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Abstract—Recent advances in fault tolerant quantum systems
allow to perform non-unitary operations like mid-circuit mea-
surement, active reset and classically controlled gate operations
in addition to the existing unitary gate operations. Real quantum
devices that support these non-unitary operations enable us to
execute a new class of quantum circuits, known as Dynamic
Quantum Circuits (DQC). This helps to enhance the scalability,
thereby allowing execution of quantum circuits comprising of
many qubits by using at least two qubits. Recently DQC re-
alizations of multi-qubit Quantum Phase Estimation (QPE) and
Bernstein–Vazirani (BV) algorithms have been demonstrated in
two separate experiments. However the dynamic transformation
of complex quantum circuits consisting of Toffoli gate operations
have not been explored yet. This motivates us to: (a) explore
the dynamic realization of Toffoli gates by extending the design
space of DQC for Toffoli networks, and (b) propose a general
dynamic transformation algorithm for the first time to the best
of our knowledge. More precisely, we introduce two dynamic
transformation schemes (dynamic-1 and dynamic-2) for Toffoli
gates, that differ with respect to the required number of classi-
cally controlled gate operations. For evaluation, we consider the
Deutsch–Jozsa (DJ) algorithm composed of one or more Toffoli
gates. Experimental results demonstrate that dynamic DJ circuits
based on dynamic-2 Toffoli realization scheme provides better
computational accuracy over the dynamic-1 scheme. Further, the
proposed dynamic transformation scheme is generic and can also
be applied to non-Toffoli quantum circuits, e.g. BV algorithm.

Index Terms—Dynamic quantum circuit, mid-circuit measure-
ment, quantum algorithms.

I. INTRODUCTION

With recent technological advancements, developments in
quantum computing [1] has picked up. Lately IBM introduced
the concept of mid-circuit measurement that allows the de-
signers to measure the outcome of a quantum circuit in the
intermediate stages of execution based on which the rest of the
gate operations in a circuit are executed [2]. This enables ap-
plication of non-unitary operations like active reset, mid-circuit
measurement and classically-controlled gate operations along
with unitary quantum operations such as Hadamard, Phase,
and Controlled-NOT within the coherence time of qubits. More
importantly, all the unitary and non-unitary gate operations are
conducted over two qubits, i.e. an entire quantum algorithm can
be realized using two qubits only. This provides a new class of
quantum circuits, called Dynamic Quantum Circuits (DQC).

DQC shows a great promise in scaling down the number of
qubits in any quantum circuits. In fact, large-scale traditional

quantum circuits with many qubits can be transformed into
two-qubit dynamic circuits thanks to the availability of non-
unitary operations. Such scalability is evident from the two
different experiments conducted recently on Quantum Phase
Estimation (QPE) [3] and Bernstein–Vazirani (BV) [2] algo-
rithms, where many qubit QPE and BV circuits are transformed
into their respective dynamic versions using only two qubits.
But several complex quantum circuits (e.g., realization of
Deutsch–Jozsa [4], Grover’s search [5], Shor’s factorization [6]
algorithms) composed of Toffoli gates are yet to be realized as
dynamic circuits, keeping the design space of dynamic circuits
largely unexplored.

This motivates us to: (a) investigate the dynamic realization
of Toffoli gates by expanding the design space of DQC for
Toffoli networks, and (b) propose a general dynamic trans-
formation algorithm. To this end, we introduce two versions
of dynamic transformation (dynamic-1 and dynamic-2) for
Toffoli gates. The two approaches differ from one another
in terms of number of required non-unitary operations. For
evaluation, Deutsch–Jozsa (DJ) algorithm composed of one
or more Toffoli gates have been used. Results show that
dynamic DJ circuits using dynamic-2 Toffoli realization gives
better computational accuracy over the dynamic-1 version. Also
our proposed transformation scheme is generic and can be
applied to non-Toffoli quantum circuits, e.g. BV algorithm as
demonstrated in experimental evaluation.

The rest of the paper is organized as follows. Section II
presents a brief background on traditional quantum circuits.
A brief survey of DQCs and the challenges are discussed in
Section III. Section IV discusses the proposed method and
experimental evaluation is presented in Section V. Finally,
Section VI provides the concluding remarks.

