Complete and Efficient Verification for a RISC-V
Processor using Formal Verification

Lennart Weingarten Kamalika Datta
Institute of Computer Science
University of Bremen
Bremen, Germany

len_wei@uni-bremen.de

University of Bremen/DFKI
Bremen, Germany
kdatta@uni-bremen.de

Abstract—Formal verification techniques are computationally
complex and the exact time and space complexities are in
general not known, which makes the performance of the process
unpredictable. Some of the recent works have shown that it is
possible to carry out formal verification with polynomial time
and space complexities for specific designs like arithmetic circuits.
However, the methodology used cannot be directly extended
to complex designs like processors. A recent work has shown
polynomial verification of a single-cycle RISC-V processor with
limited functionality, which considers only the combinational parts
of the ALU. In this paper we propose for the first time a complete
verification approach that covers all the functional units of the
processor, and at the same time considers its sequential behavior.
Experimental results show that the verification can be carried out
in polynomial time, and also demonstrate significant improvement
over previous methods.

Index Terms—Polynomial Formal Verification (PFV), RISC-V,
Multi-Cycle, BDD

1. INTRODUCTION

The high design complexity of modern-day processors makes
the resulting circuits error-prone, which makes it very important
to ensure design correctness before manufacturing. Previous
efforts towards processor verification mainly rely on high-level
fault models and simulation-based design verification. How-
ever, in recent times, formal methods for processor verification
are being investigated, e.g. methods based on theorem proving,
equivalence checking and model checking [1], [2]. Although
these approaches guarantee completeness in verification, their
time and space complexities remain uncertain.

The process of verification is typically evaluated in terms
of space and time complexities. It is possible to verify larger
circuit instances, if the complexity is a polynomial function
of the circuit size n. In this regard the Polynomial Formal
Verification (PFV) [3], [4] of circuits have drawn attention of
researchers. The goal of PFV is to attain an upper bound for
the time and space complexity for a given function for the
verification process. Not all designs may result in achieving a
polynomial upper bound.

To this end a number of works have been reported re-
cently [4]-[8]. A recent work [9] proposed a PFV method to
verify a single-cycle processor implementation for a limited set
of RISC-V instructions. Here only combinational circuit blocks
in the functional units are considered for verification. Although
this method can be considered as an initial effort towards

Institute of Computer Science

Abhoy Kole Rolf Drechsler
Cyber-Physical Systems  Institute of Computer Science
DFKI GmbH University of Bremen/DFKI

Bremen, Germany
Abhoy.Kole @dfki.de

Bremen, Germany
drechsler@uni-bremen.de

PFV for processors, it cannot be extended for multi-cycle
implementations with sequential sub-circuits. Also this method
incurs higher verification time due to complex implementation
strategies. Needless to say, single-cycle implementation of
instructions has limited utility in processor design, and hence in
this paper we introduce a PFV method for a RISC-V processor
(MicroRV32 [10]) that includes multi-cycle operations in the
data path. A complete and efficient verification strategy is
proposed, covering all the functional units of the processor
(both combinational and sequential). We consider the base
instruction set RV32I which includes all arithmetic instructions
except multiplication and division, which are part of RISC-V
extensions. The major contributions of the work is summarized
below:

e We propose an improved data structure and code base
for verifying a multi-cycle processor implementation that
includes sequential sub-systems.

e We fully verify all the functional units
MicroRV32 [10] processor like Fetch,
Extension, Execute and Control.

e We  incorporate  improved  implementation
partial/symbolic ~ simulation and reference
generation for the verification methodology.

of the
Decode,

of
model

The paper is organized as follows. Section II provides the
necessary background and related works in this domain. In
Section III we present the complete verification methodology.
In Section IV we show how the proposed method ensures PFV.
In Section V we present the experimental results followed by
concluding remarks in Section VI

