
Mutation-based Compliance Testing for RISC-V
Vladimir Herdt

Institute of Computer Science, University of Bremen
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
vherdt@uni-bremen.de

Sören Tempel
Institute of Computer Science, University of Bremen

Bremen, Germany
tempel@uni-bremen.de

Daniel Große
Institute for Complex Systems, Johannes Kepler University

Linz, Austria
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
daniel.grosse@jku.at

Rolf Drechsler
Institute of Computer Science, University of Bremen

Cyber-Physical Systems, DFKI GmbH
Bremen, Germany

drechsler@uni-bremen.de

ABSTRACT
Compliance testing for RISC-V is very important. Essentially, it
ensures that compatibility is maintained between RISC-V imple-
mentations and the ever growing RISC-V ecosystem. Therefore,
an official Compliance Test-suite (CT) is being actively developed.
However, it is very difficult to achieve that all relevant functional
behavior is comprehensively tested.

In this paper, we propose a mutation-based approach to boost
RISC-V compliance testing by providing more comprehensive test-
ing results. Therefore, we define mutation classes tailored for
RISC-V to access the quality of the CT and provide a symbolic execu-
tion framework to generate new test-cases that kill the undetected
mutants. Our experimental results demonstrate the effectiveness
of our approach. We identified several serious gaps in the CT and
generated new tests to close these gaps.

KEYWORDS
RISC-V, Compliance Testing, Mutation, Instruction Set Simulation,
Symbolic Execution

ACM Reference Format:
Vladimir Herdt, Sören Tempel, Daniel Große, and Rolf Drechsler. 2021.
Mutation-based Compliance Testing for RISC-V. In 26th Asia and South
Pacific Design Automation Conference (ASPDAC ’21), January 18–21, 2021,
Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3394885.3431584

1 INTRODUCTION
RISC-V [32, 33] is an open and free Instruction Set Architecture (ISA)
and as such has evolved from academic research into mainstream
adoption. RISC-V is very modular by defining 32, 64 and 128 bit
integer ISAs in the base specification. Moreover, to the base ISA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431584

fixed standard extensions can be added. This includes for instance
integer multiply/divide, single- and double precision floating point,
atomic memory operations among many others. Finally, custom
instructions can be added to create application specific solutions.
However, there is a strong risk when allowing such an enormous
flexibility: fragmentation of the RISC-V ecosystem. Simply speak-
ing, if designers customize their RISC-V core too much, the benefits
of the common ecosystem are lost as (a) significant adoptions in
the tools become necessary and (b) sharing of implementations,
SDKs, etc. is hindered. This very important problem is addressed
with compliance testing. In contrast to verification, which attempts
to prove that an implementation is correct, compliance testing at-
tempts to show that an implementation meets the standard and thus
ensures compatibility with the RISC-V ecosystem. More precisely,
compliance testing checks whether registers are missing, modes are
not there, instructions are absent, corner-case scenarios are work-
ing as specified, and is performing basic functional sanity-checks
for each instruction.

The importance of compliance testing has been recognized very
early by the RISC-V foundation and as a consequence the compli-
ance task group has been formed [7]. Intensive ongoing discussions
are taking place on how to proceed in order to develop suitable
tools, models, and methodologies to solve the RISC-V compliance
testing problem [2]. The official approach pursued by the task group
is a Compliance Test-suite (CT) [7]. The quality of the test-suite is
monitored by leveraging functional coverage metrics (and they
guide further development of the test-suite) and recent reports in-
dicate that a very high quality of the base RV32I test-suite has been
reached [3]. However, it is important to cross-validate these results
using different methods because it is very challenging to ensure
that all relevant functional behavior is comprehensively tested.

