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Should We Even Optimize for Execution Energy?
Rethinking Mapping for MAGIC Design Style
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Abstract—Memristor-based logic-in-memory (LiM) has be-
come popular as a means to overcome the von Neumann
bottleneck in traditional data-intensive computing. Recently, the
memristor-aided logic (MAGIC) design style has gained immense
traction for LiM due to its simplicity. However, understanding
the energy distribution during the design of logic operations
within the memristive memory is crucial in assessing such an
implementation’s significance. The current energy estimation
methods rely on coarse-grained techniques, which underestimate
the energy consumption of MAGIC-styled operations performed
on a memristor crossbar. To address this issue, we analyze
the energy breakdown in MAGIC operations and propose a
solution that utilizes mapping from the SIMPLER MAGIC tool
to achieve accurate energy estimation through SPICE simula-
tions. In contrast to existing research that primarily focuses
on optimizing execution energy, our findings reveal that the
memristor’s initialization energy in the MAGIC design style is,
on average, 68× higher. We demonstrate that this initialization
energy significantly dominates the overall energy consumption.
By highlighting this aspect, we aim to redirect the attention
of designers towards developing algorithms and strategies that
prioritize optimizations in initializations rather than execution
for more effective energy savings.

I. INTRODUCTION

COMPUTING-IN-MEMORY is one way of reducing the
impact of the von Neumann bottleneck. As a result,

digital logic-in-memory (LiM) has gained significant mo-
mentum recently. Memristive memories are seen as a viable
candidate for LiM. Memristors possess two distinctive states:
the high resistive state (HRS) and the low resistive state
(LRS), which are then mapped to boolean logic ’0’ and logic
’1’, respectively. These resistive states are the foundation for
designing Boolean logic gates within the memory. To model
the memristive behavior in SPICE, various model has been
proposed in the literature. The VTEAM model [1] is derived
from the derivative of the internal state variables. This model
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Fig. 1. MAGIC design style based (a) NOR gate, and (b) NOT gate

can accurately represent the switching characteristics observed
in memristor devices, making it a suitable choice for this study.

Numerous approaches have been proposed in the liter-
ature to implement logic gates using memristors, includ-
ing techniques such as memristor-aided logic (MAGIC) [2],
memristor-based material implication (IMPLY) [3], fast and
energy-efficient logic in memory (FELIX) [4], and majority
logic [5]. MAGIC has emerged as a widely adopted technique
among these approaches due to its superior energy efficiency
and latency performance [6].

MAGIC is a stateful logic technique to implement logic
operations using memristive devices, where inputs and out-
puts of logic operations are stored in the resistive states of
memristors. Fig. 1 visually represents the implementation of
MAGIC NOR (1a) and NOT (1b) gates using memristors.
An output memristor, Mout, is initialized to LRS, and it
changes the state from LRS to HRS based on the input state
stored in Min1 and Min2. NOR and NOT operations use
three (two input, one output) and two memristors (one input,
one output) in a single operation, respectively. The output of
these logic gates can be conveniently stored in a dedicated
output memristor without requiring any specific arrangement
in a crossbar, making this technique particularly suitable for
digital LiM applications. The state-of-the-art tool in this field,
known as the SIMPLER MAGIC [7], is designed explicitly
for synthesizing the MAGIC NOT and NOR operations into
a single-row memristor crossbar. Henceforth, we refer to
SIMPLER MAGIC as SIMPLER.

The utilization of the MAGIC design style and its map-
ping onto the crossbar has been suggested for creating an
in-memory general-purpose processing unit, mMPU [6]. As
this design style is rapidly gaining popularity in mainstream
computing, assessing the amount of energy consumed by
this technique is crucial. The current methods for calculating
energy consumption involve multiplying the average energy
used during an operation by the number of such operations
in an application, which is a highly coarse-grained approach
to determine the energy consumed by the MAGIC design
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Fig. 2. Methodology for generating a SPICE-level netlist and estimating
energy for any given workload.

style [8]. Surprisingly, despite its popularity, this methodology
falls short of providing accurate estimates of the energy
dissipated by an application since it does not account for the
energy consumed during initialization, reading, and loading
input patterns.