II. BACKGROUND
A. Polynomial Formal Verification (PFV)

Knowing the time and space complexities of the design
verification helps in planning the design process for a chip. This
might also allow for a faster time-to-market, allowing delivery
of a product that exactly conforms to the design specification.
In this regard PFV techniques are of vital importance where the
upper bounds of time and space complexities can be obtained.
The objective of PFV is to investigate if polynomial upper
bounds of time and space complexities can be determined for a
given design. In classical formal verification techniques that use
methods like Binary Decision Diagram (BDD), Binary Moment



Diagram (BMD), Boolean Satisfiability (SAT), or Symbolic
Computer Algebra (SCA), the main objective is to prove
correctness according to the specification and to ensure the
absence of design errors. Apart from ensuring correctness, PFV
also focuses on the resources needed to confirm it. The next
sub-section discusses various approaches that exist in literature.

B. Related Works

Although PFV targets to ensure polynomial upper bounds
and scalability, very few works have been carried out in this
area so far. One of the very first works demonstrate PFV for
Wallace-tree like multipliers using *BMD-verification [11] but
was restricted to a theoretical analysis only. Very recently PFV
of arithmetic circuits has gained some momentum and various
works have been reported towards ensuring polynomial upper
bounds [3], [4], [7], [8]. In [3] PFV of adders have been
investigated. In [4] the authors show how the polynomial upper
bounds can be leveraged under resource constraint scenarios.
Here both bit-level and word-level complexities for various
arithmetic circuits and Arithmetic Logic Units (ALU) are ex-
plored. In [8] verification of multiplier is performed using
BDDs. In [7] PFV of floating-point adders are explored, which
uses case splitting technique to ensure polynomial upper bound.

So far mostly PFV of arithmetic circuits and ALUs have
been considered leaving the verification space of processors
largely unexplored. A recent work [9] attempts PFV method
to verify a single-cycle processor where the primary focus has
been on the verification of the Execute unit. Another work [12]
targets verification of multi-cycle processor where PFV of
Decode and Extension units along with Execute unit has been
considered. None of these works have performed PFV of a
complete processor.

In this paper we consider a multi-cycle MicroRV32 proces-
sor [10], and perform the complete PFV of all the stages present
therein. MicroRV32 does not support pipeline. It has multiple
stages but only one instruction is executed at a time. This work
focuses on the base instruction set RV32I and does not consider
any extension.

III. COMPLETE VERIFICATION METHODOLOGY

In this section we discuss the verification methodology used
in this work. In particular we discuss about the data struc-
tures and the verification strategy that have been adopted for
incorporating sequential logic. We discuss about the functional
extraction and simulation required, and also the reference model
generation.

A. Verification Methodology

We propose a PFV approach for multi-cycle processor ar-
chitectures, which is motivated by the fact that most real-
world processors fall in this category. We use the MicroRV32
processor architecture as a case study [10].

Fig. 1 shows the overall verification methodology. The speci-
fication of the MicroRV32 processor is provided in SpinalHDL,
which is an abstract RTL specification. We use the Scala Build
Tool (SBT) to convert SpinalHDL to Verilog. The Verilog

Spinal HDL
Ll Fetch

SBT Yosys =]
Verilo AlG
Synth E} ABC ||

Chip
T

SYMSIM

Decode ’ AlG Verification

Yosys m INST | Variable
ABC

Extension
Veril Yosys
o8 "ABC m
Execute

Yosys
Verilog ABZ m

FUNC

—s

Reference
BDD
Generator

Symbolic
Simulation

Reference
BDD

—

Equivalent/
Not-Equivalent/
Abort

—

Control Sequential Simulation (SSIM)

[roe e | T L

L]

Control Signal
Library

Equivalent/
Not-Equivalent/
Abort

Fig. 1. The verification methodology

representation is then synthesised using Yosys and the Berkeley-
ABC tool into the And-Inverter Graph (AIG) data structure. The
following steps are performed for the verification.

