (g1,1, p1,1) ◦ (g0,0, p0,0)

using an appropriate associative operator as ◦. The functions
on the right-hand side of the equation can be computed directly
as pj,j = SUM(aj , bj) and gj,j = aj × bj (for j = 0, . . . , i),
while a proper definition of ◦ is given by

(g2, p2) ◦ (g1, p1) :=
(
g2 ⊕ (g1 × p2), p2 · p1

)
(3)

Since ◦ is associative, an efficient parallel prefix compu-
tation Pn is possible which computes all functions gi,0, pi,0
simultaneously in linear time and logarithmic depth.

IV. POLYNOMIAL VERIFICATION

It is well known from the binary world that the size of
BDDs for the adder functions largely depend on the variable
ordering. The naive ordering a0 < a1 < . . . < an−1 < b0 <
. . . < bn−1 leads to an exponential size, while an interleaved
ordering c−1 < a0 < b0 < a1 < b1 < . . . allows for linear-
sized representations.

In fact, only two different nodes at level ai are required:
one represents the case that there is an input carry ci−1 and
the other represents the case that there is no input carry. At
most three nodes are required at level bi, one for each possible
value of ci−1 + ai ∈ {0, 1, 2}. Note, however, that the node
for value 0 is redundant, since it is clear that regardless of
the value of bi no output carry will result (0 + bi < 2). The
same holds for value 2, since this already guarantees an output
carry. The only exception is for bj in the BDD for the j-th
sum bit sj where two nodes are required at bj level, since the
nodes for 0 and 2 would be identical. Overall, the BDD for

sj requires 3(j + 1) + 2 non-terminal nodes, while the BDD
for cj requires 3(j + 1) + 1 nodes.

This argumentation can be generalized to the multiple-
valued case in a straightforward fashion. Using the interleaved
variable ordering, only 3 different nodes at level ai are
required (i > 0), one for each possible value of the input carry
ci−1 which can assume the values 0, 1, and also 2. Since c−1

is unrestricted, there are p different nodes required at a0 level.
At level bi there are at most p + 2 different nodes required,
one for each possible value of ci−1 + ai ∈ {0, . . . , p, p+ 1}.
Note, however, that the node for value 0 is redundant, since
it is clear that regardless of the value of bi no output carry
will result (0+ bi < p). The same holds for value p, since this
already guarantees that the output carry will have value 1. The
only exception is for bj in the MDD for the j-th sum digit sj
where p nodes are required, since the nodes for 0 and p as
well as 1 and p+1 would be pairwise identical. For instance,
the case for p = 3 and j = 0 is depicted in Fig. 3.

Overall, there are p + 3 nodes required for each pair of
variables ai,bi (i > 0) together with a single root node labelled
c−1 and 2p nodes labelled a0, b0. This is summarized in the
following

Theorem 1 (MDD sizes for carry and sum outputs).
1) The MDD for the j-th carry digit cj requires

(p+ 3) · j + 2p+ 1 nodes.

2) The MDD for the j-th sum digit sj requires

(p+ 3) · j + 2p+ 1 nodes.

It is important to note that these results are only related
to the representation size of the output functions (regardless
of what kind of adder realization is chosen), but not for
the BDDs/MDDs that need to be constructed during the
entire construction process, i.e. the symbolic simulation of the
circuit. Since the primary goal of this paper is to show that
the construction process is polynomial, it is sufficient to show
that each individual step can be carried out in polynomial time
and space. Detailed bounds are not required for the proof and
will, thus, not be provided in the following.

We will make use of the following general observation:

Observation 1. If for each internal signal of a circuit the size
of the corresponding MDD representation and the number of
gates in the circuit are polynomially bounded in the number
of inputs n, the whole circuit can be formally verified in
polynomial time due to the polynomially bounded synthesis
operations on MDDs.

This observation can be applied to general circuits, but
is used for adders only in the following. It can be readily
checked that for the adder circuits from Section III the required
property is satisfied that each circuit consists of a number of
gates that is polynomial in the number of inputs.