This letter shows a novel and accurate fine-grained method-
ology for energy calculation of LiM, where we break down the
energy consumption for the MAGIC design style. We generate
a SPICE-level netlist and testbench voltages for a given appli-
cation to find the accurate energy breakdown. Furthermore,
it provides fine-grained energy numbers by calculating the
energy consumed by each device in the crossbar, irrespective
of its contribution to the operation.
• Firstly, a fine-grained methodology for energy calculation

for MAGIC design style. (Section II)
• A detailed evaluation for energy consumption where each

device’s consumption is measured in a crossbar, irrespective
of its contribution to the operation. (Section III)

• Lastly, The discussion on approx. 70x average energy gap
for ISCAS’85 benchmarks when compared to the state-of-
the-art energy calculation methods. (Section IV and V)

II. METHODOLOGY
Overall energy calculation methodology comprises three

steps (see Fig.2): i) synthesis and crossbar mapping, ii) SPICE
netlist generation, and iii) testbench and energy and estimation.
A. Synthesis and Crossbar Mapping

We begin the process by synthesizing the Verilog design
using the ABC synthesis tool [9]. The ABC tool allows
to synthesis of any arbitrary logic function into NOR and
NOT logic gates as shown in Fig. 2 1 . Subsequently, the
NOR/NOT netlist serves as input for the SIMPLER mapping
tool, generating an optimal mapping for MAGIC design style
gates. Moreover, the SIMPLER mapping tool performs a
sequential mapping of the MAGIC NOT and NOR operations,
which require the utilization of three and two memristors on
the crossbar, respectively. Additionally, the SIMPLER tool
generates the necessary information, such as the required
number of cycles, input/output memristors, and other relevant
details specific to the application or benchmark, which are
then stored in a .json file. Listing 1 shows the .json of half
adder mapping on five memristors connected in a single row.
Moving forward, the .json file has been used to generate the
SPICE-level netlist and test vectors.
B. SPICE Netlist Generation

As shown in Fig. 2 2 , SPICE simulation takes input
from the synthesis and mapping block to generate the SPICE-
level netlist. In the SPICE simulation block, the test bench
containing voltage files and energy estimation scripts is also

Fig. 3. Implementation of a half adder using five memristors arranged in a
row, based on the mappings provided in Listing 1. The waveform configuration
involves a total of 7 execution cycles (T0-T6), including an initialization cycle
(T0), a reused cycle (T4), and a final read cycle (‘R’) to observe the output
states of each device.

created for accurate energy estimation. The critical infor-
mation is extracted from the crossbar mapping (.json) file.
This information includes the input and output data devices
and the execution sequences of NOR/NOT operations. Based
on the required number of memristors for the given set of
applications, the crossbar netlist is designed using the VTEAM
model as memristor devices. All operations are mapped to a
single row of the crossbar, where ‘n’ memristors are connected
to columns. A controllable switch connects the row of the
crossbar to the ground during the writing process while it re-
mains floating as a requirement for MAGIC execution. Consid-
ering all the relevant parameters, a spectre-compatible netlist
(.scs) is designed in the structure of a crossbar. Subsequently,
the crossbar SPICE netlist is encapsulated within a crossbar
symbol with dedicated input and output for benchmarking
purposes.

"Row size": 5,
"Number of Gates": 5,
"Inputs": "{A(0),B(1)}",
"Outputs": "{S(4),Cout(2)}",
"Reuse cycles": 1,
"Execution sequence": {
"T0": "Init{’D(2)’,’D(3)’,’D(4)’}",
"T1": "n5_(4)=inv1{A(0)}",
"T2": "n6_(3)=inv1{B(1)}",
"T3": "Cout(2)=nor2{n6_(3),n5_(4)}",
"T4": "Init{n5_(4),n6_(3)}",
"T5": "n8_(3)=nor2{B(1),A(0)}",
"T6": "S(4)=nor2{n8_(3),Cout(2)}"}

Listing 1. Mapping of a half adder onto five memristors in a row.

C. Testbench and Energy Estimation
To enable the operations in digital in-memory computing,

input voltages play a crucial role in configuring the function-
ality. Executing any arbitrary digital logic on the memristor
crossbar becomes possible by applying different voltage com-
binations with specific values to the rows and columns. In
digital LiM using memristors, there are five distinct voltage
levels required:
• Input Voltage: This voltage determines the resistances of

the memristors used as inputs. The input voltage is mapped
to 2.0V for storing ‘1’ (LRS) and 0.0V for HRS (by default,
the memristors are in HRS).
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• Read Voltage: Applied to read the state of the output
memristors after all operations have been performed. The
read voltage is relatively low, set at 0.2V in this case,
compared to the SET and RESET voltages. The read voltage
is chosen to ensure reliable read operations; however, there
is potential for reducing energy consumption by reducing
the read voltage.