1) We generate the AIG file for each sub-system (stage) of the
processor using the pre-processing step mentioned above.
2) Since a single unified approach cannot be used to verify all
the processor units, we use partial/symbolic and sequen-
tial simulation for verifying the Fetch and Control
units, and partial simulation for Decode, Extension
and Execute units. Partial Simulation (PSIM) simulates

a circuit with ternary values (‘x’, ‘0’, ‘1’) and extract

functionalities and reduces the graph size. Sequential

Simulation (SSIM) extends the ternary simulation of PSIM

over multiple clock cycles. This has been compared with
unrolling the circuit as it is done in the case of Bounded

Model Checking (BMC). Symbolic Simulation (SYMSIM)

uses variables instead of Boolean values in the simulation
process. SYMSIM is used to generate BDDs. A detail
explanation is provided in the later sub-sections.

a) For the Decode, Extension and Execute units,
we utilize PSIM to extract sub-circuits describing the
underlying functionality for each instruction. For the
verification SYMSIM is used.

b) For Fetch unit we consider three different cases that
are extracted using PSIM and verified using SYMSIM.

¢) The Control unit is the most critical component in
verification, and needs a lot of careful consideration, as
it models the entire processor behavior as a Finite State
Machine (FSM). For the supported instruction types,



two pathways in the FSM are identified:

P=IN—-+FEF—-DF—EX - FE
Po=IN—-+FE—-DE—-FEX —-WB—FE

The S-type instructions uses P, while all other instruc-
tion types use P;. To verify the pathways we utilize
SSIM to extract each state of the Control unit as a
sub-circuit.

3) For an extracted sub-circuits we use SYMSIM to first
generate a BDD, and then use a reference model generator
to create a reference BDD. Finally to verify the circuits
we compare the corresponding BDD with the reference
BDD.

B. Functional Extraction and Simulation

The extraction of functionality is carried out by partially
simulating a circuit with given stimuli as inputs using the PSIM
or SSIM tool. Each node is evaluated according to its input.
Several reduction steps are incorporated to reduce the size of
the graph. Nodes evaluating to a constant can be removed and
fan-ins are removed if they do not affect the circuit outputs
resulting in an reduced AIG. PSIM is only done for one clock
cycle while SSIM allows for simulating the circuit for one or
multiple clock cycles. After simulating, the reduction of AIG
and the extraction of functionality is performed.

We separate out the processes of BDD generation and
AIG representation, i.e. the simulation and reduction of the
circuit are separated to allow simulation of multiple cycles.
After completion of the simulation, the circuit is reduced and
exported. We use the SYMSIM simulator for BDD generation.

We acquire the stimuli set from the description of the
instructions as mentioned in the RISC-V ISA specification.
A resultant configuration file is generated by merging all the
stimuli files for all the instructions. In general, either ‘0’,
‘1’ or ‘X’ (unknown) values are present in the bit-vectors of
the stimuli files. The stimuli file is configured accordingly to
extract the hardware for the respective instructions. Initially
the opcode bit vector is set depending on the instruction type.
In the instruction encoding other bit vectors are set to define
the type of operations (e.g., immediate or register operand).
The remaining data bit vectors that are dependent on operand
values are assigned to ‘x’.

C. Sequential Logic Support

One of the major contributions of this paper over the previous
works [9], [12] is that it is able to handle sequential elements
therein (like latches and flip-flops). To support sequential ele-
ments like latches in the AIG format, our parser and simulation
code base has been extended. We extended the PSIM to allow
for sequential support, which we call SSIM. The AIG parser
was extended to handle latches defined in the AIG header,
which was not considered in the earlier work. Two different
latch definitions were added to the parser to allow for handling
a latch with and without reset/initialisation state. For the simu-
lation code base a new node type has been added to the graph
structure for specifying latches. This updated data structure

can elegantly model the sequential elements in the design.
The phases of graph reduction and multi-cycle simulation have
been separated out for the purpose of simulating the complete
instruction set. This allows multi-cycle simulation to be carried
out before the phase of graph reduction.