A. Ripple-Carry Adder
For the RCA it is very simple to see that the complete

construction is polynomially bounded. For the HA of the

least significant digit and all FAs the MDD can be locally
constructed and has only a constant size. According to the
structure of the RCA, each carry output of a cell is connected
to the carry input of the next cell. The substitution of the
input variable can be carried out by the compose algorithm
based on CASE and has a polynomial worst-case complexity.
Figuratively speaking, the composed MDD is obtained by
redirecting all edges pointing to a terminal node in the MDD
for the carry output to the corresponding successor of the root
node of the other MDD.

Furthermore, according to Theorem 1 the size of the MDD
for the carry signal for all i is always linear. Thus, the
whole construction process is polynomially bounded, since the
composition only has to be carried out n times.

Theorem 2. The MDD for the multiple-valued RCA can be
constructed polynomially.

B. Conditional Sum Adder

The n-digit CoSA consists of four CoSAs of size n/2 and
a multiplexer stage. From Theorem 1 it follows that each of
the connecting signals shown in Figure 6 can be represented
by an MDD of linear size. Only the carry inputs have to be
set to 0,1 and 2, respectively. The only operation that has to
be carried out is the one corresponding to the MUX unit. But
this can be described by CASE and is polynomially bounded.
Thus, we obtain:

Theorem 3. The MDD for the multiple-valued CoSA can be
constructed polynomially.

C. Carry Lookahead Adder

In the CLA the sum digits are computed by determining
the carry digits first and finally SUM-ing them with the corre-
sponding ai and bi inputs according to Equation 1.Thus, the
core circuit computes the carry digits based on the properties
of generation and propagation, i.e. functions g and p.

It is clear from Fig. 7 that the construction of the outer part
can be conducted in polynomial time and space as long as the
outputs of the Pn block are given by MDDs of polynomial
size, since there at most three gates (·, ⊕ and SUM) between
the outputs of Pn and any primary output. Thus, we can restrict
our consideration to the Pn block.

It has been argued in [7] that the generation/propagation
properties for an interval of digits [i, j] can be computed from
the properties for sub-intervals [i, k] and [k, j] as follows:

gj,i = gj,k+1 ⊕ (gk,i × pj,k+1) (4)

pj,i = pk,i · pj,k+1 (5)

Thus, all signals computed within Pn using applications of
◦ essentially represent a function gj,i or pj,i for some i, j.
Since there are only polynomially many of such signals, it
only remains to show that these can be represented by MDDs
of polynomial size. This is proven in the following

Lemma 1.
1) Function pj,i has the MDD size bounded by

(p+ 1) + (j − i)(p2 + p)

2) Function gj,i has the MDD size bounded by

(p+ 1) + (j − i)(2p+ 1)

Proof. For function pj,i it holds:

pj,i = pj−1,i · pj,j

As can be seen, pj,j only depends on aj and bj , while pj−1,i

does not depend on aj or bj . Thus, the MDD for pj,i can be
constructed by conjunction. This means, each terminal node
of the MDD for pj−1,i (representing the value k) is replaced
by an MDD representing the function k · pj,j (as illustrated in
the top part of Fig. 8). The MDD for pj,j has 1 node labelled
aj and p nodes labelled bj . All MDDs for k · pj,j have at
most the same size, since they can be obtained by replacing
terminal values t 7→ k · t.1 Thus, the MDD grows by p ·(p+1)
nodes labelled aj or bj and the overall size can iteratively be
computed as (p+ 1) + (j − i) · p · (p+ 1).

Regarding the function gj,i, we consider the case k = j−1
for Equation (4):

gj,i = gj,j ⊕ (gj−1,i × pj,j)

Here, pj,j and gj,j only depend on aj and bj , while gj−1,i

does not depend on aj or bj . Thus, the MDD for gj,i can be
constructed by conjunction (as illustrated in the bottom part of
Fig. 8). Since g can only assume values 0 and 1, we only need
construct two MDDs for gj,j⊕ (0×pj,j) and gj,j⊕ (1×pj,j),
both have size at most 1 + p. More precisely, there is no bj
node for the case that aj = gj−1,i = 0, since then 0× pj,j =
0 = gj,j regardless of the value of bj . Thus, the MDD grows
by 2p + 1 nodes labelled aj or bj and the overall size can
iteratively be computed as (p+ 1) + (j − i)(2p+ 1).