• Initialization Voltage: The intermediate output memristors,
which store intermediate results, need to be initialized to
LRS before accurate operation. This voltage configures the
intermediate output memristors to LRS and is mapped to
2.0V for correct operation.

• Gate Voltage: During the execution cycle, only a few de-
vices are chosen for operation, while others in the crossbar
must be isolated. The gate voltage is used to select the
devices for operation. The gate voltage of the selected
devices is set to 2.0V (ON), while the others are kept
at 0V (OFF). This voltage ensures that the state of these
memristors remains unaltered during computation.

• Operation Voltage: During operation, a specific voltage
is applied to the memristors with input values to execute
MAGIC design style-based NOR and NOT operations. A
voltage of 1.0V is applied to one memristor during the
NOT operation and to two memristors during the NOR
operation. The intermediate output memristor is connected
to the ground.

The implementation of these voltage values involves the use
of a piece-wise linear voltage source. The determination of
specific voltage levels is based on a single execution cycle
provided in the .json file. Fig. 3 demonstrates the voltage
waveform explicitly designed for implementing an in-memory
half adder, as depicted in Listing 1. The SPICE-level netlist,
which incorporates the VTEAM memristor model (.va) and
the corresponding voltage sources, is compatible with Cadence
spectre simulation.

Energy Estimation: To accurately calculate the energy
consumption, we perform a simulation for the required du-
ration and generate a waveform file. The energy is calcu-
lated regardless of the device’s selection. The total energy
is determined using

∑n
i=0

∫ t

0
(Vi × Ii)dt, which sums up the

product of voltage and current over simulation time. Here, ‘n’

TABLE I
MAGIC NOR, NOT AND WRITE ENERGY ESTIMATION

NOR, NOT& Vin = 1.0@1.3 ns Vin = 1.0@1.3 ns
Write Operation DC source rise and fall time (1 ps)

NOR Energy (fJ) Energy (fJ)
00 → 1 8.6 8.6
01 → 0 89.53 87.96
10 → 0 89.53 87.96
11 → 0 32.48 30.48
Average 55.04 53.75

NOT Energy (fJ) Energy (fJ)
0 → 1 4.31 4.32
1 → 0 90.31 88.74

Average 47.31 46.53
Writing Energy (fJ) @1.0 ns Energy (fJ)

RESET → SET (2V) 75.56 1272.2
SET → RESET (1V) 17.66 19.01

represents the number of memristors, and ‘t’ corresponds to
the simulation time. The simulation time depends on the pulse
width and the total number of cycles necessary to complete the
benchmark. The given equation captures the activity on each
memristor irrespective of its use in the cycle, which includes
initialization, execution, and read energy.

This section provided a detailed discussion on netlist gener-
ation, testbench generation, and energy estimation techniques
for a specific benchmark. Furthermore, the simulated design is
evaluated using the described methodology to assess its energy
efficiency, and the results are further compared with state-of-
the-art methodologies.

III. EXPERIMENTAL RESULTS
The state-of-the-art methods used to calculate energy con-

sumption in MAGIC design style applications rely on a
coarse-grained approach, multiplying the average energy per
operation by the total number of operations in the application.
As discussed in [8], this approach does not accurately capture
the energy consumed by the MAGIC design style. Addition-
ally, existing literature often calculates energy by applying a
DC source for execution and measuring energy at the exact
switching point. However, a pulse is required for operation in
real implementations. In Table I, we compare the energy values
obtained from the literature with the energy values calculated
using our methodology. The results show that the execution
energy for both NOT and NOR implementations closely
matches the reported energy values in the literature [10].

In the MAGIC design style, energy consumption is predom-
inantly dominated by the writing phase. Table I demonstrates
that the writing process consumes 16.8× more energy during
SET operation than the reported energy values, considering
a pulse width of 1.3 ns and rise/fall times of 1 ps. Our
proposed methodology uses a pulse width of 1.3 ns for writing
since it is also the minimum required pulse width for correct
operations. We want to highlight that energy consumption
shoots up significantly if a larger pulse width is used. Due to
the memristor’s low resistance, it draws a significant current.
To simplify the design of peripherals, a single pulse width is
utilized, determined based on the worst-case pulse requirement
in design.

The overall energy results are shown in Table II. The first
and second columns have the benchmark suite’s names and
their respective benchmark circuits, respectively. The PI/PO
column gives the number of primary inputs and primary
outputs. The ‘Cycles’ column gives the number of cycles
required to obtain the final result for the given benchmark
circuit. The ‘NOR’ and the ‘NOT’ columns give the number
of the NOR and NOT operations, respectively. The energy
consumption using the current state-of-the-art method is shown
in the next column. In the last three columns, we show the
energy consumption of the various benchmark circuit using
three different input patterns, P1, P2, and P3, respectively. The
pattern P1 denotes all 0’s at the input, the pattern P2 denotes
all 1’s at the input, and the pattern P3 denotes alternating 1’s
and 0’s at the input. We now discuss the results in detail using
some examples from the benchmarks.