In this paper, we propose a mutation-based approach to boost
RISC-V compliance testing by providing more comprehensive test-
ing results1. Therefore, we define mutation classes tailored for
RISC-V to access the quality of the CT. In particular, we consider
mutations in the execution unit that mask register and immediate
values, modify constants, replace the accessed registers, immediates
and operators as well as check for exception side-effects. Based on

1Visit http://www.systemc-verification.org/risc-v for our most recent RISC-V related
approaches.

https://doi.org/10.1145/3394885.3431584
https://doi.org/10.1145/3394885.3431584
https://doi.org/10.1145/3394885.3431584
http://www.systemc-verification.org/risc-v

these mutation classes we show that several serious gaps in the
official CT do exist, and the most recent specification-based compli-
ance testing approach [20] is unable to detect the critical mutants.
Therefore, we provide a symbolic execution framework to generate
new test-cases that kill the remaining mutants. Our experimental
results demonstrate the effectiveness of our approach. Our final
extended CT closes all gaps and detects bugs in RISC-V simulators.

2 RELATEDWORK
Compliance testing for RISC-V is an emerging research area. Even
the first steps towards the official CT started only in 2018, and
hence only recently gained significant momentum. Therefore the
number of research papers covering this topic is still limited. We are
only aware of [18, 20] that specifically target the compliance testing
problem. [18] leverages coverage-guided fuzzing to generate the CT.
It primarily focuses on negative testing, i.e. illegal instructions and
exceptions, and thus complements our mutation-based approach.
[20] defines a test-suite specification mechanism and leverages
constraint solving techniques to generate a CT according to the
specification rules. It focuses on positive testing aspects and the
specification mechanism is well suited to reason about different
register and immediate values. In contrast to our mutation-based
approach, which considers the problem from the angle of inserting
bugs, [20] provides a value-driven specification, i.e. for instance
what value ranges are expected for a specific instruction, and thus
test-cases are generated with another objective.

For the purpose of verification, a set of test generation ap-
proaches specifically targeting RISC-V have also emerged re-
cently [1, 10, 22]. The Scala-based Torture Test generator [1] gen-
erates tests by integrating pre-defined randomized test-sequences.
RISCV-DV [10] by Google leverages SystemVerilog in combination
with UVM (Universal Verification Methodology) to generate RISC-V
instruction streams based on constrained-random descriptions. It
requires a commercial RTL simulator providing SystemVerilog and
UVM support. Finally, [22] utilizes fuzzing techniques to generate
randomized instruction streams as platform dependent binary files
(ELFs). These approaches are designed to continuously generate
(randomized) test-cases for verification purposes. Furthermore, they
do not support the compliance testing format.

Beside test-generation methods, there are also a few formal veri-
fication approaches for RISC-V. Notable approaches that leverage
model checking are riscv-formal [8] and theOneSpin 360 DV RISC-V
verification app [6]. However, both approaches clearly target the
verification of an implementation.

Looking beyond RISC-V, several approaches for test-program
generation have been proposed for the purpose of verification. For
example, they integrate model-based techniques with constraint
solving [13–15, 27] or leverage coverage-guided test generation
based on Bayesian networks [16] and other machine learning tech-
niques [25] as well as fuzzing [29].

Mutation testing has been intensively investigated over several
decades and has its roots in the software domain as a fault-based
software testing technique (a survey can be found in [26]). In the
context of hardware, approaches based on injecting faults into RTL
designs to determine the quality of the test-cases have been pro-
posed, for instance [30]. Mutation-based testing and analysis also

found their way into commercial tools, like Certitude from Synop-
sys. This goes back to [17] and is referred as functional qualification.
The principles have been further advanced in [28]. The method
generates high coverage input vectors for RTL designs by recording
branch coverage controlled via mutated guards during symbolic
simulation. Enhancements for guiding the stimuli generation pro-
cess with mutation analysis have been presented in [34]. However,
while all these works identify the weaknesses of the test-stimuli
or even improve them, they cannot directly be used to generate
compliance tests.

3 BACKGROUND ON RISC-V
In this work we consider the RISC-V base RV32I ISA. It defines a 32
bit core without any extensions. It has 32 general purpose registers
x0 to x31 (with x0 being hardwired to zero) each 32 bit width.
Instructions are grouped into different classes (i.e. computational,
load/store, branch/jump). They access registers (source: RS1 and
RS2, destination: RD) and immediates to perform their operation.
Immediates are available in different sizes and signed/unsigned
interpretation. For example, I_imm is a signed 12 bit immediate,
thus has a value range of [-2048,...,2047]. This allows to define
instructions such as ADDI x1, x2, 128 which adds the value of x2
(RS1) with 128 (I_imm) and stores the result in x1 (RD). Format
and semantics (for the base ISA and extensions) are defined in the
unprivileged ISA specification [32].