II. BACKGROUND

In this section, we briefly discuss about quantum circuits,
quantum gates and the necessary background required to make
the paper self-contained.

A quantum circuit consists of a number of qubits in a
traditional computing model [1], on which sequence of gate
operations are performed. A quantum gate Gi that operates on
m qubits can be represented by a 2m × 2m unitary matrix.
Generally, a qubit exists either in |0⟩ or |1⟩ basis states, or in
a state called superposition as represented by the state vector



ψ = α|0⟩ + β|1⟩, where α and β are complex coefficients or
amplitudes such that |α|2+|β|2 = 1. Finally, when we measure
a qubit, the state |ψ⟩ settles down into one of the basis states
|0⟩ or |1⟩, with probabilities |α|2 and |β|2 respectively. All
quantum operations are unitary except the qubit measurement
operation.

Typically, quantum circuits consist of various gates such as
multiple-control Toffoli gates that are decomposed into 1- and
2-qubit basic quantum gates like Hadamard (H), NOT (X),
Phase (T/T †), and Controlled-NOT (CX) from the Clifford+T
gate library [1]. Consider a 3-qubit circuit shown in Fig. 1
realizing the function F(a, b) = a + b, where qD0 and qD1 are
the data or control qubits and qA0 is an answer or a target qubit.

qD0 : |a⟩ • •

qD1 : |b⟩ • •

qA0 : |0⟩ |F(a+ b)⟩

Fig. 1: 3-qubit realization of F(a, b) = a+ b

The circuit consists of the following operations

CX(qD0 , q
A
0 ), CX(qD1 , q

A
0 ), C

2X([qD0 , q
D
1 ], qA0 ),

where CX(qDi∈{0,1}, q
A
0 ) indicates an inversion operation on

the target qubit qA0 if the control qubit qDi∈{0,1} is in state 1.
The Toffoli gate, C2X([qD0 , q

D
1 ], qA0 ) inverts the target qubit

qA0 if both the control qubits qD0 and qD1 are at logic 1. The
Clifford+T realization of the C2X operation is shown in Fig. 2.
This decomposed circuit structure can be inserted in place of
the C2X gate shown in Fig. 1. As a result, we obtain a 3-qubit
quantum circuit composed of only Clifford+T gates that can be
implemented on a real quantum device [7].

q0 : |ψ⟩c1 • • • T •
q1 : |ψ⟩c2 • • T T†

q2 : |ψ⟩t H T† T T† T H

Fig. 2: Clifford+T realization of 3-qubit Toffoli circuit

To determine whether the function F(a, b) = a + b is
completely balanced or constant using DJ algorithm [4], we
need to incorporate operations like

X
∣∣qA0 〉·H ∣∣qA0 〉·H⊗

2
∣∣qD0 qD1 〉

·U
(
F(a+ b)

)
·H

⊗
2
∣∣qD0 qD1 〉

,

where X
∣∣qA0 〉 and H

∣∣qA0 〉 indicate NOT and Hadamard op-
erations respectively on answer qubit qA0 , and H

⊗
2
∣∣qD0 qD1 〉

represents Hadamard operations on data qubits qD0 and qD1 .

III. DYNAMIC QUANTUM CIRCUIT (DQC)

This section motivates our work and triggers an investigation
of the design space for DQCs. To this end, we briefly review
the current design status of the DQCs. Subsequently, the
open questions and challenges for designing this new class of
quantum circuits are discussed.

q0 : |0⟩ H • H

q1 : |0⟩ H • H

q2 : |−⟩

c0,1 : /
2

��

(a)

q0 : |0⟩ H • H q1 : |0⟩ H • H

q2 : |0⟩ X H

c0 : ��

c1 : ��

(b)

