
Analysis of Quantization Across DNN Accelerator
Architecture Paradigms

Tom Glint
IIT Gandhinagar, India
tom.issac@iitgn.ac.in

Chandan Kumar Jha
DFKI, Germany

chandan.jha@dfki.de

Manu Awasthi
Ashoka University, India

manu.awasthi@ashoka.edu.in

Joycee Mekie
IIT Gandhinagar, India

joycee@iitgn.ac.in
Abstract—Quantization techniques promise to significantly re-

duce the latency, energy, and area associated with multiplier
hardware. This work, to the best of our knowledge, for the first
time, shows the system-level impact of quantization on SOTA
DNN accelerators from different digital accelerator paradigms.
Based on the placement of data and compute site, we identify
SOTA designs from Conventional Hardware Accelerators (CHA),
Near Data Processors (NDP), and Processing-in-Memory (PIM)
paradigms and show the impact of quantization when inferencing
CNN and Fully Connected Layer (FCL) workloads. We show
that the 32-bit implementation of SOTA from PIM consumes less
energy than the 8-bit implementation of SOTA from CHA for
FCL, while the trend reverses for CNN workloads. Further, PIM
has stable latency while scaling the word size while CHA and
NDP suffer 20% to 2× slow down for doubling word size.

I. INTRODUCTION

Various DNN accelerators have been proposed to tackle the
power and memory wall issues associated with processing Deep
Neural Networks (DNN). They are used for both training and
inferencing these DNNs. The focus of these accelerators is
to optimize a set of the following metrics: accuracy, latency,
energy, and area [1]. Traditionally, training is performed over
a 32-bit IEEE 754 floating number system to achieve high
accuracy. However, for inference, various accelerators adopt
different number systems with various quantization and ap-
proximation levels to improve the abovementioned metrics.
Table I from [2] shows an example of how these metrics
change at the multiplier level for different quantization levels
and different number systems. It also shows how accuracy
changes with quantization. However, these benefits in metrics
for the multiplier do not directly translate to the system
level, as the flow and storage of data also dictate the overall
system latency and energy. Further, there exist different DNN
accelerator paradigms [1], which have contrasting energy and
latency consumption profiles. Based on the primary storage
location of the data and the site for computation [3], digital
DNN accelerators can be mainly classified into Conventional
Hardware Accelerators (CHA), Near Data Processors (NDP),
and Processing-in-Memory (PIM) paradigms. This work ana-
lyzes the change in latency and energy for SOTA architectures
from each of these paradigms, for CNN and fully connected
workloads, to gauge the degree of benefits from quantization
as higher quantization, especially for deeper networks, leads to
accuracy loss [1], [2].

This work is supported through grants received from Science and Engineer-
ing Research Board (SERB), Government of India, under SERB-CRG grant
CRG/2018/005013, SERB-MATRICS grant MTR/2019/001605, and SERB-
SUPRA grant SPR/2020/000450, and funds received for YFRF Visvesvaraya
PhD fellowship from MEITY and Semiconductor Research Corporation (SRC)
through contracts 2020-IR-3005 and 2020-IR-2980, and is partially supported
through Ashoka University startup and Huawei Technologies India grants.

II. STATE-OF-THE-ART ACCELERATORS

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

G
LB

 (1
28

K
iB

)

Si
m

ba
 C

hi
p

D
D

R
4 

D
R

A
M

Bank

TSVs

DRAM Die

Logic Die

Vault

Col Dec

R
ow

 D
ec

C
m

d
T

SV
s

Data
TSVs

Col Dec

R
ow

 D
ecGlobal 

Dataline

Bank Bank

Inter-bank data bus

R
ou

te
r

M
em

 C
tr

l

To remote 
vault

G
L

B
 

(1
33

K
iB

)

PE
Array

(14 x 14)

Neural Engine – Vault Level

To Local
vault

GLB (2KiB)

16
XXXXXXXX

..

+

BK IO

+

LAT2
24

..

Post

BK #0
(32MB)

256

256

XXXXXXXX
..

+

BK IO

+

LAT

..