In addition, the privileged (architecture) specification [33] covers
further important functionality required for environment interac-
tion and operating system execution (for example virtual memory
support and interrupt handling). In particular, it defines CSRs (Con-
trol and Status Register) and special instructions to access them.

4 MUTATION-BASED COMPLIANCE TESTING
This section presents our mutation-based approach to boost RISC-V
compliance testing.We start with an overview (Section 4.1) and then
present our mutation classes tailored for RISC-V (Section 4.2). Next,
we provide more details on how to kill mutants based on symbolic
execution (Section 4.3) and generate compliance test-cases based
on the solutions (Section 4.4). Our approach thus complements the
existing CT infrastructure.

4.1 Overview
Fig. 1 shows an overview on our approach. Starting point is a set of
mutation classes and a reference Instruction Set Simulator (ISS). Each
mutation class describes how to generate a set of mutants. Each
mutant represents a mutation in the reference ISS, i.e. a mutant is a
mutated ISS. In this work we focus on mutations in the execution
unit of the ISS (we provide more information on the mutation
classes in Section 4.2).

In the first step, the set of mutation classes is processed in com-
bination with the reference ISS to generate a set of mutants. Then,
each mutant is checked against the CT. Killed mutants are consid-
ered uninteresting and thus filtered out. A mutant is killed, if it
is detected by at least one test-case of CT (i.e. the mutant and the
reference produce different results on this test-case).

The (still) alive mutants are passed to the mutation solver (Step 3).
It leverages a symbolic execution framework to generate specific

Mutation Class
Compliance
Testsuite (CT)

Symbolic
Execution Engine

1: Mutation
Generator

2: Mutation
Filter

3: Mutation
Solver

Reference
ISS

Original
Mutant

Alive
Mutant

Rest
Mutant

RISC-V
Testcase

Mutants are
mutations in
reference ISS

4. Testcase
Generator

no solution

mutation
killed

Solution

use for
symbolic
reasoning

CT extension

Figure 1: Overview: mutation-based approach for RISC-V compliance testing

inputs to kill the mutants. Such an input is called a solution. It
is possible, that no solution exists, because the mutation has no
influence on the result (e.g. replacing an integer X with X+0).

A solution is essentially a snapshot of the relevant execution
state and a single instruction that will show a difference in the
output behavior between the reference ISS and mutated ISS when
executed from that state.

In the last step the solution is transformed into a RISC-V com-
pliance test-case. The generated test-suite complements the CT in
providing stronger test coverage. Furthermore, it allows to access
the quality of the existing CT and reveal coverage holes.

4.2 Mutation Classes
We consider mutations in the execution unit of the reference ISS.
In total, we define nine mutation classes with rules tailored for ISS
mutations in the context of RISC-V:
M1 Modify the value of a source register by applying a mask

that sets a single bit to zero. This ensures that all register
bits are comprehensively tested.

M2 Similar to M1 but applied on immediate values. The range
of the mask is set to cover the whole immediate range.

M3 Replace a constant with another one by adding or removing
a bit from the left or right side. This ensures that similar
constants are used.

M4 Replace a load instruction with another one (e.g. load word
with load byte) or replace a store instruction, respectively.

M5 Replace any of the RS1, RS2 or RD register with each other,
e.g. ADD x1, x2, x3 could be mutated to ADD x2, x2, x3
by replacing RD=x1 with RS1=x2. Each register can also be
replaced with the hardwired zero register.

M6 Similar to M5 but applied to immediates, e.g. replace I_imm
with S_imm, etc.

M7 Replace unary operations {!,-,∼} with each other or remove
the operation. Anothermutation is to replace the new and the
current PC, i.e. which will cause being of by one instruction
in jumps and return address computations.

M8 Replace binary operations with each other. Distinguish be-
tween computational operations and relational operations.

M9 Move a trap check to the end of the instruction execution,
i.e. this will cause side effects (writing a register) to apply
before taking the trap.