Fig. 3: (a) A BV circuit and (b) its DQC

A. Current Design Status

The circuit model discussed in the previous section has be-
come a standard for designing quantum circuits to be executed
on real quantum devices. Typically, the design of quantum
circuits involves (1) the applications of 1- and 2-qubit gates
on multiple qubits to realize the desired functionality, (2)
measuring the states of all the qubits, and (3) storing these
states in the classical registers to obtain the results. However,
the desired result may be obtained with low probability due to
the presence of noise in the real quantum device with limited
computing resources. Recently, IBM introduced the concept of
DQC [3] that allows the designers to guide the outcome based
on the intermediate results of the circuit. Besides employing
all the 1- and 2-qubit gates used to design traditional quantum
circuits, this new class of quantum circuits additionally utilizes
new computation primitives such as active-reset (comprising of
a classically controlled X operation based on the measurement
result of a qubit), mid-circuit measurement (enabling estimation
of a qubit’s state during computation) and classically controlled
quantum operations (representing unitary operations on a qubit
based on classical register value). Unlike traditional quantum
circuit that needs at least n qubits to implement any n-qubit
quantum algorithm, the DQC requires at least two qubits to
realize the corresponding algorithm. The support of underlying
technology enables quantum circuits comprising of a distinct
set of data and answer qubits to be re-described using a single
data qubit and equal number of answer qubit for executing
on such platforms. The description can be transformed in a
straightforward way when the input quantum circuit comprises
of only independent set of 1- and 2-qubit operations that involve
at most a single data qubit and one answer qubit that can be
executed in arbitrary order.

For example, consider the BV circuit to find out a 2-qubit
hidden string 11 using two data qubits (q0 and q1) initialized
to |0⟩ state, and an answer qubit (q2) initialized to |−⟩

(
=

1√
2
(|0⟩ − |1⟩)

)
state (see Fig. 3a). The corresponding DQC

can be realized using a pair of data and answer qubits (i.e. 2
qubits only) in two iterations as shown in Fig. 3b. An iteration
involves all the operations between a reset and a measurement
on data qubit. The first and second iterations include execution
of all the operations between qubits q0 and q2, and between q1
and q2, respectively, with an execution of reset operation on a
data qubit after the first iteration. Lately, the concept of DQC
is applied on the QPE algorithm [3].

B. Open Questions and Challenges

Realizing n-qubit quantum algorithms using only 2-qubit
circuits shows a great potential of scaling down the number
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(b) Dynamic quantum circuit

Fig. 4: Dynamic realization of a traditional quantum circuit

of qubits – still a limited resource while achieving the desired
functionality. Thus far, BV and QPE algorithms are considered
for dynamic realizations, in which the resulting DQCs obtained
from the respective traditional quantum representations depict
different scenarios. In cases of dynamic BV circuits, we can
interchange the iterations (e.g., first and second iterations in
Fig. 3b), which in turn changes the order of execution of a set
of gates in one iteration with that of another iteration without
affecting the desired functionality. However, in case of QPE
algorithm, such change in the order of execution of iterations
is not possible as the iterations are gate-dependent.

With such distinct scenarios, this new class of quantum
circuits raises new questions: (1) how can we efficiently realize
DQCs from complex traditional quantum circuits consisting of
Toffoli gates, and (2) what will be the computational accuracy
of dynamic quantum circuits? These questions open new design
challenges for realizing efficient DQCs. The ideas based on
BV and QPE algorithms are not sufficient enough to address
these issues. Therefore, we extend the ideas to transform the
traditional quantum circuits primarily consisting of Toffoli gates
to DQCs. More precisely, we address the challenges and issues
that can be associated with the transformation of Toffoli-based
traditional circuits into the dynamic ones. To do this, we first
investigate the dynamic realization of Toffoli gate and then
determine a systematic approach to transform any Toffoli-
based or Toffoli-free traditional quantum circuits into respective
DQCs. Consequently, we explore the design space of the DQCs
that largely remain unexplored till date.

IV. PROPOSED DQC TRANSFORMATION

In this section, we first introduce the general idea of our
proposed method to generate DQCs from the corresponding
traditional quantum circuits. We further show the dynamic
transformation of Toffoli gate and then present dynamic re-
alization of DJ algorithm [4] with an example.