Fig. 2 shows the example of a 2-bit left/right shift circuit. In
this work with the extension of the parser and data structure we
are able to handle sequential circuits. But it may be noted that
this is like unrolling in BMC that works for sequential circuits
with limited sequential depth.

in[0] ‘ ‘ msb ‘

sel ‘ ‘ Isb ‘

in[1] ‘

Fig. 2. 2-bit left/right shift example with memory elements

D. Reference Model Creation

The Reference Model Generator (RMG) plays an important
role in the verification phase. For the considered MicroRV32
architecture, a reference BDD is generated for each of the
instructions, and a library is created consisting of all the
reference BDDs. To generate a reference model, a simplified but
functionally equivalent architecture for executing the individual
instructions is considered. The RMG must also generate all the
reference BDDs for all the outputs of the instruction hardware.
As the complexity of the generated BDDs greatly depends on
variable ordering, we exploit this to generate efficient BDDs,
which is also the same as the one generated by SYMSIM.

For the Fet ch unit three cases are considered for extraction:
(i) the reset state, (ii) reading from the buffer, and (iii) reading
from buffer and writing data into the buffer of the Fetch unit.
Reference models are generated for all the cases.

For Decode, Extension and Execute units, a reference
model is generated for each of the supported instructions. We
use bitwise logical operations for reference BDD generation for
the logical instructions of the MicroRV32 instruction set like
OR, XOR, and AND and their immediate analogue, e.g. ORI,
XORI, and ANDI.

There exists a number of instructions where the addition
operation is used. For ADD and ADDT instructions we need
an adder to add the operands and generate the result. For the
jump instructions like JAL and JALR, an offset is added to the
program counter to generate the target address. Likewise for



LOAD or STORE instructions, we calculate the effective address
of an operand in memory by adding the contents of a register
with some offset value as specified in the instruction. The RMG
generates the reference BDDs for all such instructions using
the adder function. The SUB instruction subtracts one operand
from another. Before a branch instruction (like BEQ, BNE,
BLT and BGT), some comparison is done. The comparison
is generally performed by subtracting two register values, viz.
using the SET instructions (like SLT, SLTU, etc.). For all such
instructions, we use a suitable implementation of the subtractor.
This function in turn helps to generate the reference BDD
for comparison. For the shift operations like SRL and SLL,
generally no arithmetic computation is involved. A generic shift
operation is implemented for logic and arithmetic shift and their
immediate counterparts.

And for the Control unit, each state of the FSM is
matched with the correct golden response for the particular
state (i.e., the golden response) for each instruction type. From
the specification of each instruction and each state, the required
control signals to be generated are stored in a library. We then
perform SSIM and extract the control signals generated for each
state. Then for each instruction, we compare the control signals
extracted from the SSIM with those stored in the library.

IV. POLYNOMIAL ANALYSIS

In this section we discuss about the polynomial time com-
plexities for all stages of the processor. Three cases are required
to be verified for the Fetch unit. For an n-bit processor, the
verification of reset operation has a run-time complexity of
O(n), as it involves resetting the respective register associated
with the Fet ch stage, followed by assessing the logic states of
all n bits from the register in an iterative fashion. Similarly, the
read operation requires verifying the logic values stored in the
buffer by a prior write operation and it encompasses simulation
of a given input value to write it back in the buffer in constant
time (i.e., O(1)), and then read the n-bit buffer state to compare
with the input bit-vector in O(n) time. Finally, the verification
complexity of the read and write operations together requires
repeating the simulation of assigning an input value to the
buffer and then reading the buffer state to compare with the
input value two times, i.e. O(2n). This results in a polynomial
verification complexity of O(n) (&~ O(n) + O(n) + O(2n))
for the considered Fetch unit.

