
Equivalence Checking of System-Level and
SPICE-Level Models of Static Nonlinear Circuits

Kemal Çağlar Coşkun⋓ Muhammad Hassan⋓,∗ Rolf Drechsler⋓,∗
⋓Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

∗Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
muhammad.hassan@dfki.de {kcoskun,drechsle}@uni-bremen.de

Abstract—Recently, Signal Flow Graphs (SFGs) have been suc-
cessfully leveraged to show equivalence for linear analog circuits
at system-level and SPICE-level. However, this is clearly not
sufficient as the true complexity stems from nonlinear analog
circuits. In this paper, we go beyond linear analog circuits,
i.e., we extend the SFGs and develop the Modified Signal-Flow
Graph (MSFG), to show equivalence between system-level and
SPICE-level representations of static nonlinear analog circuits.
First, we map the nonlinear circuits to MSFGs. Afterwards,
graph simplification and functional approximation (in particular
Legendre polynomials) techniques are used to create minimal
MSFG and canonical MSFG. This enables us to compare the
MSFGs even if they have vastly different structures. Finally, we
propose a similarity metric that calculates the similarity between
SPICE-level and system-level models. By successfully applying the
proposed equivalence checking technique to benchmark circuits,
we demonstrate its applicability.

Index Terms—equivalence checking, formal verification, nonlin-
ear circuits, circuit analysis, flow graphs, approximation methods

I. INTRODUCTION

The increasing complexity of analog circuits and the growing
system integration of analog and digital circuits have emerged
as a bottleneck to analog design verification. The prohibitively
long simulation time of SPICE-level models is a significant
obstacle in this regard [1]. Despite being slow, SPICE-level
simulations [2], which are often used with manual inspection
of the results, are nonetheless regarded as the gold standard
and cannot be ignored. To achieve much higher simulation
performance and early design verification of the Design Under
Verification (DUV), different levels of circuit design abstraction
and alternative representations of the circuit, such as behavioral
models, can be used.

As a result, top-down design principles are becoming more
prevalent in analog systems. In this sense, Virtual Prototyping
(VP) at the Electronic System Level (ESL) is heavily used today
[1], [3]–[6]. With a speed boost of approximately 100, 000
times over SPICE-level simulations [1], the Timed Data Flow
(TDF) Model of Computation (MoC) offered in SystemC AMS
provides a good trade-off between precision and simulation
speed at the system-level, offers a design refinement process,
and enables early verification.

However, the absence of equivalence checking methodolo-
gies for SystemC AMS and SPICE-level models is one of

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project AUTOASSERT under
contract no. 16ME0117.

the major obstacles to the adoption of SystemC AMS system-
level models. Equivalence checking identifies the functional
equivalency of two implementations of a design. The imple-
mentations may use various description environments, such as
transistor netlists and system-level languages, as well as various
abstraction levels. Although equivalence checking techniques
are well established in the digital domain [7]–[9], formal or at
least formalized verification techniques are lacking in analog
circuit design routines [10]–[18]. When discussing equivalence
checking strategies, we generally consider state-space coverage,
model checking, and reachability. Regardless of the specific
strategy, there is little confidence in the use of system-level
analog models. As a result, it becomes challenging to solely
rely on SystemC AMS system-level models.

Contribution: Recently, Signal Flow Graphs (SFGs) have
been successfully leveraged to show equivalence for linear
analog circuits at system-level and SPICE-level [19], [20].
However, this is clearly not sufficient as the true complexity
stems from nonlinear behaviors. In this paper, we go beyond
linear analog systems, i.e., we expand the SFG techniques
proposed in [19], [20] and propose a novel methodology
to show equivalency between system-level and SPICE-level
models of static nonlinear circuits. We make the following
concrete contributions:

1) We extend SFGs to Modified Signal-Flow Graphs
(MSFGs), as a mutually representative form for nonlinear
SPICE-level and system-level models.

