
Polynomial Formal Verification
of Sequential Circuits

Caroline Dominik

Institute of Computer Science
University of Bremen/DFKI
28359 Bremen, Germany
cardom@uni-bremen.de

Rolf Drechsler

Institute of Computer Science
University of Bremen/DFKI
28359 Bremen, Germany
drechsler@uni-bremen.de

Abstract—Recently, the concept of Polynomial Formal Verifi-
cation (PFV) has been introduced and successfully applied to
several classes of functions, allowing complete verification under
resource constraints. But so far, all studies were carried out for
combinational circuits only.

In this paper we show how the concept of PFV can be extended
to sequential circuits. As a first case study we show for counters
that PFV can be performed, even though they have an exponential
number of states, i.e., they can be fully formally verified within
polynomial upper bounds on run-time and memory requirement.

Index Terms—circuit design, correctness, verification, test,
formal methods, BDD

I. INTRODUCTION

With the invention of the transistor back in 1947, the
cornerstone for the digital revolution was laid. As a fundamen-
tal building block, the transistor enabled the development of
digital circuits. Their mass production revolutionized the field
of electronics, finally leading to computers, embedded systems,
as well as the internet. Hence, the impact of digital hardware
on society, as well as economy, was and is tremendous.

Over the last decades, the enormous growth of complexity of
integrated circuits continued as expected. As modern electronic
devices are getting more and more ubiquitous, the fundamental
issue of functional correctness becomes more important than
ever. This is evidenced by many publicly known examples of
electronic failures with disastrous consequences. Within the
last decades, this included e.g. the Intel Pentium bug in 1994
(costs: $475 million), New York blackout in 2003 (estimated
costs: $1.1 billion), or a design flaw in Intel’s Sandy bridge
chipset in 2011 (costs: $1 billion).

Such costly mistakes can only be prevented by applying rig-
orous verification to the circuits before they get to production.
A lot of effort has been put into developing efficient verifica-
tion techniques by both academic and industrial research. Only
recently, the industry has recognized the great importance of
automated formal verification (see e.g. functional safety stan-
dards such as ISO 26262). Without interaction of a user being
necessary, the formal methods can be applied at a larger scale.
Hence, in the last few years, this research area has become
increasingly active. Essentially, the goal of automated formal

Parts of this work have been supported by DFG within the Reinhart
Koselleck Project PolyVer: Polynomial Verification of Electronic Circuits
(DR287/36-1).

verification is to automatically prove that an implementation is
correct with respect to its specification. Depending on what an
implementation is and what a specification comprises, different
verification problems arise.

Unfortunately, most of the verification problems encoun-
tered in the domain of electronic circuits are computationally
intractable. Consider for example the two following core
problems: Combinational Equivalence Checking (CEC) and
Symbolic Reachability Analysis (SRA).

1) CEC involves checking the equivalence of two combi-
national circuits (i.e. without memory elements), where
one circuit acts as the specification and the other (often
an optimized version) is the implementation [1]. CEC
is coNP-complete via reduction to tautology checking
using a miter circuit.

2) SRA computes the set of reachable states from a set
of initial states and is fundamental to temporal logic
model checking, which checks whether a Boolean or
word-level sequential circuit implementation satisfies a
temporal logic specification. In SRA, sequential behavior
is viewed as a transaction system and symbolically
encoded by logic formulas providing a very succinct
representation. SRA is computationally even harder than
CEC: the Boolean case is PSPACE-complete and word-
level SRA is EXPSPACE-complete [2].

In practice, the most efficient techniques reduce formal
verification to a single, or a series of, decision problem(s)
in propositional logic. There are two main approaches of
decision procedures for propositional logic. The first is based
on converting the problem into a functionally canonical form.
The most prominent example is a Binary Decision Diagram
(BDD) [3]. The second is an intelligent systematic search
for a satisfying assignment employed by modern satisfiability
(SAT) solvers [4]. It is obviously unavoidable that the decision
procedures also have very high complexity. SAT was the first
problem shown to be NP-complete [5]. The construction of
BDDs is #P-complete via reduction to propositional model
counting (#SAT) and problems in the #P-complete class are
widely believed to be harder than NP-complete.

Thus, all these approaches suffer from the problem, that a
guarantee for the feasibility of a verification within the given
resources cannot be given. Or, stated differently, the required

resources are unknown. This also includes, that no prediction
about the performance of the algorithms is possible.