1 switch (op) { // execute instruction in ISS
2 //...
3 case BEQ: // Branch EQual instruction
4 if (mutation_begin ()) { // mutated paths
5 if (regs[instr.rs1()] == regs[instr.rs2()])
6 pc = last_pc - instr.B_imm();
7 } else { // unmutated paths
8 if (regs[instr.rs1()] == regs[instr.rs2()])
9 pc = last_pc + instr.B_imm();
10 }
11 mutation_end ();
12 break;
13 //...
14 }

Figure 2: Example mutation for the BEQ instruction.

Each mutation class defines a set of mutations. Only a single
mutation is selected and applied at a time.

4.3 Killing Mutations via Symbolic Execution
Killing a mutation is considered on a per instruction basis. Fig. 2
illustrates the basic idea using the BEQ instruction as an example.
The normal instruction execution code (Line 8-9) is duplicated and
the mutation is applied (Line 5-6). In this example the binary oper-
ator plus (Line 9) is replaced by minus (Line 6). The resulting code
block is wrapped with calls to the artificial mutation_begin and
mutation_end functions (Line 4 and Line 11, respectively). These
functions mark the mutation area and are recognized by the sym-
bolic execution framework.

To find a solution that kills the mutation, we provide a single
symbolic instruction to the ISS and make the ISS register file un-
constrained symbolic. Additionally, we overwrite ISS functions
which are used to access memory, thereby making load/store in-
struction operate on symbolic values. The program counter is set
to a fixed concrete value. Based on the symbolic instruction, a path
to mutation_begin is searched. At this point, we distinguish two
sets of paths trough the marked code block: The set of mutated
paths and the set of unmutated paths based on the return value
of mutation_begin (which is controlled by the symbolic execution
engine). Then, we calculate the Cartesian product of these two sets,
thereby enumerating all possible combinations of unmutated and
mutated paths. For each resulting combination, we add additional
solver constraints and search for a solution that kills the mutation.
Through these additional constraints we ensure that only aligned

1 /**[BEQ template]****/

2 //..init relevant regs..

3 J to_beq

4 ADDI x1, x1, 1

5 //..cover branch range..

6 ADDI x1, x1, 1

7 J halt

8 to_beq:

9 BEQ RS1 , RS2 , B_imm

10 ADDI x2, x2, 1

11 //..cover branch range..

12 ADDI x2, x2, 1

13 halt:

14 //..exit sequence ..

15 /**[LW template]*****/

16 LA RS1 , data_middle

17 LW RD, (I_imm)RS1

18 halt:

19 //..exit sequence ..

20 data_begin:

21 .byte b0

22 //...

23 .byte b2047

24 data_middle:

25 .byte b2048

26 //...

27 .byte b4095

28 data_end:

Figure 3: Example template for the BEQ and LW instruction.

memory addresses are considered and non-terminating self loops
are avoided. A mutation is killed, if a difference in the output be-
havior is observed. For this reason, we compare the register values,
addresses used to access memory, values used to read (or write)
memory and the PC. If a solution has been found, concrete values
for the register file and memory addresses as well as used memory
values are provided (if any).

4.4 Test-case Generation
Test-case generation transforms a solution into a test-case. We
use a custom template for the RISC-V compliance test format. The
template contains case distinctions for different instruction types.

For a computational instruction, we simply generated instruc-
tions to initialize all registers according to the solution and then put
the generated instruction into the (RISC-V assembly) test-case. The
difference between a mutated and unmutated ISS will be observed
in the resulting register file.

For branches and jumps we generate code which ensures that
a difference in the register outputs will be observed in case the
resulting PC differs. Fig. 3 shows the test code template. First, the
registers are initialized based on the solution. Then, a jump to the
instruction (BEQ in this case) is performed. Before and after the
generated instruction, we add enough enough ADDI instructions to
cover the maximum possible range of the 12-Bit branch immediate.
Different destination registers are used in the forward and back-
ward ADDI to ensure that a different result is always produced (for
negative/positive immediates). Since difference in output behaviour
of branch instructions can only be observed in the PC, we know
that the PC of a mutated/unmutated ISS will differ if a solution was
found by our symbolic execution engine.