2) We automatically transform MSFGs to equivalent forms,
i.e., a minimal MSFG and a canonical MSFG, with graph
simplification operations and approximation techniques.
Here, we use Legendre polynomial series in particular to
approximate the functional description.

3) We introduce a similarity metric that quantitatively mea-
sures the percentage of equivalence between SPICE-level
and system-level models. This enables us to clearly see
the quality of system-level models.

4) The methodology spans the complete class of static non-
linear Single-Input Single-Output (SISO) analog circuits.

5) We demonstrate the applicability on a common-source
amplifier circuit, a Phase-locked Loop (PLL) charge-
pump circuit from [16], and a squaring circuit.

II. RELATED WORK

Several equivalence checking methods were compared in
the surveys [10], [11] and it was concluded that many methods

TABLE I
A COMPARISON OF THE RELATED WORKS

Source Approach Verification Coverage Applicable
Circuits

[12]–[15] State-space-
based

Only at finite number of
locations in the state-space

Dynamic
nonlinear

[16]–[18] Simulation-
based

Only for finite number of
input signals

Dynamic
nonlinear

[19], [20] Structural
analysis Complete coverage Dynamic

Linear
Proposed

work
Structural
analysis

Complete approximative
coverage

Static
nonlinear

attempted to strike a balance between excessive cautiousness
and completeness, and that defining the coverage metrics was
challenging.

In [12], the vector fields of two models were compared
on a point grid for state-space-based equivalence checking.
The approach initially worked for SISO circuits with differ-
ential equations, but was expanded to models with differential-
algebraic equations in [13] and multi-input multi-output circuits
in [15]. Although it can be applied to a wide range of circuits,
certain crucial dynamics can be missed, since the points on the
grid are set distances apart on the canonical state space.

Simulation-based equivalence checking approaches such as
[16]–[18], focus on three main topics: mapping techniques for
comparing signals in separate abstraction levels, decreasing the
number of input stimuli to shorten computation times, and
automatic input generation for coverage optimization. However,
since only a finite number of simulations can be performed, and
due to the continuous nature of analog circuits, full coverage
cannot be obtained with such approaches.

A graph-based equivalence checking approach was devel-
oped in [19], [20] where SPICE-level and system-level models
are mapped to each other through graph simplification tech-
niques. This methodology achieves full coverage, but only
works for linear circuits.

Table I provides a brief comparison between these various
works. As seen in Table I, some methods in the existing
literature do not check equivalence with complete coverage of
behavior. Therefore, these methods might return false positives
when the models behave differently in an overlooked gap.
Other methods achieve complete coverage but in the expanse
of generality, since these only work on linear circuits.

Our proposed methodology tries to strike a balance while
extending the graph-based approaches toward static nonlinear
circuits. While we still preserve complete coverage, we tolerate
some approximations to increase generality.

III. PRELIMINARIES

In this section, we first provide a brief overview of the
methods we use for comparing nonlinear functions. Then, we
give a running example that we will use later to illustrate the
proposed methodology. For brevity, we do not give a proper
introduction to SystemC AMS; instead, we recommend the
SystemC AMS user guide [4].

A. Comparison of Nonlinear Functions
Nonlinear functions can take many different forms and struc-

tures, as a result, direct comparison is generally not possible. To

RD
1k VSVDD

5 M1

out
N1

.model RNMOS NMOS (LEVEL=1,KP=13.4225E-3,VTO=0.7,LAMBDA=0.1)

N2

 --- C:\programming\PhD\circuits\commonSource\withoutCapacitances\schematic_for_drawing.asc ---

Fig. 1. Running example: Common-Source (CS) amplifier with components
Resistor (RD), MOSFET (M1), and Voltage Source (VDD, VS).