A. General Idea

A traditional quantum circuit can be transformed into a
DQC by performing dynamic realizations of a set of quantum
operations in an iterative fashion with a limited number of
qubits. To transform a n-qubit quantum circuit to its equivalent
realization using at least 2 qubits, the following cases need to
be considered:

q0 : • •

q1 : U2 •

q2 : U1 U3

c0,1 : /
2

��

(a)

q0 : • q1 : |0⟩ U2 •

q2 : U1 U3

c0 : �� •

c1 : ��

(b)

Fig. 5: Gate dependency in DQC transformation

Case 1. In dynamic realization the number of iteration plays
a significant role to determine the performance of the resulting
DQC and is lower bounded by the size of the input data qubits.
More precisely, given a traditional quantum circuit compris-
ing of m data qubits (qDi∈{0,··· ,m−1}) and n answer qubits
(qAi∈{0,··· ,n−1}) as depicted in Fig. 4a, a dynamic realization
composed of n + 1 qubits can be obtained with a minimum
of m iterations, as shown in Fig. 4b provided all the quantum
operations Gi∈{0,··· ,m−1} are independent and involve at most
one data qubit qDi∈{0,··· ,m−1}.

Case 2. Interaction between data qubits restricts the order in
which they are to be considered in each iteration. For example,
the quantum circuit with two data qubits q0 and q1 and one
answer qubit q2 contains a CU2 operation between two data
qubits q0 and q1 as shown in Fig. 5a.

Since the data qubit q0 in the network acts as the control
input in CU2 operation, a dynamic description using one data
and one answer qubit must consider the operations between q0
and q2 in early iteration as shown in Fig. 5b.

Considering the above ideas and constraints, we propose
Algorithm 1 to obtain DQC from its traditional version.

´
B. Dynamic Transformation of Toffoli Operation

The operational dependency of individual gate operations
in any traditional quantum circuit influences the number of
iterations in the resulting dynamic realization. Higher the
operational dependency, more will be the iterations. For the
purpose of illustration, we consider the Toffoli netlist shown in
Fig. 2. Here, the gate operations CX(qi, qj) and T (qj)/T †(qj)
are not commutative, i.e.

qi : •
̸=
qi : •

and
qi : •

̸=
qi : •

qj : T qj : T qj : T† qj : T†

As a result, a dynamic realization of the Toffoli network
shown in Fig. 2 requires at least 4 iterations to conduct the
initial four CX operations in sequence. As each iteration ends



Algorithm 1: DQC Transformation Algorithm
Input:

1) Quantum Circuit: CKTin

2) Qubit Lists: Data (QD), Ancilla (Q0) and Answer (QA)

Output:
1) Dynamic Quantum Circuit (DQC): CKTout

2) Qubit Lists: Data ({qd}) and Answer (QA
d )

{qd, QA
d , C

R} ← {a data qubit, QA, |QD|-bit register};
CKTout ← {qd, QA

d , C
R};

QW ← Reorder QD ∪Q0 using Case 2.
CKTout ← add reset(qi) foreach Qubit qi ∈ QA

d ;
foreach Qubit qw ∈ QW do // Iteration Case 1.

CKTout ← add reset(qd);
foreach Gate Gi ∈ CKTin do

if Gi is Not Transformed then
qc ← control of Gi;
qt ← target of Gi;
if qc = ∅ and qt ∈ {qw} ∪QA then

CKTout ← add gate Gi(qt);
else if qt ∈ QA and qc = qw then

CKTout ← add gate Gi(qd, qt);
else if qt = qw and qc < qw then

CKTout ← add gate Gi(C
R
c , qd);

end
end

end
if qw ∈ QD then // Measure data qubit

CKTout ← add measure(qd, CR
w ) ;

end
end

with a sequence of measurement and active reset operation
on data qubit, the computational accuracy reduces when such
dependency exists.

Interestingly, the operational dependency and the number
of iterations for dynamic realizations may vary with different
decomposition of traditional quantum circuits based on the set
of primitive gate operations. An alternative circuit structure of
Toffoli operation composed of Controlled-

√
NOT (CV/CV †)

and CX gates is depicted in Eqn. (1) [8].