The verification of the Decode and Extension units
together requires consideration of different scenarios depending
on the type of operands; register-register type (e.g., ADD, SUB,
etc.) or register-immediate type (e.g., ADDI, SLLI, etc.) as well
as instruction types: R — register, I — immediate, S — load and
store, B — branch, U — upper immediate, and J — jump. Since
all the instructions except R-type are of register-immediate
type, to isolate them from the rest, the SYMSIM infers a bit-
wise MUX as a part of the Extension unit. It can be noted
that translation of a MUX as an ITE operation of 3 variables,
i.e. ITE(s,A;, B;) results in a BDD of size 7 whereas for a
single variable it is 3. In view of the ITE analogy of SYMSIM
reported in [9], the overall complexity of verifying both the

units together for an n-bit processor is bounded polynomially
by O(n?) (= n-|s| - 3272y |4l - |Bi| = n? - |s| - 37).

The verification of the Execute unit is heavily influenced
by the operation types: Logic, Shift, Addition and Subtraction.
The run-time complexity of SYMSIM for Logic (e.g., AND,
ANDI, OR, ORI, XOR, and XORI) and Shift (e.g., SLL,
and SRL) group of operations is bounded by O(n), while
for the Addition (e.g., ADD, and ADDI) group it is O(n?).
Under the Subtraction group, besides the subtraction instruc-
tion itself (SUB) it also encompasses comparison (e.g., SLT,
SLTU, etc.) and branch (e.g., BEQ, and BNE). The subtraction
operation can be re-described as 2’s complement addition, i.e.
A— B = A+ B’ + 1 where B’ denotes 1’s complement of
B. Assuming the use of a Ripple Carry Adder (RCA) for
realization with an array of n XOR gates for producing 1’s
complement of the subtrahend (B) and an initial carry input 1,
the complexity of SYMSIM for the Subtraction group attains
similar bounds to that of Addition group, i.e. O(n?). It has
also been shown that not only RCA but more complex adders
can also be polynomially verified [13]. Thus, the Execute
unit verification also has the polynomial run-time complexity
bounded by O(n?).

Finally, the Control unit verification involves SSIM of
its FSM states, i.e. F'E — DE — EX — WB followed
by evaluating the status of control signals associated with a
particular state against the expected golden reference. Con-
sidering simulation of the individual FSM state and formal
verification of an control signal status as atomic (i.e., O(1)),
the complexity of simulating a processor with m states defining
the Control unit FSM together with verifying control signal
status is O(m+m) ~ O(m). Thus, for k£ number of instructions
the verification complexity has a polynomial bounds of O(km)
which can be optimized further considering only a sample
instruction of each type supported by the target processor, e.g.
R-, S-, B-, U-, J-, and I-type instructions for the MicroRV32
processor under verification.

V. EXPERIMENTAL RESULTS

All the experiments have been carried out on a system with
an Intel 17-8565U CPU (1.80GHz) with 16GB of main memory
(Thinkpad T490). All the tools PSIM, SSIM and SYMSIM
are implemented using C++. A divide-and-conquer approach
is utilized to simplify the entire verification process of the
multi-cycle processor. To extract the underlying functionality,
we use an in-house PSIM and SSIM tool. To generate the BDDs
required in verification, we use SYMSIM using CUDD [14].
For each instance, multiple experiments are conducted and the
average values reported as the final result.

We present the results for all the four stages of the Mi-
croRV32 processor, viz. Fetch, Control, Execute (ALU),
and Decode- and Extension unit (DEU). The main contri-
bution of this work is the inclusion of the sequential subsystems
(Fetch and Control units) in the verification of the entire
processor. For completeness we include the results of DEU
and Execute Unit from [12]. Because the extension unit is part
of the decode, it was not verified separately.



For the verification of the Fetch unit, three cases are
considered. We extract the sub-circuits for each of the cases and
evaluate it individually. For the reset state, all primary outputs
are checked to be zero. To verify the second case for reading
from the buffer, and the third case for both reading and writing
from/to buffer, we use SYMSIM. SYMSIM allows us to verify
the sequential sub-circuits, by simulating variables through the
sub-circuits and evaluating them to verify if they are present in
specific memory/primary output addresses after given number
of clock cycles.