For load and store instructions the generated solution contains
a concrete memory base address (as stored in the RS1 register), the
relative immediate offset and used memory values. Fig. 3 illustrates
the test generation for the LW (Load Word) instruction. First, the
fixed RS1 base address is replaced by a label (Line 16, LA = Load
Address), to keep the test platform independent (though it should
resolve to the same address on the reference ISS). Then, the LW
instruction is executed (Line 17). Before and after the label, enough
data is placed to cover the whole immediate offset range. The mem-
ory is initialized with the concrete memory values provided by
the solution. Thus, a difference will be observed in the RD register
between the mutated and unmutated ISS (for a store instruction,
the difference would be observed in the memory).

5 EXPERIMENTS
We have implemented our proposed approach for mutation-based
compliance testing using the ISS of the open source RISC-V VP [19,
21, 23] as reference ISS. We focus on the base RV32I ISA, use the
mutation classes described in Section 4.2 as foundation for the
testing process and leverage angr [4, 31] as symbolic execution back-
end. Beside the official CT [7], we also consider the specification-
based CT from [20] in this evaluation. All experiments have been
performed on a Linux system with an Intel i5-7200U processor. We
start with a results overview and then present results on the official,
specification-based and our mutation-based CT.

Result Overview. Table 1 shows the results. The first two columns
show the mutation class and the number of mutants in this class
(column: #mutants). The remaining columns report results on: 1)
the official CT, 2) the specification-based CT and 3) our symbolic
execution framework, to kill the mutants. These three steps are
applied one after another and only mutants that are still alive (i.e.
not killed) are passed to the next step. The columns #killed and
#alive report the number of killed and still alive mutants after each
step. In addition, the runtime in seconds is reported for each step.

Official CT. It can be observed, that the official CT already pro-
vides strong results in killing the mutants. An average of around
92% of mutants across all nine mutation classes is killed. It takes
around four hours to process all mutants with CT. This corresponds
to around 6 seconds per mutation. Most of the time is spend in
executing the 48 tests one after another, which involves loading the
ELF test files as well as writing and comparing signature results files
and glue code written in Python. Though, performance optimiza-
tions would be possible in this area (for example by pre-loading
ELFs and signature files) when they become necessary.

While only around 8% of the mutants are not killed, careful anal-
ysis of these alive mutants revealed several interesting error classes
that are not detected by CT. We discuss them in the following:

(1) RISC-V provides three register-based shift operations SLL
(Shift Left Logical), SRL (Shift Right Logical) and SRA (Shift
Right Arithmetic). They shift the value of register RS1 by
the value of register RS2 and store the result in register RD.
According to the RISC-V specification, only the lower 5 bit
of the RS2 register should be used for shifting, i.e. the RS2
register is masked by 0b11111. However, changing the mask
to also use upper bits of RS2 for shifting is not detected by
CT. We observed similar problems on the immediate-based
shift instructions.

(2) RISC-V provides six branch instructions that perform a condi-
tional relative jump. The BEQ (Branch if registers are EQual)
instruction is not sufficiently tested by CT. Most of the muta-
tions that mask the branch immediate have not been found.
Even using a mask of 0b1111 on the branch immediate is not
detected. That means backward jumps are not tested (since
the above mutation cuts away the sign bit) and only very
small forward jumps (up to 2 instructions) are tested.

(3) Another interesting class of undetected mutations is mov-
ing the PC alignment check to the end of the jump instruc-
tion. The JAL (offset-based relative jump) and JALR (register-
based absolute jump) instructions store the return address