The concept of Polynomial Formal Verification (PFV) has
been recently presented in the context of combinational circuits
(see [6], [7]) and will be reviewed in the next section. The core
idea is to provide polynomial upper bounds for the space and
time complexity of the verification algorithms. This can be
ensured by varying the proof engine and focusing on specific
classes of functions. While studies for combinational circuits
have been provided, this paper is the first to focus on handling
sequential circuits. We show, that model checking can be
modified, so that it is possible to fully verify some sequential
circuits efficiently, even if the underlying Finite State Machine
(FSM) has an exponential sequential depth. In a case study,
counters, as well as Serial In Serial Out (SISO) shift registers
are studied and it is shown that they can be polynomially
verified.

The paper is structured as follows: At first, the idea of
PFV is explained in more detail in Section II. There, prior
achievements for combinational circuits are reviewed and
the difficulties of applying PFV to sequential circuits are
discussed. The case study is covered in Section III, including
an experimental analysis, and in Section IV the results are
summarized and future directions are given.

II. POLYNOMIAL FORMAL VERIFICATION

Since the introduction of formal proof techniques in the
context of circuit verification, it has been observed that they
might become expensive in terms of run-time and space
requirement. For instance, in [3] it was already observed that
BDDs are not well suited for representing multiplier functions.

While various results on sizes of the final representation
have been derived (see [8] for an overview), to ensure effi-
ciency, the complete verification task has to be considered
as well. A trivial example is, that the BDD of the output of
a miter circuit for a correct CEC is only the constant 0 node,
while the memory for intermediate computations might be very
large. In general, this observation is not new (see e.g. [9]),
but in the following, it is researched how these intermediate
memory peaks can be avoided.

A. Combinational Circuits

So far, there have been several successful examples for PFV
of combinational circuits. In [10], polynomial time and space
complexities for the verification of floating point adders are
achieved. The explosive growth of BDDs during the symbolic
simulation of the circuit is prevented by adding a problem-
specific case splitting. Furthermore, [11] shows PFV for a very
simple RISC-V processor proposed in [12]. With a divide-
and-conquer approach, each instruction is viewed separately,
so that all functional units can be verified with polynomial
resources. In [13], PFV is applied to an ALU of a RISC-V
processor with an extended instruction set. With a hybrid proof
engine, the suitability of BDD-level methods for adder circuits
and the suitability of word-level methods for multipliers can
be combined to efficiently verify the entire ALU. While the
so far mentioned proofs for PFV have all been conducted

manually, [14] discusses the automatic creation of human-
readable proofs for PFV. As an example, automatic proofs by
induction are created for polynomial upper bounds for the size
of a given BDD.

B. Sequential Circuits

The methods for sequential verification have not yet been
thoroughly analyzed with respect to PFV. The already men-
tioned approach of [11] addresses the sequential behavior of
a multi-cycle RISC-V processor by simulating the circuit over
several clock cycles. This technique allows a combinational
approach to the sequential behavior, but limits PFV to circuits
with small sequential depth.

In the sequential domain, different scenarios can be consid-
ered:

1) Analogously to CEC, with Sequential Equivalence
Checking (SEC), the behavior of two sequential circuits
can be compared. If SEC is carried out based on a
miter circuit, the equality has to hold for any sequence
of inputs, which increases the computational complexity
compared to CEC. This miter circuit can be modeled by
an FSM and analyzed with SRA, to ensure that no state
exists, which is only reachable by one of the two circuits.
Therefore, SEC is a special case of model checking.

2) The more general case of model checking is to analyze
the FSM of only one circuit, to make sure all required
temporal properties hold. As already mentioned, decid-
ing if a property holds is most efficiently done based on
either BDDs or SAT.

a) By symbolically representing the model and sets
of states with BDDs, it is possible to significantly
increase the state space of a system, to which model
checking can be applied.

b) On the other hand, bounded model checking (see
Chapter 10 of [15]) unrolls the FSM for some k
steps and in that way transforms the sequential
problem to a combinational problem, which can
be expressed by a SAT-formula. This is possible
if the sequential depth of the underlying FSM is
tractable, e.g. if the sequential behavior is due to a
pipeline with a small number of stages.