C2X([q0, q1], q2) =
q0 : |ψ⟩c1 • • •
q1 : |ψ⟩c2 • •
q2 : |ψ⟩t V V V†

(1)

When we decompose the Toffoli operation from Eqn. (1) to
its equivalent dynamic realization, the resulting DQC consists
of 2 iterations as shown in Eqn. (2).

Dynamic C2X([q0, q1], q2) =

q0 : |ψ⟩c1 • q1 : |ψ⟩c2 • X • X

q2 : |ψ⟩t V V V †

c0 : �� • •
c1 : ��

c2 : ��

(2)

qi : T • •
qj : H T T† H

(a) CV (qi, qj)

qi : T† • •
qj : H T† T H

(b) CV †(qi, qj)

Fig. 6: Clifford+T realization of CV/CV † operation

where each of the CV and CV † operation can further be
decomposed into the networks of H , T/T † and CX gates as
shown in Fig. 6.

Moreover, the operational dependency of CX and CV/CV †

gates in Eqn. (1) can be simplified by unrolling the operation
using a clean ancilla qubit in the manner shown in Eqn. (3).

q0 : |ψ⟩c1 • • q0 : |ψ⟩c1 • •

q1 : |ψ⟩c2 •
≡

q1 : |ψ⟩c2 • •

qa : |0⟩ qa : |0⟩ •

q2 : |ψ⟩t V † q2 : |ψ⟩t V †

(3)

An additional ancilla qubit results in an additional iteration
of the resulting dynamic realization of the Toffoli operation as
defined in Eqn. (4).

Dynamic C2X([q0, q1], q2) =

q0 : |ψ⟩c1 • q1 : |ψ⟩c2 • qa : |0⟩ X X • X X

q2 : |ψ⟩t V V V †

c0 : �� • •
c1 : �� • •
c2 : ��

(4)

Any one of these dynamic Toffoli realizations (i.e. realiza-
tions defined in Eqn. (2) and (4)) can be used to transform
the traditional quantum circuits consisting of multiple 2-control
Toffoli gates into DQCs, thereby leading to two different
dynamic realizations of a single traditional circuit.

Lemma 1. Based on the scheme defined in Eqn.(4), one addi-
tional iteration is sufficient to transform a traditional quantum
circuit consisting of m (m ⩾ 1) 2-control Toffoli gates into a
dynamic realization if all the Toffoli gates are acting on the
same target qubit.

Proof. Consider a network comprising of a pair of Toffoli
gates C2X([q0, q1], q3) and C2X([q0, q2], q3). The operation
sequences describing partially their realization in terms of
CV/CV † and CX gates presented in the LHS of Eqn. (5)
can be re-described using the ancilla qubit qa initialized to |0⟩
as defined in the RHS of Eqn. (5).

q0 : |ψ⟩c0 • • • •

q1 : |ψ⟩c1 •

q2 : |ψ⟩c2 •

qa : |0⟩

q3 : |ψ⟩t V † V †

≡

q0 : |ψ⟩c0 • •

q1 : |ψ⟩c1 • •

q2 : |ψ⟩c2 • •

qa : |0⟩ • •

q3 : |ψ⟩t V † V †

(5)

Hence the dynamic transformation of these two pair of Toffoli
gates requires one additional iteration.

Next, the realization of DJ algorithm using the proposed
DQC transformation approach is illustrated.



C. DQC Transformation of DJ Algorithm

The DJ algorithm is used to determine whether a function
is balanced or constant on a quantum computer in a single
execution. For an n-qubit function F the algorithm requires n
data qubits ({qD0 , qD1 , · · · , qDn−1}), an answer qubit (qA0 ), and
an n-bit classical register (C). Using the proposed dynamic
transformation scheme we show the dynamic transformation
of a 2-input function F(a, b) = a + b (see Fig. 1) as an
example. Initially, the function F(a, b) = a + b is described
in the following way:

ÛF(a+b) =

qD0 : |a⟩ • • • •

qD1 : |b⟩ • • •

qA0 : |0⟩ V V V † |F(a+ b)⟩
(6)

Since the gate operations CV (qDi∈{0,1}, q
A
0 ) and

CX(qDi∈{0,1}, q
A
0 ) are commutative, the operations from

the network presented in Eqn. (6) can be reordered in the
following way.