1 void cs::processing() {
2 double v_i = 2.85 + 85 * (v_VS - 0.75);
3 v_out.write(std::max(0.0,std::min(v_i,5.0))); }

Fig. 2. The CS amplifier’s system-level implementation in SystemC AMS.

address this issue, we approximate the functions with Legendre
polynomials, which are orthogonal for unity weight in [−1, 1],
as follows:

fapp(x) =

N∑
n=0

anL
(s)
n (x) (1)

where L
(s)
n is a transformed form of the Legendre polynomial

Ln such that it is orthonormal for unity weight in [a, b]. The
coefficients of this polynomial series, given as,

c =
[
a0 a1 · · · aN

]
(2)

are then used to calculate the similarity metric.
Since it is common for analog circuits to have maximum

absolute ratings for their inputs and outputs, or to have a defined
operation region, these can be used to define the interval [a, b].

B. Running Example: Common-Source Amplifier
To motivate the development of this novel equivalence check-

ing methodology and to illustrate how it works, we consider
the single-stage common-source amplifier (Fig. 1) taken from
[21]. Such amplifiers are used in many applications such as
audio crossovers, sensor circuits, and controller circuits.

The example circuit is designed for a linear gain of −85 and
an operation domain of VVS

∈ [0.73V, 0.77V] for the input.
The supply voltage is assumed to be 5 V. The behavior of the
MOSFET in the saturation region is modeled as

ID =
1

2
KP

W

L
(VGS − VTO)

2(1 + λVDS)

where KP = 13.4225mAV−2, L = 0.5µm, W = 50µm,
VTO = 0.7V, and λ = 0.1V−1. The resistance RD is set to
1 kΩ to approximate the linear gain specification. The circuit is
modeled in LTSpice [22] and its netlist is used in the proposed
methodology.

The system-level implementation of the circuit models the
saturation of the circuit and its desired linear behavior as,

Vi = 2.85− 85 (VVS
− 0.75)

Vout =


5 , Vi ≥ 5

0 , Vi ≤ 0

Vi , otherwise

(3)

where Vi stands for some intermediate variable. The SystemC
AMS implementation is given in Fig. 2.

In the next section, we present our graph-based equivalence
checking methodology for static nonlinear circuits.

Equivalence Checker

Linear Graph Modeling
Normal tree

generator

SPICE-level
MSFG creator

Equation
generator

SPICE-level
model

MSFG
simplifier

System-level
model
Simplification
methods

Result

System-level
MSFG creator

Approximation
calculator

Similarity
calculator

Minimal Form

Canonical Form

SPICE-level flow System-level flow

Fig. 3. Overview of the proposed equivalence checking methodology

IV. SIGNAL-FLOW DRIVEN EQUIVALENCE CHECKING
METHODOLOGY

In this section, we propose our MSFG-based novel equiva-
lence checking methodology for system-level and SPICE-level
circuits. First, we give an overview of our proposed method-
ology and introduce MSFGs. Later, we describe methods to
create and simplify an MSFG. The simplified MSFGs are then
compared using the techniques introduced in Section III-A.
Finally, we apply this methodology to our running example
from Section III-B.

A. Methodology Overview

The block-diagram overview of our equivalence checking
methodology is given in Fig. 3. The linear graph modeling
method [23], which consists of the normal tree generator and
the equation generator blocks, is used on the SPICE-level
model to generate a complete set of explicit equations. After
this method, MSFGs for the SPICE-level and system-level de-
scriptions are created with the SPICE-level MSFG creator and
system-level MSFG creator, respectively. The MSFG simplifier
then simplifies both MSFGs to a minimal form with the simpli-
fication methods described in Section IV-E. The only remaining
functions of the minimal MSFGs are then approximated by the
Approximation Calculator. Finally, the Similarity Calculator
calculates the similarity metric as explained in Section IV-F.
All of these computations are performed automatically and
statically, and no simulations are involved.

B. Modified Signal-Flow Graphs

SFGs were introduced in [24] as a graph-based representation
of a system of explicit algebraic equations as shown in Eq. (4):

x̄ = f(x̄, ū) (4)

where x̄ is an array of variables and ū is an array of inputs.
Although it was introduced as a general representation that
would also work for nonlinear equations, the SFG is commonly
restricted to linear equations [25].