TABLE I
RESULTS OF FETCH UNIT
Cases | PSIM [ms] PFV [ms] #Var
Reset Buffer 342 0.22 65
Read Buffer 0.66 0.11 33
Read & Write Buffer 0.61 0.11 65
Total | 4.69 0.44 163

The results for the Fetch unit are presented in Table I. The
first column represents all the Cases of fetch, the second and
third columns respectively represent the PSIM and the PFV
times, both in milliseconds. The last column #Var shows the
number of variables needed for the SYMSIM. The PSIM time
for reset case is longer as compared to the other two cases.
This is because for the reset case the extraction step of the
PSIM reduces the entry graph to a vector of zeros. For the
reset case the verification time involves generation of BDDs as
a reference model. But for the other two cases, we only use
SYMSIM and equivalence checking. The number of variables
needed for reset and read & write cases consist of 32 bits each
for input and output plus a terminal BDD node, for a total of
65. For the read case 32 variables and one terminal variable
are used.

The Control unit models a FSM. As mentioned previously
two different pathways P; and P have to be considered for
the MicroRV32 processor (Section III(C)). P; is used for
all instruction types except the S-type (i.e. load and store
instructions), which utilizes the second pathway Ps. To verify
the Control unit, the circuit is split into its FSM states,
which is carried out using SSIM. Each state is then verified
by comparing it to a golden reference of control signals, which
are extracted from the specification.

TABLE 1T
RESULTS OF CONTROL UNIT

Inst. Type  Path | SSIM [ms] PFV [ms] #CulS
R P, 9.07 0.36 39

I P 8.75 0.40 56

S P 12.46 0.49 74

B P 7.64 0.28 37

8] Py 9.08 0.39 54

J P, 9.03 0.68 48

Total | 56.03 2.6 308

Results for the Control unit are presented in Table II. The
first two columns respectively lists the instruction type, and

the path used in the FSM. The time needed for PSIM and PFV
(in milliseconds) are presented in the next two columns. The
number of control signals #Ctr1S needed is provided in the
final column.

For verifying the Init, Fetch and Decode states, we
compare the generated control signals from SSIM with the
library of control signals present for each state. Then for
the Execute state we consider 6 types of instructions as
mentioned in Table II. For each of the instruction types, SSIM
generates the control signals that are checked with the control
signals from the library. Finally the Writeback state is
verified in a similar way. In Table II, the SSIM time and PFV
time include the times for Init, Fetch, Decode, Execute
and Writeback. And #CtrlsS is the total number of control
signals required for each state.

The verification results for the Execute unit (ALU) and
Decode- and Extension Unit (DEU) are presented in
Table III [12]. For completeness we have added the result and
discussion for Execute and DEU units from [12]. The results for
the ALU unit are presented in columns 3-6, while those for the
DEU unit are presented in columns 7-8. The first two columns
in the table indicate the instruction category and the specific
instruction respectively. The instruction category represents the
nature of the operation being carried out during the execution
of the instruction. The third column PSIM denotes the time for
carrying out partial simulation, while the fourth column denotes
the time for carrying out polynomial formal verification PFV,
both in milliseconds. The PFV value shown is the total time
taken for the creation of BDD, generation of the BDD reference
model, and checking for equivalence of the two models. The
fifth and sixth columns denote the number of nodes #Nodes in
the BDD and the Peak number of nodes observed during the
creation of the BDD. The last two columns in the table denote
the values for PSIM and PFV respectively in milliseconds
for the DEU unit. Since the number of BDD nodes and the
corresponding peak values of all the instructions are the same
for the DEU unit (viz., 65 and 68), they are not explicitly shown
in the table. The total number of BDD nodes and peak values
are 2405 and 2516 respectively.

From the Table III the number of BDD nodes increases with
the complexity of the operation(s) involved. This can be verified
from the fact that the Logic group of instructions require
smallest number of BDD nodes, which is larger for the other
groups. In terms of the total run time, PSIM dominates PFV
e.g., for the ALU unit of the AND instruction, the times taken
for PSIM and PFV are 4.41ms and 0.10ms respectively.