Table 1: Experiment results

Mutation Class #mutants
CT: Official CT: Spec-based Symbolic Execution

#killed runtime #alive #killed runtime #alive #killed runtime

M1: Mask Register 1395 1249 [89.5%] 8700s 146 79 [54.1%] 70216s 67 67 [100%] 5954s
M2: Mask Immediate 374 343 [91.7%] 2375s 31 4 [12.9%] 12536s 27 27 [100%] 2080s
M3: Replace Constant 27 23 [85.2%] 141s 4 4 [100%] 1926s 0 / /
M4: Replace Load / Store 26 26 [100%] 136s 0 / / 0 / /
M5: Replace Register 243 238 [97.9%] 1344s 5 3 [60.0%] 2609s 2 2 [100%] 149s
M6: Replace Immediate 96 95 [99.0%] 518s 1 0 [0%] 568s 1 1 [100%] 105s
M7: Replace Unary Operation 21 19 [90.5%] 169s 2 1 [50.0%] 1114s 1 1 [100%] 92s
M8: Replace Binary Operation 266 265 [99.6%] 1497s 1 0 [0%] 557s 1 1 [100%] 92s
M9: Move Trap Check 7 5 [71.4%] 36s 2 0 [0%] 1114s 2 2 [100%] 160s

Total 2455 2263 [92.2%] 14916s 192 91 [47.4%] 90640s 101 101 [100%] 8632s

into the RD register when performing the jump. However, in
case the jump address is misaligned, a trap is triggered and
no side effects should occur, i.e. RD should not be modified.
This common class of errors is not detected by CT.

(4) One more interesting undetected error is storing any wrong
return address for the JAL and JALR instruction.

The remaining alive mutants correspond to special computa-
tional cases such as masking specific bits from a register or imme-
diate. It certainly makes sense to strengthen the CT to kill them
as well, but they are less important compared to the above cases,
which have a much higher potential to find implementation bugs.

Specification-based CT. The specification-based CT contains ad-
ditional 8900 tests that cover a large set of different immediate and
register values as well as register access combinations for each in-
struction. Due to the large number of tests (and complex execution
infrastructure, which requires around 10 minutes to execute the
test-suite once), the processing time is very high with around 23
hours. This CT kills around half of the remaining 192 mutants. It
partly closes the gaps (1) and (2), but the gaps (3) and (4) as well as
the immediate-based shift problem from gap (1) still remain.

Mutation-based CT. Using our symbolic execution framework,
we are able to kill all remaining 101 mutants and close the gaps.
Thesemutants are not easy to kill, as they have remained undetected
by both CT test-suites. It takes around 2.5 hours in total (85 seconds
on average per mutant). Thus, we obtained a mutation-based CT
with 101 focused test-cases to further complement the existing CT
infrastructure. We cross-validated it on our reference ISS to ensure
that the 101 mutants are indeed killed.

Evaluation. Finally, we evaluated the complete CT infrastructure
on five RISC-V simulators: riscvOVPsim [7], SPIKE [12], VP [9],
GRIFT [5] and SAIL [11]:
• No mismatches were detected with the official CT.
• Using the specification-based CT, we detected a configura-
tion error in SAIL which causes it to execute RV32I compli-
ance tests with the C extension enabled.
• With our mutation-based CT we additionally found a bug in
GRIFT, where the JAL instruction has a side effect in updating
the RD register even though an unaligned instruction trap is

taken (gap 4). Furthermore, we spotted a potential overshift
condition in VP, which is based on undefined behavior in
C++ (gap 1).

6 DISCUSSION AND FUTUREWORK
Our mutation-based approach has been very effective in finding
several serious gaps in the official CT which can lead to common
implementation bugs that remain undetected by CT. We evaluated
our approach on a reference ISS and considered mutations in the
ISS execution unit for the base RV32I ISA. We envision several
directions for future work to extend, complement and further boost
our approach. We discuss them in the following.

One of the first steps would be to consider CSRs and additional
RISC-V extensions. By leveraging our existing mutation classes
and framework, it should be straightforward to integrate additional
RISC-V extensions with our approach. An interesting point in this
direction would also be to produce a minimized test-suite such that
all mutants are still killed. This would be particularly helpful with
additional RISC-V extensions, because the number of test-cases can
grow significantly with each extension (since all mutation classes
are applied in combination with the new instructions).

Another direction is to devise and evaluate the impact of even
stronger mutation classes, for example by considering multiple in-
stead of single mutations, on the obtained coverage with respect to
the CT and potential bugs found in RISC-V simulators. In this direc-
tion it would also be very helpful to optimize the symbolic encoding
and integration with the symbolic execution engine (angr here) as
well as the mutation generation and CT execution to facilitate fast
exploratory experiments with different mutation classes.