ÛF(a+b) =

qD0 : |a⟩ • • • •

qD1 : |b⟩ • • •

qA0 : |0⟩ V V V † |F(a+ b)⟩
(7)

Using dynamic scheme for realizing Toffoli operation defined
in Eqn. (2), the transformed DQC realizing the DJ algorithm
for the function F(a + b) applying Algorithm 1 is presented
below.

Dynamic DJ Algorithm(F(a+ b)) =

qD0 : |0⟩ H • • H qD1 : |0⟩ H • • X • X H

qA0 : |−⟩ V V V †

c0 : �� • •
c1 : ��

(8)

Similarly, considering the dynamic scheme defined in
Eqn. (4) for Toffoli realization, the dynamic representation of
the DJ algorithm for the function F(a+ b) using Algorithm 1
is as follows.

Dynamic DJ Algorithm(F(a+ b)) =

qD0 : |0⟩ H • • H qD1 : |0⟩ H • • H qa : |0⟩ X X • X X

qA0 : |−⟩ V V V †

c0 : �� • •
c1 : �� • •

(9)

Performance evaluation of the proposed dynamic transforma-
tion scheme and the environment considered for the evaluation
are presented in next section.

V. EXPERIMENTAL EVALUATION

The proposed approach discussed in Section IV has been
implemented on top of the IBM’s Qiskit tool [9]. We conducted
an extensive case study to evaluate the effectiveness of our
proposed approach and compare the circuit complexities and
performances of the dynamic quantum realizations with that of
the traditional realizations. For this purpose, we considered few

well-known quantum algorithms such as BV [2], and DJ [4] as
benchmarks. These algorithms are good fit for evaluating the
effectiveness of our proposed scheme as they either contain
Toffoli gates or are Toffoli-free circuits, thereby showcasing
the various circuit structures that are efficiently handled by our
proposed scheme. All the experiments have been conducted
on a machine equipped with an AMD Ryzen 7 PRO 5850U
processor running at 1.90 GHz and having a 48 GB RAM with
Windows 10 Pro operating system.

A. Results of Non-Toffoli Circuits

In Table I, the results for the Toffoli free quantum circuits
are provided. The first column represents the name of the
benchmark. The second, third and fourth columns of Table I
provide the details of the number of qubits (Qubit count),
number of gates (Gate count) and the circuit depth (Depth),
respectively for traditional circuits and their corresponding
dynamic realizations. For dynamic realizations, depth measure
includes measurement and reset operations.

We confirm that all the resulting DQCs obtained from their
traditional realizations using the proposed algorithm are func-
tionally equivalent to the corresponding traditional circuits. To
do this, we simulated the traditional and corresponding dynamic
realizations 1024 times using IBM’s AER Simulator tool [10].
The simulation results show that the probability of expected
outcome obtained from the traditional circuit and the resulting
DQC are exactly same in all the cases, thereby establishing the
correctness of our approach.

With respect to the circuit complexity, Table I clearly shows
that a slight increase in the gate count in case of DQCs, while
the circuit depth increases by almost 3× of the traditional real-
izations. Nevertheless, this can be compensated by the number
of qubits required to realize the DQCs. More precisely, all
the benchmarks require at most 5-qubits to realize the desired
functionalities traditionally, whereas the same functionalities
can be dynamically realized using only 2-qubits.

B. Results of Toffoli-based Circuits

Table II summarizes the results of quantum circuits consist-
ing of multiple 2-control Toffoli operations (i.e. C2X gates).
The first column indicates the names of the benchmarks. The
number of qubits, total number of gates and the number of
circuit depths for traditional circuits and their two different
dynamic representations (dynamic-1 and dynamic-2) are pro-
vided in the second, third and fourth columns, respectively.
Dynamic-1 and dynamic-2 are the dynamic realizations of all
the 9 benchmarks that are obtained by substituting the Toffoli
operations with their corresponding dynamic representation
schemes defined in Eqn. (2) and (4), respectively.