Post

BK #15
(32MB)

256

256

256

Fig. 1. Top Left: Simba Architecture [4] (CHA); Right: AiM Architecture [5]
(PIM); Bottom Left: Tetris Architecture [6] (NDP)

We use the following standard to determine the best archi-
tecture within each paradigm: (i) highest peak performance
(TOPS), (ii) post-layout or hardware realized architectures,
and (iii) comparable output quality results to the traditional
hardware. Based on these, we select Simba [4], Tetris [6], and
AiM [5] for CHA, NDP, and PIM, respectively.
Simba is a chiplet-based architecture that operates at 2 GHz
with 1024 Multiply-Accumulate (MAC) units, with data for
computation fetched from external main memory. The 1024
MACs are spread across 16 Processing Elements (PEs) as
vectorized MACs, as shown in Fig. 1. At each PE, there
are buffers for storing input activations, filters, and outputs
of DNNs. These buffers are used to exploit the data reuse
property of DNNs where the same input word is convolved with
different filters, and similarly, the same weight word is used
across different input words. Thus the chip can efficiently cache
the data required for processing and avoid the cost of fetching
data from external memory repeatedly. We have modeled the
external memory of Simba as a single DDR4 memory with
25GBps bandwidth. However, any access to external memory
is energy intensive.
Aim uses PIM paradigm based on GDDR6 DRAM and has 32
banks of memory across two dies, with each bank equipped
with a vector MAC with 16 multipliers operating at 1 GHz
and operating on BFloat16. Since data is fetched from the
bank and used for compute in the periphery, access energy
is low. When processing, the input activation is transferred to
the Global Buffer (GLB) and is used as a common operand
across 16 Vector MACs, where each vector MAC accumulates
the products into a single word. Single words from 16 banks
are then collected together to form a new row of data which
is written back to any of the banks. This spatial arrangement
is similar to organization inside the PE of Simba and vastly



TABLE I
SYNTHESIZED METRICS FOR LATENCY, ENERGY, AREA, AND ACCURACY ASSOCIATED WITH DIFFERENT MULTIPLIERS FROM [2] FOR 65 NM

Multiplier Abbrv. Type Bit Width Bit Arrangment Latency (ps) Energy (pJ) Area (um2) LeNet Acc. ResNet Acc.
IEEE 754 Multiplier(32,8) FP32 Floating Point 32 (N,es) 1299 22.50 13830.84 98.49% 82.21%
IEEE 754 Multiplier(16,5) FP16 Floating Point 16 (N,es) 979 4.55 3095.28 98.49% 82.02%
IEEE 754 Multiplier(8,5) FP8 Floating Point 8 (N,es) 334 0.22 362.88 93.28% 23.54%
Array Multiplier AM16 Integer 16 - 1780 8.81 6015.24 98.55% 53.18%

reduces reads and writes. Further, the MAC units in AiM are
manufactured using a DRAM process and are, therefore, less
energy efficient and slower than CMOS chips.
Tetris tries to combine the advantage of both Simba and Aim by
stacking DRAM on top of traditional logic chip and connecting
them using Through-Silicon-Vias (TSVs), which provide high
bandwidth and low energy for data transfer. The logic chip is,
however, limited in area and TDP due to stacking. In Tetris,
the logic layer has 3136 MAC units spread across 16 vaults
operating at 500 MHz for limiting power.

III. EXPERIMENTAL SETUP AND RESULTS
We extend and use Timeloop [7] based infrastructure to

model the three SOTA architectures, in great detail, with
hardware measured values [4]–[6]. We use a 45nm model,
and obtain energy and area values for buffers from CACTI.
The architectures are scaled for 8, 16, and 32-bit computation.
For Simba and Tetris, the available memory bandwidth from
DRAM and the operational frequency is kept same as that
of original work during scaling. However, for AiM, the array
width is also scaled according to the word’s width while
keeping the count of multipliers constant. The workloads are
AlexNet (AN), MobileNet (MN), ResNet (RN), VGG (VN),
DLRM (DN), BERT (BN), LSTM (LM). Further, the results
show the average layer metric, separated by CNN and FCL.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

AN MN RN VN AN MN RN VN AN MN RN VN

AiM Simba Tetris

R
. 
L

at
en

cy

Chart Title

Fig. 2. CNN: Relative latency of each SOTA architecture compared to 8-bit
implementation on AN. On average, Simba slows down by 23% and 94% for
each doubling of word size, whereas for Tetris, the slow down is only 16%
and 76%. Due to architectural construction, AiM does not suffer from slow
down for increase in word size.