However, PFV must fail for these scenarios with circuits
that have an exponential sequential depth. It is easy to see
that e.g. for an n-bit counter, which counts up to 2n, based
on these methods, an exponential run-time cannot be avoided.
Other approaches have to be considered, like covering the
exponential state space by an induction proof, which can be
extended by generating additional invariants, or reducing the
state space with partial order reduction (see Chapter 6 of [15]).
However, these methods require a separate view of each circuit.

In this paper, we therefore focus on modifying BDD-based
symbolic model checking, so that the underlying algorithm
remains polynomial even if the circuit has an exponential
sequential depth.

III. CASE STUDY: COUNTERS & SISO SHIFT REGISTERS

We start with an overview of the used concepts, to make
this paper self-contained.

A. Notation and definition

1) Binary Decision Diagrams: A BDD [3] is a directed,
acyclic graph, that represents a Boolean function f : Bn → B.
Each internal node represents a variable xi with 0 ≤ i < n and
carries out the Shannon decomposition f = xif |xi

+ xif |xi
.

Here, f |xi
denotes the restriction of f by assigning xi = 1,

whereas f |xi
denotes the restriction by xi = 0. Each path

describes an assignment of variables, the terminal nodes with
values 0 or 1 give the value, which f evaluates to for the
given assignment (see e.g. Fig. 1). The BDD is ordered if all
variables follow a given order {x0, x1, . . . , xn−1}. The BDD
is reduced if all isomorphic subgraphs and redundant nodes
are removed. For this paper, we assume that all BDDs are
reduced and ordered. The size |G| of a BDD G is given by
the number of internal nodes. BDDs can be manipulated with
several operators. With Apply(op,G,H) two BDDs G and
H are combined by a binary operation op. In this paper, the
operations conjunction ”G∧H” and disjunction ”G∨H” are
used. The number of necessary steps and the size of the result
are both in O(|G| · |H|). Computing the restriction G|xi=l has
a run-time in O(|G|). Using both of these operators, existential
abstraction ∃xif := f |xi ∨ f |xi can be implemented.

2) BDD-based Symbolic Model Checking: Model checking
(see Chapter 8 of [15] for more details) is a formal method
to verify the temporal behavior of a system. This behavior is
given as a formal model, e.g. an FSM, which can be defined
by a set of states S, a set of initial states I ∈ S and a transition
relation T ⊆ S×S. T and each set of states are symbolically
represented with BDDs. The model is verified using SRA for
the initial states I . The algorithm starts with a set of reachable
states Sr = ∅ and a frontier set of states reachable within one
step F = I . Recursively, Sr is updated by Sr := Sr∨F and the
new frontier F := image(F, T)∧Sr is computed, until F = ∅
signals that no new states are reachable. Each image compu-
tation image(F, T) := rename(∃S(F ∧ T)) gives the set of
successors of F . Here, the set S = {s0, . . . , sn−1} denotes the
current state variables, whereas S′ = {s′0, . . . , s′n−1} denotes
the successor state variables. ∃S stands for the recursive
computation of ∃si(∃S) for all si in S (in the order given by
the variable order) until S is the empty set. rename exchanges
each s′i with the according si. This algorithm is limited by a
possible state space explosion.

3) Circuits: We analyze several simple sequential, syn-
chronous circuits which are defined as follows: A full n-bit
counter ”FCn” consists of n flip-flops which initially are all
set to 0. With each clock signal, the counter counts up by 1 in
binary. Once it reaches the value 2n − 1, the next clock cycle
resets all flip-flops to 0. An n-bit modulo-m counter ”MmCn”
analogously counts up to m − 1 for some 0 < m ≤ 2n. It
resets to 0 after reaching m − 1, to start counting again. In
the same manner, it resets to 0 for all remaining values v with
m ≤ v < 2n. An n-bit SISO shift register ”SISOn” consists

Fig. 1: BDD for the transition relation of a FC4.

of n flip-flops ff0, . . . , ffn−1 and a data input d0. With each
clock signal, the value of each ffi is shifted to ffi+1 and ff0
takes the value of d0. These circuits are given as FSMs, a state
s is encoded by si := ffi where si is the i-th variable of s.
Input bits can be seen as labels of the transitions, in the BDD
of T each input bit is treated as an additional current state
variable, so that for k input bits and n flip-flops the current
state is a tuple (d, s) := d0, . . . dk−1, ff0, . . . ffn−1. The
transitions then are described by a function f : Bk+n → Bn.