Compared to the traditional quantum circuits, the proposed
dynamic realizations increase the gate count and the circuit
depth due to the presence of additional classically-controlled
gate operations. The traditional circuits and the two different
types of dynamic circuits, dynamic-1 and dynamic-2, for all
the considered benchmarks are simulated 1024 times in IBM’s
AER Simulator tool [10]. The resulting probabilities of the



TABLE I: Results of Toffoli-free quantum circuits

Qubit count Gate count Depth
Benchmark tradi. dyna. tradi. dyna. tradi. dyna.
BV 111 4 2 11 13 6 15
BV 110 4 2 8 10 5 13
BV 101 4 2 8 10 5 12
BV 011 4 2 8 10 5 12
BV 100 4 2 5 7 4 10
BV 010 4 2 5 7 4 10
BV 001 4 2 5 7 4 9
BV 1111 5 2 14 17 7 20
BV 1110 5 2 11 14 6 18
BV 1101 5 2 11 14 6 17
BV 1011 5 2 11 14 6 17
BV 0111 5 2 11 14 6 17
BV 1010 5 2 8 11 5 15
BV 1001 5 2 8 11 5 14
BV 0110 5 2 8 11 5 15
BV 0101 5 2 8 11 5 14
BV 1000 5 2 5 9 4 12
BV 0100 5 2 5 8 4 12
BV 0010 5 2 5 8 4 12
BV 0001 5 2 5 8 4 11
DJ CONST 0 3 2 6 7 3 7
DJ CONST 1 3 2 7 8 3 7
DJ PASS 1 3 2 7 8 5 9
DJ PASS 2 3 2 7 8 5 8
DJ INVERT 1 3 2 8 9 6 10
DJ INVERT 2 3 2 8 9 6 8
DJ XOR 3 2 8 9 6 10
DJ XNOR 3 2 9 10 7 11

TABLE II: Results of Toffoli-based DJ quantum circuits

Qubit count Gate count Depth
Benchmark tradi. dyna.1/2 tradi. dyna.1 dyna.2 tradi. dyna.1 dyna.2
AND 3 2 21 28 33 16 23 26
NAND 3 2 22 29 34 17 24 27
OR 3 2 23 30 35 18 26 29
NOR 3 2 24 31 36 19 27 30
IMPLY 1 3 2 23 30 35 18 26 29
IMPLY 2 3 2 23 30 35 18 25 28
INHIB 1 3 2 22 29 34 17 24 27
INHIB 2 3 2 22 29 34 17 25 28
CARRY 4 2 53 73 82 36 60 68

expected outcomes are shown in Fig. 7. It is clearly evident that
the dynamic realization of type 1 (i.e. dynamic-1) significantly
reduces the probability of an expected outcome as compared to
that of the traditional circuits, while in cases of dynamic real-
izations of type 2 (i.e. dynamic-2), the probability of expected
outcomes remain almost same as that of the traditional quantum
circuits. As a result, the transformation based on dynamic-2
provides better computational accuracy as compared to that of
dynamic-1. This is achieved using one additional iteration that
involves one reset operation and 2 more classically controlled
X operation per Toffoli operation.

VI. CONCLUSION

Dynamic Quantum Circuits provides a promising path for
executing quantum circuits of many qubits in an architecture
of at least two qubits with the support of active reset, mid-
circuit measurement and classically controlled operation. In
this paper, we have presented two dynamic transformation
schemes (dynamic-1 and dynamic-2) for Toffoli gate. The

Fig. 7: Performance of Toffoli-based traditional and DQCs

decomposition structure of Toffoli gate affects the number of
classically controlled gate operations, which in turn, affects the
final outcome of the dynamic quantum circuit. Experiments
were conducted for both non-Toffoli and Toffoli based circuits
for which we have considered two algorithms: Bernstein–
Vazirani and Deutsch–Jozsa. Expetimental results reveal that
our proposed method provides correct dynamic realization of
traditional quantum circuits. We show that the realization based
on dynamic-2 with an additional operation overhead (i.e. an
active reset and 2 more classically control X operations per
Toffoli gate) ensures improved computational accuracy over the
dynamic-1. In future, we will consider the dynamic realization
of Multiple Control Toffoli gates and their networks.
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