0
25
50
75

100
125
150
175
200

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DN AN BN RN VN LN DN AN BN RN VN LN DN AN BN RN VN LN

AiM Simba Tetris

R
. 
L

at
en

cy

Fig. 3. FCL: Relative latency of each SOTA architecture compared to 8-
bit implementation on DN. The latency of AiM does not increase, similar to
CNN. For Simba and Tetris, due to a change in effective memory bandwidth,
the latency becomes 2× and 4× for each doubling of word size.

Latency: From Fig. 2 and Fig. 3, changing word size does
not affect AiM architecture as word size and row width is
co-related. For Simba and Tetris, an increase in word size
results in a slowdown as effective bandwidth to DRAM reduces.
Nevertheless, Tetris scales better than Simba for CNN. Simba
and Tetris degrade equally for FCL, as data reuse in FCL is
negligible.

Energy: From Fig. 4 and Fig. 5, AiM consumes 4-6× energy
for inferencing CNN than Simba and Tetris. However, for FCL,

0

50

100

150

200

250

8
1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2 8

1
6

3
2

AN MN RN VN AN MN RN VN AN MN RN VN

AiM Simba Tetris

E
P

M
 (

p
J/

M
A

C
)

MAC Acc.Buf W.Reg W.Buf I.Buf GLB DRAM

Fig. 4. CNN: Energy per MAC (EPM) shows the amortized energy spent
per computation at each component (pJ/MAC Op). For AiM and Simba, the
energy increases 2.5× and 6.5× for each doubling, whereas in Tetris, the
energy roughly doubles for each doubling of word size. The trends are due
to the quadratic increase in energy for MACs operating with high frequency
(AiM and Simba) while Tetris is operating at low frequency resulting in a near
linear increase - similar to memory access energy.

0
200
400
600
800

1000
1200
1400
1600

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DN AN BN RN VN LN DN AN BN RN VN LN DN AN BN RN VN LN

AiM Simba Tetris

E
P

M
 (

p
J/

M
A

C
)

MAC Acc.Buf W.Reg W.Buf I.Buf GLB DRAM

Fig. 5. FCL: EPM shows that energy increases to 2× and 4× for each doubling
of word size for Simba and Tetris as transfer energies dominate whereas energy
increases to 2.5× and 6× for AiM as compute energy dominates. However,
the AiM and Tetris energies are comparable, with Tetris being slightly lower

Simba consumes 6-9× energy than AiM and Tetris. As a result,
8-bit AiM consumes more energy than 32-bit Simba for CNN,
while 32-bit AiM consumes less energy than 8-bit Simba for
FCL. Tetris scales better for both CNN and FCL in terms of
energy.

IV. CONCLUSION
We model and observe the impact of quantization at 8, 16,

and 32 bits for SOTA designs from digital DNN accelerator
paradigms. We observe that AiM architecture does not slow
down due to scaling word size. However, we observe that 32-bit
Simba architecture uses similar energy to 8-bit AiM for CNN
inference, whereas 32-bit AiM architecture uses less energy
than 8-bit Simba for FCL inference.

REFERENCES
[1] Y. Chen et al., “A survey of accelerator architectures for deep neural

networks,” Engineering, vol. 6, no. 3, pp. 264–274, 2020.
[2] T. Glint et al., “Hardware-software codesign of dnn accelerators using

approximate posit multipliers,” in ASP-DAC, 2023.
[3] M. He et al., “Newton: A dram-maker’s accelerator-in-memory (aim)

architecture for machine learning,” in MICRO, 2020, pp. 372–385.
[4] B. Zimmer et al., “A 0.32–128 tops, scalable multi-chip-module-based

deep neural network inference accelerator with ground-referenced signal-
ing in 16 nm,” JSSC, 2020.

[5] S. Lee et al., “A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-in-
memory supporting 1tflops mac operation and various activation functions
for deep-learning applications,” in ISSCC, vol. 65, 2022, pp. 1–3.

[6] M. Gao et al., “Tetris: Scalable and efficient neural network acceleration
with 3d memory,” in ASPLOS, 2017, pp. 751–764.

[7] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in ISPASS. IEEE, 2019, pp. 304–315.