B. Theoretical analysis: Size of the transition relation
The size of the BDD T is central to the resource demands

of SRA. Therefore, we first show that |T | has a linear upper
bound for the chosen circuits with a pair-wise variable order.

Lemma III.1. Let BDD T describe the transition relation
of a full n-bit counter with the pair-wise variable order
{s0, s′0, s1, s′1, . . . , sn−1, s

′
n−1}. Then |T | ≤ 5 · n holds.

Proof. Consider the variables of a state s from the Least
Significant Bit (LSB) s0 to the Most Significant Bit (MSB)
sn−1. During counting, they can be divided into two phases:

1) The counting affects the variable (the value is flipped).
2) The counting does not affect the variable anymore (the

value is kept).
Therefore, the values of each pair of variables (si, s′i) strongly
depend on each other and further depend on the phase of
the previous variables. T describes flipping the value during
Phase 1 with sis

′
i+sis

′
i. Note, that sis′i describes the transition

from Phase 1 to Phase 2. T describes keeping the value during
Phase 2 with sis

′
i + sis

′
i. Hence, T has at most five nodes for

each pair and overall at most 5 · n nodes.

Example III.1. The BDD for a full 4-bit counter can be seen
in Fig. 1. The leftmost path describes Phase 1, the remaining

nodes describe Phase 2 of the proof of Lemma III.1. It can be
observed, that each value is flipped during Phase 1. Phase 1
continues for a flip from 1 to 0. However, flipping from 0 to 1
transitions into Phase 2, where each value is kept.

Lemma III.2. Let BDD T describe the transition relation of
an n-bit modulo-m counter with the variables ordered as re-
versed pairs {sn−1, s

′
n−1, sn, s

′
n, . . . , s0, s

′
0}. Then |T | ≤ 10·n

holds.

Proof. Here, each si is viewed from MSB sn−1 to LSB s0.
As in the proof of Lemma III.1, the variables of a pair (si, s′i)
depend on each other and on the previous phase. In this case,
however, the counter resets for several states. Therefore, T
additionally differentiates between counting up and resetting.
The phases for counting are:

1) The counting does not affect the variable yet (the value
is kept).

2) The counting affects the variable (the value is flipped).
Phase 2 is again described by sis

′
i + sis

′
i and Phase 1 by

sis
′
i + sis

′
i with sis

′
i being the transition from Phase 1 to

Phase 2. Analogously, this needs at most five nodes. For the
reset, any value is flipped to 0. This is described as (si+si)s

′
i

with one node. Further, T separates counting and resetting
by storing the maximum value m − 1. During Phase 1 of
counting, an additional path describes all values v with a
similar beginning to m − 1 but v ̸= m − 1. For each si,
exclusively only the value is kept, which si has in m−1. This
is either sis

′
i or sis

′
i, which needs two nodes. These nodes

cannot be combined with the nodes for Phase 1, because this
beginning cannot be followed by any value during counting.
Analogously, two additional nodes describe the reset of only
this value to 0. Hence, at most ten nodes are used per si and
overall at most 10 ·n nodes are used in T . Note, that reversing
the pair-wise ordering separates counting and resetting more
clearly. Otherwise, T needs an extra node to decide if a flip
of 1 to 0 belongs to counting or resetting.

Example III.2. The maximum value of a 4-bit modulo-15
counter in binary is 1110. As the counter counts up, keeping
the value s2 = 1 during Phase 1 of the proof of Lemma III.2
can have two meanings: If s3 = 0 is kept as well, the counter
is not yet close to the maximum value. However, if s3 = 1 is
kept, s1 = 1 cannot be kept as well, because then 1111 would
be reachable. Therefore, T has two separate paths for those
meanings.

Lemma III.3. Let BDD T describe the transition relation of
an n-bit SISO shift register with the pair-wise variable order
{d0, s′0, s0, s′1, s1, s′2, . . . , sn−2, s

′
n−1, sn−1}. Then |T | = 3 ·n.

Proof. The only dependencies are s′0 = d0 and s′i+1 = si for
0 ≤ i < n−1. This gives d0s′0+d0s

′
0 for the pair (d0, s′0) and

sis
′
i+1 + sis

′
i+1 for each pair (si, s′i+1). T always needs three

nodes for this. The value of sn−1 is shifted out of the circuit
and needs no nodes. Hence, T consists of 3 · n nodes.

Example III.3. The BDD for a 3-bit SISO shift register can
be seen in Fig. 2.