The original SFG structure is not well suited for this work,
since it is restricted to either complicated functions (functions
with multiple distinct operators) of a single variable, or simple,
multivariate functions. Particularly, the edges of the SFG, which
always go from a single source node to a single destination

input
eu1

x1
u2
1

√
x2 output

u1

u1

x2
x2x1

Fig. 4. The Modified Signal-Flow Graph (MSFG) of Equation (5).

node, can represent only single-variable functions. On the other
hand, the nodes of the SFG, which are simultaneously used to
represent variables, can only represent simple functions with
single operators such as

∑
or

∏
. However, many circuit

components such as MOSFETs are modeled with functions that
are both complicated and multivariate. Therefore, neither edges
nor nodes of SFGs can represent them. To support complicated,
multivariate functions, we introduce the MSFG. In the MSFG,
the nodes are used exclusively to represent functions, and the
variables are moved to the edges.

As an example, consider the MSFG in Fig. 4 and its
equivalent system of explicit algebraic equations given in
Eq. (5). The variables u1, x1, and x2 are on the edges of
the MSFG, whereas the functions are in the nodes. Nodes
labeled “input” and “output” are the only types of nodes that
do not represent a function. The output variable of a node
function, i.e., the left-hand side of the explicit equation, is
called the outgoing variable of the node. The edges represent
the dependency between the functions and variables and are
labeled with the outgoing variable of their source node. For
example, the outgoing variable of the node

(
u2
1

√
x2

)
is x1 and

the edge labeled x1 represents the dependency of its destination
node

(
eu1

x1

)
to x1.

x1 = u2
1

√
x2 , x2 =

eu1

x1
(5)

C. Creating an MSFG from System-Level Descriptions

MSFGs for system-level descriptions can be created directly
from programming code, since these have a single variable
on the left-hand side and are already in the form of Eq. (4).
Equations in this form can be directly transformed into an
MSFG as explained in Section IV-B. The methodology supports
all functions that are supported by the underlying symbolic
engine. These include but are not limited to functions such
as multiplication, exponentiation, logarithmic functions, sinu-
soidal functions, and piecewise (i.e. if statements) functions.

D. Creating an MSFG from SPICE-Level Descriptions

To create an MSFG from the SPICE-level model, equations
in the form of Eq. (4) must be obtained. For this purpose,
we use the linear graph modeling method because it generates
equations that are readily in the form of Eq. (4), whereas other
methods generate implicit equations in the form of

f(·) = g(·)

that would require us to do further processing.
The linear graph modeling method uses the voltages on

and currents through the circuit components as variables when
creating equations. This is in contrast to nodal-analysis and
loop-analysis, which use node voltages and loop currents,
respectively.

Removal of a node

Reflexive edge
elimination

Yes
No

Number of
nodes = 3?

Simplified
MSFG

MSFG

Fig. 5. Overview of MSFG simplification process

In the linear graph modeling technique, an explicit equation
for each variable is generated from either elemental models,
Kirchhoff’s voltage law, or Kirchhoff’s current law. To de-
termine which of these will be used to generate the explicit
equation, a special type of minimum spanning tree of the
circuit graph, called the normal tree, is generated. The normal
tree generator does this by creating a blank graph, and then
repetitively adding the edges of the circuit graph in the follow-
ing priority order until a minimum spanning tree is reached:
voltage sources, capacitors, resistors, switches, diodes, gate-to-
drain connected MOSFETs, other MOSFETs, inductors, and
current sources. The difference between the circuit graph and
the normal tree is called the tree links. It is required that all
voltage sources are on the normal tree and all current sources
are on the tree links. Otherwise, a contradiction (e.g. parallel
voltage sources) occurs.