Some mutants cannot be killed in a platform independent way
because they for example rely on a very specific (hardcoded) mem-
ory address or PC value in order to trigger the mutation and the
compliance testing setup allows each RISC-V simulator to define its
own memory layout by providing a custom linker script (though
the existing set of supported simulators mostly use the same mem-
ory layout). For example a mutation in the memory access unit
might only trigger if the access address is below 0x1000. In case the
data memory is placed above this address, the mutation cannot be

triggered and thus cannot be killed. One way to tackle this prob-
lem in a platform independent way would be to leverage virtual
memory and thus setup (platform independent) virtual code and
data memory sections (per test-case) that re-map the (platform
dependent) physical memory sections as necessary. However, be-
side being more complex, this approach would require a simulator
with support for virtual memory (which is an advanced feature in
RISC-V and typically not available in base configurations).

In this work we focus on mutations in the execution unit. How-
ever, conceptually our approach can also supports different error
categories. One very interesting part would be to test the virtual
memory implementation (typically done by an MMU), since it re-
quires a significant amount of complex initializations. Besides set-
ting up the CSRs to activate virtual memory support, it is necessary
to setup appropriate page tables in memory. In addition, the page
tables need to be setup in a way to reach a very specific muta-
tion which makes it much more complex. Hence, it would be very
interesting to consider extensions in this direction to facilitate com-
prehensive and automated MMU testing.

An orthogonal direction would be to evaluate our mutation-
based approach on different reference simulators to access the
impact on the generated test-suite. Going further in this direction,
the next step would be to evaluate the generated test-suite on
RISC-V RTL cores. It would be interesting to see what kind of
bugs are detected at RTL and measure the obtained coverage. In a
final step, the mutation-based approach could be applied at RTL to
generate test-cases specifically tailored for an RTL core and evaluate
the results on different RTL cores.

Finally, it would also be very interesting to leverage a sym-
bolic execution framework, e.g. [24], to perform a (more general)
difference-based testing. The idea is to find test-cases that show
differences in behavior between different simulators. Such test-
cases are certainly interesting, since they pinpoint the RISC-V ISA
specification parts that are complex or unclearly formulated. The
reason is that two simulators implemented a feature differently and
hence disagree on the understanding of the specification in that
point (which should be highlighted by CT). Another argumenta-
tively similar direction is to perform a difference-based testing on
the same simulator but with different ISA configurations (since it
can pinpoint changes between two configurations which may be a
source for common bugs due to the high configurability of RISC-V).

7 CONCLUSION
We proposed a mutation-based approach to boost RISC-V com-
pliance testing and demonstrated its effectiveness. Based on our
mutation classes, we identified several serious gaps in the Compli-
ance Test-suite (CT) and generated new tests to strengthen the CT
by closing these gaps. Our approach has also been effective in find-
ing bugs in RISC-V simulators. Finally, we provided an extensive
discussion that sketched promising directions for future work.

ACKNOWLEDGMENTS
This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project VerSys under
contract no. 01IW19001 and within the project Scale4Edge under
contract no. 16ME0127.

REFERENCES
[1] 2017. RISC-V Torture Test Generator. https://github.com/ucb-bar/riscv-torture.
[2] 2019. The Challenge Of RISC-V Compliance. https://semiengineering.com/

toward-risc-v-compliance/.
[3] 2019. Imperas delivers highest quality RISC-V RV32I compliance test suites

to implementers and adopters of RISC-V. https://riscv.org/2019/11/imperas-
delivers-highest-quality-risc-v-rv32i-compliance-test-suites-to-implementers-
and-adopters-of-risc-v/.

[4] 2020. angr. https://angr.io/.
[5] 2020. GRIFT - Galois RISC-V ISA Formal Tools. https://github.com/GaloisInc/

grift.
[6] 2020. OneSpin 360 DV RISC-V Verification App. https://www.onespin.com/

solutions/risc-v.
[7] 2020. RISC-V Compliance Task Group. https://github.com/riscv/riscv-

compliance.
[8] 2020. RISC-V Formal Verification Framework. https://github.com/SymbioticEDA/

riscv-formal.
[9] 2020. RISC-V Virtual Prototype. https://github.com/agra-uni-bremen/riscv-vp.
[10] 2020. RISCV-DV. https://github.com/google/riscv-dv.
[11] 2020. RISCV Sail Model. https://github.com/rems-project/sail-riscv.
[12] 2020. Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim.
[13] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv. 2004.