Fig. 2: BDD for the transition relation of a SISO3.

C. Theoretical analysis: Restricted Domain Model Checking

We now analyze the resource demands of SRA for the
considered circuits. Typically, SRA has a single initial state
and exhaustively calculates a frontier set until it is empty.
To obtain polynomial upper bounds even for circuits with an
exponential sequential depth, we introduce a new variant of
model checking, which we call Restricted Domain Model
Checking (RDMC) in the following. For RDMC, we use
several sets of initial states I and only compute the image
image(I, T) once for each set. For a circuit with k input bits,
n flip-flops and transitions described by f : Bk+n → Bn,
each of those sets I is obtained by restricting the domain of
f dom(f) by assigning one variable first to 1 and then to 0.
For each input variable di with 0 ≤ i < k, this gives the two
initial state sets dom(f)|di

and dom(f)|di
. The sets for each

state variable sj with 0 ≤ j < n are accordingly dom(f)|sj
and dom(f)|sj . The set of all initial state sets is called I. That
way, the set based image computation is executed 2 · (k + n)
times. The reached states of a single initial state a ∈ Bk+n

are given by
⋂

{I|I∈I∧a∈I} image(I, T).

Example III.4. RDMC of a full 3-bit counter is described
in Table I. In the first column, the state bits s0, s1 and s2
are each first restricted by 0 and then by 1. The second
column shows the sets of initial states I given by these
restrictions. The results per image computation are in the
third column. To verify, for example, that only state 3 can
be reached by state 2, the initial sets dom(f)|s2 , dom(f)|s1
and dom(f)|s0 are relevant, because they contain state 2.
The according results are shown in bold, their intersection
is {1, 2, 3, 4} ∩ {3, 4, 7, 0} ∩ {1, 3, 5, 7} = {3}.

Remark III.1. RDMC is possible, if the final intersection gives
exactly one reachable state per initial state a ∈ Bk+n.

Example III.5. Table I shows RDMC of a 3-bit modulo-5
counter and a 2-bit shift register. For both, the final results
of all single initial states are single values. It also shows a

TABLE I: EXAMPLES OF RDMC WITH 3 BITS.

dj or si I ∈ I image(I, T)
FC3 M5C3 M6C3 SISO2

d0 or s2 {0,1,2,3} {1,2,3,4} {1,2,3,4} {1,2,3,4} {0,1}
d0 or s2 {4,5,6,7} {5,6,7,0} {0} {5,0} {2,3}

s1 {0,1,4,5} {1,2,5,6} {1,2,0} {1,2,5,0} {0,2}
s1 {2,3,6,7} {3,4,7,0} {3,4,0} {3,4,0} {1,3}

s0 {0,2,4,6} {1,3,5,7} {1,3,0} {1,3,5,0} {0,1,2,3}
s0 {1,3,5,7} {2,4,6,0} {2,4,0} {2,4,0} {0,1,2,3}

3-bit modulo-6 counter, where the final intersection for 4 gives
{5, 0} (the according result sets are in bold).

It is necessary to analyze for which circuits RDMC is
applicable. It is apparent, that RDMC is possible for cir-
cuits with a bijective transition relation such as any full n-
bit counter. However, the class of circuits can be extended,
because this model checking variant has distinct results for
any n-bit SISO shift register and for n-bit modulo-m counters
with m = 2n − 2c + 1 for 0 ≤ c ≤ n as well.

Definition III.1. A restriction set R is a set of assignments
{x0 = l0, x1 = l1, . . . } with l0, l1 ∈ {0, 1}. Then f |R and B|R
denote a Boolean function f and a set of Boolean variables
B restricted by assignments x0 = l0, x1 = l1,

Definition III.2. A function f : Bs → Bn is injective on
restricted subsets if a partition of dom(f) by restriction sets
R0, R1, . . . exists, so that for each b ∈ range(f) there is a
Bs|Ri with ∀a ∈ Bs : f(a) = b ⇐⇒ a ∈ Bs|Ri . That
way, each Bs|Ri

contains all values of dom(f) with a similar
image and the function mapping each Bs|Ri

to this image is
injective.

Example III.6. The function for the state transitions of a 3-
bit modulo-5 counter can be partitioned by restriction sets
{s2s1s0}, {s2s1s0}, {s2s1s0}, {s2s1s0}, {s2}. Such a parti-
tioning is only possible, because the modulo value is according
to m = 2n − 2c + 1 with c = 2. No restriction sets can be
found for the 3-bit modulo-6 counter of Example III.5.