To determine whether elemental models, Kirchhoff’s voltage
law, or Kirchhoff’s current law should be used to generate the
explicit equation for a variable, the following rules from [23]
are used together with the normal tree and tree links:

• For voltages on the normal tree, use elemental models.
• For currents on the normal tree, use Kirchhoff’s current

law.
• For voltages on the tree links, use Kirchhoff’s voltage law.
• For currents on the tree links, use elemental models.

The generated equations in the form of Eq. (4) are then used
to construct an MSFG, as explained in Section IV-B.

E. Reducing the MSFG

The MSFGs of the system-level and SPICE-level descrip-
tions are reduced to a minimal form by the block called “MSFG
simplifier” (Fig. 3). The overview of this process is given in
Fig. 5 and consists of the simplification rules given below.
These are applied until a simplified graph with only one node
between its input and output nodes is obtained.

1) Simplification Operations for MSFGs:
a) Node removal with substitution: All nodes except the

input nodes, output nodes, and the parent nodes of output nodes
are removed during the simplification process. To remove a
node (fi(·)) with outgoing variable xi,

• for every child node (fc(xi, . . .)) the variable xi is re-
placed by (fi(·)),

• for all parent nodes, the edge from the parent node (fp(·))
to (fi(·)) is redirected to go from (fp(·)) to all child nodes
(fc(xi, . . .)),

• the node (fi(·)) and all the edges leaving it are deleted.
b) Reflexive edge elimination: Reflexive edges are edges

that come out from and go to the same node. There are two
ways to remove a reflexive edge xi at node (fi(xi, . . .)).
Symbolic solving for the unknown xi is the first option and
is used whenever possible, where equation

xi = fi(xi, . . .)

is solved for xi to get

xi = fnew(·)

where fnew(·) does not depend on xi. The function fi(xi, . . .)
is then replaced by fnew(·) and the reflexive edge is removed.
The second option is used whenever symbolic solving is
not possible, where fnew(·) is approximated with polynomial
interpolation such that

fnew(·) =
N∑

n=0

anL
(s)
n (·)

where L
(s)
n (·) is defined in the same way as in Section III-A.

The only remaining functions of the SPICE-level and system-
level minimal MSFGs are called fspimin

(u) and fsysmin
(u), where

min stands for minimal, u is the input to the MSFG, and spi
and sys stand for SPICE-level and system-level, respectively.
Next, we create the canonical MSFG from the minimal MSFG
we just obtained and introduce a method to compute similarity.

F. Canonical MSFG and Similarity Metric

To create the canonical MSFGs, the functions fspimin
(u)

and fsysmin
(u) are replaced by their polynomial approximations

fspiapp
(u) and fsysapp

(u), as given in Eq. (1). The coefficients cspi
and csys as defined in Eq. (2) can then be used to calculate the
similarity by computing their Euclidean distance,

d = ∥cspi − csys∥2 (6)

and finally, calculating the similarity metric as

s = 1− d

∥csys∥2
(7)

We demonstrate our methodology on our running example
in the next section.

G. Illustration

In this section, we will use the amplifier circuit from Fig. 1
to illustrate our methodology. First, the normal tree generator
is used to create the circuit’s normal tree (bold tree in Fig. 6).
It can be validated that this tree is indeed a minimum spanning
tree by checking that all nodes of the circuit are also nodes
of the normal tree without forming any loops. Also, since the
voltage sources and the resistor were included in the normal

0N1 VS

N2

VDD out
M1

RD

Fig. 6. Graph of the CS amplifier circuit. The normal tree is emphasized with
bold edges.

input 0.671
(
0.1VM1DS

+ 1
) (

VVS
− 0.7

)2

5− 1.0 · 103IM1DS
output

VVS

IM1DS
VM1DS

VM1DS

(a)

input −671.0
(
0.1VM1DS

+ 1
) (

VVS
− 0.7

)2
+ 5

output

VVS

VM1DS
VM1DS

(b)

input
10.0

(
4.0 · 103 − 5.37 · 105

(
VVS

− 0.7
)2)

5.37 · 105
(
VVS

− 0.7
)2

+ 8.0 · 103

output

VVS

VM1DS

(c)

Fig. 7. Some MSFGs of the CS amplifier: (a) The MSFG after 5 simplification
steps. (b) The MSFG after removal of a node from Fig. 7a. (c) Minimal MSFG.

tree but the MOSFET was not, it is validated that the priority
order as described in Section IV-D was obeyed.