Genesys-Pro: innovations in test program generation for functional processor
verification. D&T (2004), 84–93.

[14] Brian Campbell and Ian Stark. 2014. Randomised Testing of a Microprocessor
Model Using SMT-Solver State Generation. In Formal Methods for Industrial
Critical Systems, Frédéric Lang and Francesco Flammini (Eds.). 185–199.

[15] Mikhail Chupilko, Alexander Kamkin, Artem Kotsynyak, and Andrei Tatarnikov.
2017. MicroTESK: Specification-Based Tool for Constructing Test Program Gen-
erators. In HVC.

[16] S. Fine and A. Ziv. 2003. Coverage directed test generation for functional verifi-
cation using Bayesian networks. In DAC. 286–291.

[17] Mark Hampton and Stephane Petithomme. 2007. Leveraging a Commercial
Mutation Analysis Tool For Research. In MUTATION. 203–209.

[18] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Closing the RISC-V
Compliance Gap: Looking from the Negative Testing Side. In DAC.

[19] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Enhanced Virtual Proto-
typing: Featuring RISC-V Case Studies. Springer.

[20] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Towards Specification
and Testing of RISC-V ISA Compliance. In DATE. 995–998.

[21] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2018. Extensible
and Configurable RISC-V based Virtual Prototype. In FDL. 5–16.

[22] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2019. Verifying
Instruction Set Simulators using Coverage-guided Fuzzing. In DATE. 360–365.

[23] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. 2020. RISC-
V based Virtual Prototype: An Extensible and Configurable Platform for the
System-level. JSA (2020).

[24] Vladimir Herdt, Hoang M. Le, Daniel Große, and Rolf Drechsler. 2019. Verify-
ing SystemC using Intermediate Verification Language and Stateful Symbolic
Simulation. TCAD 38, 7 (2019), 1359–1372.

[25] Charalambos Ioannides, Geoff Barrett, and Kerstin Eder. 2011. Feedback-Based
Coverage Directed Test Generation: An Industrial Evaluation. In Hardware and
Software: Verification and Testing, Sharon Barner, Ian Harris, Daniel Kroening,
and Orna Raz (Eds.).

[26] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Trans. Softw. Eng. 37, 5 (Sept. 2011), 649âĂŞ678.

[27] Y. Katz, M. Rimon, and A. Ziv. 2012. Generating instruction streams using abstract
CSP. In DATE. 15–20.

[28] Lingyi Liu and Shobha Vasudevan. 2011. Efficient validation input generation in
RTL by hybridized source code analysis. In DATE. 1596–1601.

[29] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU Emulators. In ISSTA. 261–272.

[30] Youssef Serrestou, Vincent Beroulle, and Chantal Robach. 2007. Functional
Verification of RTL Designs Driven by Mutation Testing Metrics. In DSD. 222–
227.

[31] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. (2016).

[32] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA. SiFive Inc. and CS Division, EECS Department,
University of California, Berkeley.

[33] Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual;
Volume II: Privileged Architecture. SiFive Inc. and CS Division, EECS Department,
University of California, Berkeley.

[34] Tao Xie, Wolfgang Mueller, and Florian Letombe. 2012. Mutation-analysis driven
functional verification of a soft microprocessor. In SoC. 283–288.

https://github.com/ucb-bar/riscv-torture
https://semiengineering.com/toward-risc-v-compliance/
https://semiengineering.com/toward-risc-v-compliance/
https://angr.io/
https://github.com/GaloisInc/grift
https://github.com/GaloisInc/grift
https://www.onespin.com/solutions/risc-v
https://www.onespin.com/solutions/risc-v
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/google/riscv-dv
https://github.com/rems-project/sail-riscv
https://github.com/riscv/riscv-isa-sim