Least amount of time and memory is used for the Logic
verification. Shift instruction group needs the most number
of nodes compared to all other instructions due to the modeling
of a generic shift. Two outliers in terms of PSIM or #node can
be identified. ADD uses the most PSIM time of the Addition
group and all other groups for the ALU and DEU verification.
SUB does not differ much in terms of PSIM time compared to
other instructions in the Subt raction group, but the number
of nodes needed is significantly more for the ALU verification.
In total the verification time for the ALU takes about 200ms



TABLE III
RESULTS OF EXECUTE (ALU), DECODE- AND EXTENSION UNIT (DEU)

ALU DEU

G. Inst. PSIM PFV Nodes Peak PSIM PFV
[ms] [ms] [ms] [ms]

AND 4.41 0.10 97 100 0.83 0.09
ANDI 4.13 0.09 97 100 0.91 0.09
En OR 4.66 0.09 97 100 0.77 0.10
5 ORI 4.13 0.09 97 100 0.83 0.10
XOR 448 0.11 161 164 0.72 0.10
XORI 4.66 0.12 161 164 0.84 0.11
SLL 5.57 0.73 1632 1671 0.84 0.10
SLLI 4.59 0.73 1632 1635 0.87 0.10

£ SRL 491 0.62 1431 1434 0.78 0.10
;—E) SRLI 4.83 0.69 1431 1434 0.88 0.10
SRA 4.77 0.75 1396 1399 0.72 0.10
SRAI 4.86 0.80 1396 1399 0.83 0.09
ADD 12.33 0.54 1327 1330 5.14 0.24
ADDI 4.73 0.42 1327 1330 0.81 0.09
JAL 4.87 0.42 1327 1330 0.75 0.06
JALR 4.53 0.47 1327 1330 0.88 0.08
AUIPC 4.62 0.41 1327 1330 0.83 0.07

= LUI 4.64 0.42 1327 1330 0.84 0.07
}% LB 4.37 0.50 1327 1330 0.82 0.10
2 SB 4.95 0.45 1327 1330 0.85 0.06
< LW 4.84 0.32 804 807 0.87 0.07
SW 4.59 0.28 804 807 0.74 0.07
LH 5.10 0.26 804 807 0.96 0.08
SH 498 0.33 804 807 0.95 0.09
LBU 4.35 0.29 804 807 0.89 0.08
LHU 498 0.30 804 807 0.97 0.08
SUB 5.49 0.42 1415 1418 1.01 0.12
BEQ 4.74 0.33 951 954 0.92 0.10
BNE 4.42 0.26 951 954 0.77 0.10

= BGE 4.44 0.25 951 954 0.81 0.10
2 BLT 4.53 0.26 951 954 0.87 0.10
§ BLT 4.53 0.26 951 954 0.87 0.10
§ BLTU 4.47 0.26 954 957 0.78 0.10
2 BGEU 4.40 0.25 954 957 0.83 0.09
SLT 498 0.69 992 995 0.79 0.07
SLTU 4.63 0.65 809 812 0.82 0.11
SLTIU 5.01 0.67 809 812 0.84 0.10
S ‘ 182.23 14.99 35797 35944 ‘ 35.39 3.51

and 40ms for DEU. The total require nodes for ALU are about
37k and 2.5k for DEU.

A. Improvement over [9], [12]

It is pertinent to compare the contributions of the present
work with the previous similar works [9], [12]. Additions
and enhancements have been incorporated that have led to
significant improvements in the performance of the verification
tool.

The changes are summarized as follows:

a) The present work uses improved data structures and code
bases that helps in improving the run times significantly. In
particular, support for sequential circuit element has been
included that is limited to low sequential depth.

b) For the simulation of sequential circuits SSIM has been
created, and extension of PSIM is incorporated to allow
for ternary simulation over multiple clock cycles.

c) Extension of our code base, parser and data structures,
were extended to support the AIG format for latch de-
scription.

d) Results for Reset and Control units have been incorpo-
rated.