Theorem III.1. Let function f : Bk+n → Bn describe the
state transitions of a circuit with n flip-flops and k input bits.
RDMC can ensure the correct behavior of this circuit, if f is
injective on restricted subsets.

Proof. To ensure the correctness of the circuit, the equation

∀a ∈ Bk+n :
⋂

{I|I∈I∧a∈I}

image(I, T) = {image(a, T)} (1)

must hold. The equality ”=” holds if both ”⊇” and ”⊆” hold:
”⊇”: Because ∀a ∈ Bk+n :

⋂
{I|I∈I∧a∈I} I = {a} holds.

”⊆”: This would not hold, if there is a b ∈ Bn with f(a) ̸= b
and each I ∈ I with a ∈ I contains at least one value c ∈
Bk+n with f(c) = b. However, as f is injective on restricted
subsets, restriction sets R0 for f(a) and R1 for b with R0 ̸= R1

must exist. Therefore, there has to be at least one variable di
(or sj), that R0 and R1 assign differently, which implies that
the initial state sets dom(f)|di

or dom(f)|di
contain a and no

value c with the image b.

We now analyze the resource demands of RDMC using the
results about |T | of each viewed circuit.

Theorem III.2. The time and space demands of RDMC of a
full n-bit counter with variables ordered as pairs are in O(n2)
and O(n), respectively.

Proof. The circuit has n flip-flops and a transition relation T .
For SRA, image(I, T) := rename(∃S(I∧T)) is executed 2·n
times with I ∈ I. Each execution consists of three operations:

1) I ∧ T : As stated in Section III-A1, the run-time has to
be in O(|T | · |I|). I always consists of exactly one node,
therefore, applying the conjunction takes O(|T |) steps.

2) ∃S for current state variables S: Recursively compute
∃si(∃S T) for all si in S. As said in Section III-A1,
∃sif := f |si ∨ f |si and the run-time for restriction is
linear in the number of nodes in the BDD. Since the
result of Step 1 is used, the number of steps is again
in O(|T |). The number of steps for the disjunction is
accordingly in O(|T |2). This holds for each recursion,
because the size of the result of each recursion is in
O(|T |). Applying ∃siT can only increase the BDD
size, if si divides two groups of variables, that are
functionally independent from each other without si and
the variable order does not separate the variables of both
groups. Because the variables in S are removed along the
variable order, each existential quantification is applied
to a subgraph of T . Here, no variable in T can separate
the functional dependencies like this.

3) Rename each s′i to si: Simultaneous substitution can be
done by traversing the results of Step 2 once and building
the resulting BDD according to each node. This is in
O(|T |) because the final result of Step 2 is used.

Hence, the overall number of steps is in O(|T |2).
The size of all BDDs created during SRA is in O(|T |). Per
execution, T and at most three more BDDs during Step 2 are
used in parallel. Only the final result is kept, of which there
are at most 2 · n. The space demands are therefore in O(|T |).
Using Lemma III.1, III.2 and III.3, the overall time and space
demands are in O(n2) and O(n).

Theorem III.3. The time and space demands of RDMC of an
n-bit modulo-m counter with m = 2n − 2c +1 for 0 ≤ c ≤ n
and a variable order as reversed pairs are in O(n2) and O(n).
Proof. This is analogous to the proof of Theorem III.2.

Theorem III.4. The time and space demands of RDMC of an
n-bit SISO shift register with variables ordered as pairs are
in O(n2) and O(n).

Proof. This is analogous to the proof of Theorem III.2.
These results regarding SRA of the considered circuits

enable the use of SEC with polynomial resources. Compar-
ing the results of two circuits for each of the 2 · (n + k)
executions remains polynomial, because BDDs are canonical.
Analogously, property checking or a comparison to a given
specification of results for the SRA can be done polynomially,
as long as each specification is given with respect to the
2 · (n+ k) initial sets instead of each single state.

Fig. 3: Maximum BDD size during RDMC for different n.