Afterwards, the explicit equations Eq. (8) and Eq. (9) are
obtained by using this normal tree and the rules described in
Section IV-D. The equations for the components on the normal
tree are given in Eq. (8),

VRD
= 103IRD

, IRD
= IM1DS

,

IVDD
= IM1DS

, IVS
= 0

(8)

whereas the equations for the components on the tree links are
given in Equation (9),

VM1DS
= VVDD

− VRD
, VM1GS

= VVS
,

IM1DS
= 0.671 (0.1VM1DS

+ 1) (VM1GS
− 0.7)

2 (9)

Since these equations are in the form of Eq. (4), an MSFG
can be created without any further modifications.

The MSFG simplifier then simplifies this MSFG with the
rules given in Section IV-E. An example of node removal with
substitution is seen in the 6th step of the simplification pro-
cess, where the node

(
0.671 (0.1VM1DS

+ 1) (VVS
− 0.7)

2
)

in
Fig. 7a is removed to get Fig. 7b. The next step is an example
of reflexive edge elimination, where the reflexive edge VM1DS

is removed, to get the minimal MSFG in Fig. 7c. The numbers
in the graphs were printed with low precision to save space.

The system-level MSFG in Fig. 8 can be obtained directly
from the system-level model in Fig. 2, since its equation given
in Eq. (3) is already in the form of Eq. (4). This MSFG requires
no further simplification since it is already minimal.

To check whether these MSFGs are similar, we take their
final functions and approximate them with Legendre polyno-

input 66.6− 85VVS outputVVS
VM1DS

Fig. 8. System-level MSFG of the CS amplifier.

mials. The approximated function for the SPICE-level MSFG
is Eq. (10), whereas for the system-level MSFG it is Eq. (11).

fspiapp
= 4L

(s)
0 (VVS

)− 1.2L
(s)
1 (VVS

)

− 0.054L
(s)
2 (VVS

) + 0.01L
(s)
3 (VVS

)
(10)

fsysapp
= 4L

(s)
0 (VVS

)− 1.4L
(s)
1 (VVS

) (11)

The polynomials L
(s)
i were scaled for the domain of VVS

,
which is [0.73, 0.77] as seen in Section III-B.

The similarity of fspiapp
and fsysapp

is calculated from the
Euclidean distance between their coefficients. For this, we first
define the coefficient vectors

cspi =
[
4 −1.2 −0.054 0.01

]
csys =

[
4 −1.4 0 0

]
then, we find the Euclidean distance with Eq. (6) as

d = ∥cspi − csys∥2 = 0.223

and finally, we calculate the similarity metric with Eq. (7) as

s = 1− d

∥csys∥2
= 94.76%

This high similarity result is expected, since both implemen-
tations model the same circuit. On the other hand, a result
of less than 100% was also expected, since the SPICE-level
model captures nonlinear behavior, whereas the linear system-
level model does not. In the next section, we perform more
case studies to analyze our methodology further.

V. EXPERIMENTAL EVALUATION

To demonstrate the broad applicability of our methodology,
and to compare it to previously published methods, we conduct
two case studies. First, we use the PLL charge-pump circuit
from [16] to test our methodology and compare it to past work.
Then, we apply our methodology to a squaring circuit. All
computations were conducted on an octa-core AMD Ryzen 7
PRO 4750U with 32 GB RAM.