VI. CONCLUSION

In this paper we present a complete PFV approach for
verifying the MicroRV32 architecture that implements a multi-
cycle processor. We use an improved data structure and code
base for sequential logic support for lower sequential depth.
A previous approach considers only the PFV of a single-
cycle processor with combinational support for Execute unit
only. Whereas in this work we show how PFV of multi-
cycle processor can be performed with both combinational
and sequential components to fully verify all the functional
units of a processor. We first perform a pre-processing step
to generate the AIG of the processor and then use partial
simulator to extract the functionalities. We use BDDs to verify
the extracted functionalities of the processor. We incorporate
sequential simulation to verify the complete processor. Experi-
mental results confirm that our method can perform verification
of the complete processor at very low cost.

ACKNOWLEDGMENT

This work was supported in part by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1) and partly by the
German Federal Ministry of Education and Research (BMBF)
within the ECXL project under grant no. 01IW22002. We are
grateful to Sallar Ahmadi-Pour for his support in providing the
MicroRV RISC-V code and helpful guidance.

REFERENCES

[1] J. Davis, A. Slobodova, and S. Swords, “Microcode Verification - Another
Piece of the Microprocessor Verification Puzzle,” in ITP, ser. Lecture
Notes in Computer Science, vol. 8558, 2014, pp. 1-16.

[2] S. Goel, A. Slobodova, R. Sumners, and S. Swords, “Verifying x86
instruction implementations,” in CPP, 2020, pp. 47-60.

[3] R. Drechsler, “PolyAdd: Polynomial Formal Verification of Adder Cir-
cuits,” in DDECS, 2021, pp. 99-104.

[4] R. Drechsler and A. Mahzoon, “Polynomial Formal Verification: Ensuring
Correctness under Resource Constraints,” in /ICCAD, 2022, pp. 70:1-70:9.

[5] J. R. Burch, “Using BDDs to Verify Multipliers,” in DAC, 1991, pp.
408-412.

[6] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial Word-Level

Verification of Arithmetic Circuits,” in MEMOCODE, 2021, pp. 1-9.

J. Kleinekathofer, A. Mahzoon, and R. Drechsler, “Polynomial Formal

Verification of Floating Point Adders,” in DATE, 2023, pp. 1-2.

[8] J. Kumar, Y. Miyasaka, A. Srivastava, and M. Fujita, “Formal Verification

of Integer Multiplier Circuits Using Binary Decision Diagrams,” TCAD,

vol. 42, no. 4, pp. 1365-1378, 2023.

L. Weingarten, A. Mahzoon, M. Goli, and R. Drechsler, “Polynomial

Formal Verification of Processor: A RISC-V Case Study,” in ISQED,

2023, pp. 1-7.

S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The MicroRV32 frame-

work: An accessible and configurable open source RISC-V cross-level
platform for education and research,” JSA, vol. 133, p. 102757, 2022.
[11] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Polynomial
Formal Verification of Multipliers,” FMSD, vol. 22, no. 1, pp. 39-58,
2003.

[12] L. Weingarten, K. Datta, and R. Drechsler, “PolyMir: Polynomial Formal
Verification of the MicroRV32 Processor,” in NANOARCH, 2023.

[13] A. Mahzoon and R. Drechsler, “Polynomial Formal Verification of Prefix
Adders,” in ATS, 2021, pp. 85-90.

[14] F. Somenzi, “CUDD: CU Decision Diagram Package Release 2.7.0,”
available at https://github.com/ivmai/cudd, 2018.

[7

—

[9

—

[10]


https://github.com/ivmai/cudd

	Introduction
	Background
	Polynomial Formal Verification (PFV)
	Related Works

	Complete Verification Methodology
	Verification Methodology
	Functional Extraction and Simulation
	Sequential Logic Support
	Reference Model Creation

	Polynomial Analysis
	Experimental Results
	Improvement over WMGD2023, nanoarch2023

	Conclusion
	References