Based on this observation, the whole MDD for the CLA
can be computed based on CASE.

Theorem 4. The MDD for the CLA can be constructed
polynomially.

V. CONCLUSION

In this paper it has been proven for three different adder
architectures that the complete formal verification process can
be carried out polynomially. It was shown that for arbitrary
radices the MDD sizes for the outputs of the adder functions
are polynomially bounded. This was so far only known for
binary adders. Moreover, it was proven that the underlying
MDDs remain polynomial during the whole construction
process. This was ensured by proving upper bounds on the
MDD sizes for each internal signal. This is the first time that
for efficient MVL adder circuits of logarithmic run time a

1In fact, they have the same size, since there will not be any redundant
nodes after this transformation, but this is not relevant for the proof.

pj−1,i

0 1 . . . p− 1

⇒ pj−1,i

0 · pj,j 1 · pj,j . . .
(p− 1) · pj,j

gj−1,i

0 1

⇒ gj−1,i

gj,j ⊕ (0× pj,j) gj,j ⊕ (1× pj,j)

Fig. 8. MDDs for propagation and generation functions

polynomial proof process could be ensured. As future work
tighter bounds will be considered and also alternative adder
architectures will be studied as has been done in the binary
case in [13] and [14], respectively.

ACKNOWLEDGEMENTS

This work was supported by the German Research Foun-
dation (DFG) within the Reinhart Koselleck Project PolyVer
(DR 287/36-1).

REFERENCES

[1] R. Drechsler, Advanced Formal Verification. Kluwer Academic Pub-
lishers, 2004.

[2] ——, Formal System Verification. Springer, 2018.
[3] R. E. Bryant, “Binary decision diagrams and beyond: enabling technolo-

gies for formal verification,” in Int’l Conf. on CAD. IEEE, 1995, pp.
236–243.

[4] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers
by combining SAT and computer algebra,” in Int’l Conf. on Formal
Methods in CAD. IEEE, 2019, pp. 28–36.

[5] R. Drechsler, “Polyadd: Polynomial formal verification of adder cir-
cuits,” in DDECS. IEEE, 2021, pp. 99–104.

[6] R. Drechsler and B. Becker, Binary Decision Diagrams - Theory and
Implementation. Springer, 1998.

[7] P. Niemann and R. Drechsler, “Synthesis of asymptotically optimal
adders for multiple-valued logic,” in Int’l Symp. on Multiple-Valued
Logic. IEEE, 2021, pp. 178–182.

[8] D. M. Miller and R. Drechsler, “On the construction of multiple-valued
decision diagrams,” in Int’l Symp. on Multiple-Valued Logic. IEEE
Computer Society, 2002, pp. 245–253.

[9] R. Drechsler, M. A. Thornton, and D. Wessels, “Mdd-based synthesis of
multi-valued logic networks,” in Int’l Symp. on Multiple-Valued Logic.
IEEE Computer Society, 2000, pp. 41–46.

[10] B. Becker and R. Drechsler, “Decision diagrams in synthesis - algo-
rithms, applications and extensions,” in Int’l Conf. on VLSI Design.
IEEE Computer Society, 1997, pp. 46–50.

[11] J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on
Electronic Computers, vol. EC-9, no. 2, pp. 226–231, 1960.

[12] A. Weinberger and J. L. Smith, “A one-microsecond adder using one-
megacycle circuitry,” IRE Transactions on Electronic Computers, vol.
EC-5, no. 2, pp. 65–73, 1956.

[13] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal
verification of fast adders,” in Design Automation Conf. IEEE, 2021,
pp. 1376–1377.

[14] ——, “Polynomial formal verification of prefix adders,” in Asian Test
Symp. IEEE, 2021, pp. 85–90.