D. Experimental study

To verify the theoretical results, RDMC has been imple-
mented in C++. CUDD [16] was used for BDD operations. The
setup has a 3.6 GHz AMD Ryzen 5 CPU and 16 GB RAM.
SRA was computed for the considered circuits for different
number of flip-flops n with 0 ≤ n ≤ 400. For modulo-m
counters the values m = 2n − 2c + 1 and c ∈ {1, 2} were
used. The maximum size of BDDs computed during RDMC
is shown in Fig. 3. The upper limits for the size of each
transition relation T given by Lemma III.1, III.2 and III.3 are
marked by grey lines. As expected, no BDDs bigger than this
upper limit are created. The limit is less accurate for n-bit
modulo-m counters, because the maximum number of nodes
is not necessary for all variables. Fig. 4 shows the run-time of
RDMC. To compare the run-time to O(|T |2), for each type of
circuit the function a·|T |2 was added as a solid, grey line, with
|T | being the according upper limit. A small factor a << 1
adjusts the scale of |T |2 to the scale of seconds. The measured
run-times are close to these grey lines, which demonstrates
that the time complexity is polynomial and not exponential
with respect to |T |. Fig. 4 further shows the run-time of
standard symbolic model checking for the same testcases
(marked with ”SMC”). This grows exponentially with respect
to |T | for counters and exceeds 10 minutes for n = 27 with
full counters and n = 25 with modulo counters. Additional
BDD optimizations could not significantly improve these run-
times, because the number of needed steps would still grow
exponentially. While the run-time for the SISO shift registers
is significantly shorter compared to RDMC, this testcase still
showed how RDMC can be applied to circuits with inputs.

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper takes a first step to extend PFV towards circuits
with sequential behavior. The current achievements in the
area of PFV for combinational circuits were reviewed and
the challenges of sequential verification were discussed. With
RDMC, we introduced a variant of model checking, with
which a polynomial run-time, in spite of exponential sequential
depth, is possible. This was applied to counters, as well as to
SISO shift registers.

After this first application of PFV to sequential circuits,
deeper research in that area is necessary. This includes an-
alyzing more circuits, as well as other methods. As already
mentioned, sequential circuits with exponential depth could
alternatively be addressed with partial order reduction or

Fig. 4: Run-time during model checking for different n.

inductive proofs. The automatic generation of proofs for PFV
of sequential behavior is of interest as well, as suggested
in [14] for the combinational case.

REFERENCES

[1] D. Brand, “Verification of large synthesized designs,” in ICCAD, 1993,
pp. 534–537.

[2] G. Kovásznai, H. Veith, A. Fröhlich, and A. Biere, “On the complexity
of symbolic verification and decision problems in bit-vector logic,” in
Mathematical Foundations of Computer Science, 2014, pp. 481–492.

[3] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[4] A. Biere, M. Heule, H. V. Maaren, and T. Walsh, Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[5] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing,
1971, p. 151–158.

[6] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in DDECS, 2021, pp. 99–104.

[7] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensuring
correctness under resource constraints,” in ICCAD, 2022, pp. 1–9.

[8] I. Wegener, Branching Programs and Binary Decision Diagrams -
Theory and Applications. SIAM Monographs on Discrete Mathematics
and Applications, 2000.

[9] J. Jain, A. Narayan, A. Sangiovanni-Vincentelli, C. Coelho, R. K.
Brayton, S. P. Khatri, and M. Fujita, “Decomposition techniques for
efficient ROBDD construction,” in FMCAD, 1996, pp. 419–434.

[10] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Polynomial formal
verification of floating point adders,” in DATE, 2023, pp. 1–2.

[11] L. Weingarten, K. Datta, A. Kole, and R. Drechsler, “Complete and
efficient verification for a RISC-V processor using formal verification,”
in DATE, 2024.

[12] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The MicroRV32 frame-
work: An accessible and configurable open source RISC-V cross-level
platform for education and research,” Journal of Systems Architecture -
Embedded Software Design (JSA), vol. 133, pp. 1–12, 2022.

[13] R. Drechsler and A. Mahzoon, “Divide and verify: Using a divide-and-
conquer strategy for polynomial formal verification of complex circuits,”
in DATE, 2023, pp. 1–2.

[14] R. Drechsler and M. Schnieber, “Next-generation automatic human-
readable proofs enabling polynomial formal verification,” in MEM-
OCODE, 2023, pp. 122–125.

[15] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
Model Checking. Springer Cham, 2018.

[16] F. Somenzi, “CUDD: CU decision diagram package release 2.5.1,”
2015. [Online]. Available: https://github.com/ivmai/cudd