A. PLL Charge-Pump Circuit

In [16], a SPICE-level model and two system-level models,
Model A and Model B, for a PLL charge-pump circuit were
given. Our SPICE-level MSFG creator (Fig. 3) produced an
MSFG with 32 nodes that required 35 steps to simplify, whereas
the system-level models resulted in MSFGs with 3 nodes. All
models were approximated with Legendre polynomials up to
19 degrees, with the resulting coefficients given in Fig. 9. The
similarity to the SPICE-level model was found to be 99.58%
for Model A and 92.64% for Model B. In [16], Model B was
presented as a simpler and inferior model. Our results confirm
this. A summary of the results and a comparison with the
reference work are given in Table II.

0 5 10 15
Polynomial Order

0

2

C
o
effi

ci
en

t
V

a
lu

es

×10−6
SPICE Model

Model A

Model B

Fig. 9. Coefficients of the polynomial approximations for the PLL charge-
pump circuit.

TABLE II
EQUIVALENCE RESULTS FOR THE PLL CHARGE-PUMP MODELS

Difference Run Time
Method Model A Model B Model A Model B

[16] 14.3a 21.5a 31.6 s 30.4 s
Our work 0.42% 7.36% 1.36 s

a In [16], an absolute difference value is given that cannot be directly
compared to our relative values. The values are provided here for reference.

B. Squaring Circuit
As another case study, we tackled the squaring circuit

from [26], which has important applications in analog signal
processing. The initial MSFG from the SPICE-level circuit was
produced with 14 nodes and was simplified in 12 steps. The
MSFG created from the system-level model, given as

Io = 4.59I2in

had 3 nodes. The most significant coefficients were found as

cspi =
[
2.3 1.9 0.42

]
csys =

[
2.2 1.9 0.48

]
and the similarity was found to be 93.88%. We expected this
difference since additions in square functions that expand like

(x(t) + c)
2
= x(t)2 + 2c · x(t) + c2

and the feedback interaction between the components prevent
the implementation of a pure square function. The run time for
this example was 0.32 s.

VI. CONCLUSION

In this study, we developed a novel, graph-based, formal
equivalence checking methodology by combining multiple
analysis and modification techniques. We then used it to check
SPICE-level-to-system-level equivalency for static nonlinear
circuits. The running times were short, on the order of seconds,
since the methodology is based on static analysis. We quantita-
tively showed equivalency between the models with the help of
a similarity metric. We successfully applied the methodology
to several case studies.

This paper can be extended in multiple ways. One possibility
is to broaden the applicability by changing the approximation
method to one that supports dynamic systems. Additionally,
determining the necessary number of Legendre polynomials for
approximation can be automated. Also, the graph-based repre-
sentation can be leveraged by using established search methods
to pinpoint specific parts of the circuit that cause a mismatch,
when the similarity between the models is not 100%. Finally,
the manual definition of variable ranges required for polynomial
interpolation might be automated with a reachability method.

REFERENCES

[1] M. Barnasconi, “SystemC AMS Extensions: Solving the Need for Speed,”
DAC Knowledge center, May 2010.

[2] L. W. Nagel, “Spice-simulation program with integrated circuit empha-
sis,” Electronics Research Lab., Univ. of California, Berkeley, 1973.

[3] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, “An introduction
to modeling embedded analog/mixed-signal systems using systemc ams
extensions,” in Open SystemC Initiative, 2008.

[4] M. Barnasconi, C. Grimm, M. Damm, K. Einwich, M. Louërat,
T. Maehne, F. Pecheux, and A. Vachoux, “Systemc ams extensions user’s
guide,” Accellera Systems Initiative, 2010.

[5] M. Barnasconi, K. Einwich, C. Grimm, T. Maehne, and A. Vachoux,
“Advancing the SystemC analog/mixed-signal (AMS) extensions,” Open
SystemC Initiative, 2011.

[6] F. Pêcheux, C. Grimm, T. Maehne, M. Barnasconi, and K. Einwich, “Sys-
temC AMS based frameworks for virtual prototyping of heterogeneous
systems,” 2018, pp. 1–4.