Fig. 4 illustrates the energy breakdown for the c3540
benchmark, with a focus on c3540 due to its larger size, which
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TABLE II
ENERGY CONSUMPTION RESULTS ON ISCAS’85 BENCHMARKS

Circuit PI/PO Cycles NOT NOR Energy (pJ) P1: Energy (pJ), Input; all 0 P2: Energy (pJ), Input; all 1 P3: Energy (pJ), Input; alt.
Literature [8], [10] Init Exe Read Init Exe Read Init Exe Read

c17 5/2 14 7 6 0.655 1161 0.674 11.55 1164 0.90 11.55 1162 0.75 11.56
c432 36/7 250 101 148 12.31 1142 15.23 9.73 1163 15.96 9.95 1153 14.92 10.04
c499 41/32 605 213 390 29.6 1790 30.85 6.23 1803 25.53 7.50 1788 28.45 6.73
c880 60/26 505 194 310 24.85 1819 22.91 7.25 1785 25.26 8.024 1779 24.76 7.504
c1908 33/25 571 210 359 27.99 1850 26.33 7.13 1814 22.95 7.701 1822 25.72 7.39
c3540 50/22 1397 465 928 68.18 2676 37.92 4.41 2474 37.51 5.41 2431 38.22 4.84

Fig. 4. Energy breakdown and execution time analysis for the c3540 bench-
mark, highlighting different energy consumption components. The zoomed-in
versions of the execution and read energy are highlighted in separate graphs.

requires more initialization compared to other benchmarks.
We see that the c3540 benchmark circuit from ISCAS 85
(Table II) has 50 inputs and 22 outputs. The number of cycles
required for the operation is 1397. The circuit consists of
465 NOT gates and 928 NOR gates. The current methods
that only evaluate the energy of the operation give 68.18 pJ
as the overall energy consumption. We obtained the energy
consumption with SPICE netlist for P1, P2, and P3 to be 2676
pJ, 2474 pJ, and 2431 pJ, respectively. The difference in the
energy consumption value is approx. 40× compared to the
current state of the art. The difference in energy consumption
compared to the state-of-the-art method is lower than the
c17 benchmark circuit as the design is larger than the entire
crossbar and reuses the crossbar to perform the operations.
The difference in the energy consumption between P1, P2,
and P3 highlights that the operation energy dominates the
initialization energy, and depending upon the input pattern,
different energy values will be obtained. This allows us to
capture the energy consumption of the design depending on
the input patterns.

The results for all the other benchmarks are shown in
Table II. The energy values obtained using our methodology
are very different than the ones obtained using the state-of-the-
art energy calculation methodology. On average, the energy
consumption of benchmark c432 to c3540 is 68× higher than
the energy values presented in the literature.

IV. DISCUSSION
Based on SPICE simulation results, the energy consumed

during logic implementation in memory is primarily domi-
nated by the initialization process, typically considered a one-
time energy consumption. However, in resource-constrained
implementations, the initialization energy becomes the domi-

nant factor. It may be argued that reducing the pulse width to-
wards the switching threshold can lower energy consumption.
Nevertheless, even in such cases, the re-initialization energy
will still dominate the overall energy consumption. We believe
that this insight can be incorporated while developing efficient
mapping algorithms, which is missing in the current works.

In conclusion, the initialization energy dominates the energy
consumption of a given benchmark. Secondly, the read energy
needs to be considered. Contrary to prior works, we saw that
execution energy is negligible as compared to initialization
and read energy. Since the majority of prior works focus on
reducing execution energy, we believe our work will pave the
way for further research to optimize mapping strategies that
prioritize initialization.

V. CONCLUSION
This work introduces a methodology for accurately calcu-

lating the fine-grained energy consumption of logic operations
in the MAGIC design style. Through SPICE simulation, we
demonstrate that initialization energy significantly dominates
the overall energy in MAGIC design style implementation,
accounting on average for 68× more energy consumption as
compared to presented state-of-the-art energy values. These
findings emphasize the need for researchers to prioritize the
optimization of initialization rather than execution. In future
studies, we aim to develop mapping techniques further to
optimize energy consumption in the MAGIC design style.
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