[7] R. Drechsler, Ed., Advanced Formal Verification. Kluwer Academic
Publishers, 2004.

[8] P. Molitor and J. Mohnke, Equivalence checking of digital circuits:
fundamentals, principles, methods. Springer Science & Business Media,
2007.

[9] R. Drechsler, Formal System Verification. Springer, 2018.
[10] M. H. Zaki, S. Tahar, and G. Bois, “Formal verification of analog

and mixed signal designs: A survey,” Microelectronics Journal, vol. 39,
no. 12, pp. 1395–1404, Dec. 2008.

[11] A. Tarraf, L. Hedrich, N. Kochdumper, M. Rechmal-Lesse, and M. Ol-
brich, “Equivalence Checking Methods for Analog Circuits Using Con-
tinuous Reachable Sets,” in 2020 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), Jul. 2020, pp. 7–12.

[12] L. Hedrich and E. Barke, “A formal approach to nonlinear analog
circuit verification,” in Proceedings of IEEE International Conference
on Computer Aided Design (ICCAD), Nov. 1995, pp. 123–127.

[13] L. Hedrich and W. Hartong, “Approaches to Formal Verification of
Analog Circuits,” in Low-Power Design Techniques and CAD Tools for
Analog and RF Integrated Circuits. Boston, MA: Springer US, 2001.

[14] W. Hartong, R. Klausen, and L. Hedrich, “Formal Verification for Nonlin-
ear Analog Systems: Approaches to Model and Equivalence Checking,” in
Advanced Formal Verification, R. Drechsler, Ed. Boston, MA: Springer
US, 2004, pp. 205–245.

[15] S. Steinhorst and L. Hedrich, “Advanced methods for equivalence check-
ing of analog circuits with strong nonlinearities,” Formal Methods in
System Design, vol. 36, no. 2, pp. 131–147, Jun. 2010.

[16] A. Singh and P. Li, “On behavioral model equivalence checking for
large analog/mixed signal systems,” in 2010 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov. 2010, pp. 55–61.

[17] A. Ain, S. Sanyal, and P. Dasgupta, “A Framework for Automated Feature
Based Mixed-Signal Equivalence Checking,” in VLSI Design and Test
(VDAT), Roorkee, 2017, pp. 779–791.

[18] M. O. Saglamdemir, G. Dundar, and A. Sen, “An analog behavioral
equivalence checking methodology for simulink models and circuit level
designs,” in International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD),
Istanbul, Sep. 2015.

[19] K. Ç. Coşkun, M. Hassan, and R. Drechsler, “Equivalence Checking of
System-Level and SPICE-Level Models of Linear Analog Filters,” in
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
Prague, 2022.

[20] K. Ç. Coşkun, M. Hassan, and R. Drechsler, “Equivalence Checking of
System-Level and SPICE-Level Models of Linear Circuits,” Chips, vol. 1,
no. 1, pp. 54–71, Jun. 2022.

[21] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA:
McGraw-Hill, 2001.

[22] Analog Devices, “Ltspice,” https://www.analog.com/en/design-center/
design-tools-and-calculators/ltspice-simulator.html.

[23] D. Rowell and D. N. Wormley, System Dynamics: An Introduction.
Upper Saddle River, NJ: Prentice Hall, 1997.

[24] S. J. Mason, “Feedback Theory-Some Properties of Signal Flow Graphs,”
Proceedings of the IRE, vol. 41, no. 9, pp. 1144–1156, Sep. 1953.

[25] L. P. A. Robichaud, Signal Flow Graphs and Applications. Englewood
Cliffs, N.J. :, 1962.

[26] N. Beyraghi, A. Khoei, and K. Hadidi, “CMOS design of a four-quadrant
multiplier based on a novel squarer circuit,” Analog Integrated Circuits
and Signal Processing, vol. 80, no. 3, pp. 473–481, Sep. 2014.

