
ToPoliNano and fiction:
Design Tools for Field-coupled Nanocomputing

(Invited Paper)

Umberto Garlando∗, Marcel Walter†, Robert Wille‡§¶, Fabrizio Riente∗, Frank Sill Torres‖, Rolf Drechsler†§

∗Department of Electronics and Telecommunications, Politecnico di Torino, Italy
†Group of Computer Architecture, University of Bremen, Germany

‡Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
§Cyber Physical Systems, DFKI GmbH, Bremen, Germany

¶Software Competence Center Hagenberg GmbH (SCCH), Austria
‖Department for the Resilience of Maritime Systems, DLR, Bremerhaven, Germany

Abstract—Field-coupled Nanocomputing (FCN) is a computing
concept with several promising post-CMOS candidate imple-
mentations that offer tremendously low power dissipation and
highest processing performance at the same time. Two of the
manifold physical implementations are Quantum-dot Cellular
Automata (QCA) and Nanomagnet Logic (NML). Both inherently
come with domain-specific properties and design constraints that
render established conventional design algorithms inapplicable.
Accordingly, dedicated design tools for those technologies are
required. This paper provides an overview of two leading
examples of such tools, namely fiction and ToPoliNano. Both tools
provide effective methods that cover aspects such as placement,
routing, clocking, design rule checking, verification, and logical
as well as physical simulation. By this, both freely available tools
provide platforms for future research in the FCN domain.

I. INTRODUCTION

The tremendous advancement of the capabilities of digi-
tal systems over the last decades is strongly related to the
miniaturization of the transistor sizes, which for the longest
time followed Moore’s prediction from 1965 [1]. However,
reducing the transistor size no longer yields the improvements
it used to. In contrast to what one would expect, main limiting
factors are not restrictions due to fabrication constraints or
parasitic effects of current technologies, but the high power
density of integrated circuits based on today’s conventional
technologies. This restraint led to a stagnation of the clock
speeds in the beginning of this millennium and an increasing
number of the so-called dark silicon, i. e., regions of a chip
that must be powered off to avoid overheating [2].

This problem is worsening with the emergence of new
types of applications that have to compute with massive
amount of data, such as deep learning or high-resolution
image processing. On the end of the scale, novel embedded
systems intended for ubiquitous computing, e. g., Internet-of-
Things related applications or portable biomedical devices, are
strongly restricted by their energy supply, i. e., batteries or
energy harvesting solutions.

Consequently, there is an increasing interest in alternative
technologies that enable fast computations with considerably

This paper discusses ToPoliNano version 1.2.0 and fiction version 0.3.1.

lower energy dissipation compared to the state of the art.
Among the several candidates, Field-coupled Nanocomput-
ing (FCN) [3] is a class of emerging technologies that is
constantly gaining more attention. In contrast to conventional
technologies, FCN conducts computations without any electric
current flow – allowing operations with a remarkable low
energy dissipation that is several magnitudes below current
CMOS technologies [4], [5], [6]. This promising outlook
motivated explorations on its feasibility which led to several
suitable contributions to the physical implementation of FCN
technology, many of them very recently (i. e., in the last 3–4
years) [7], [8].

Based on these promising physical implementations, sev-
eral researchers started to consider how to efficiently design
corresponding FCN circuits. While initial solutions have been
obtained manually [9], also automatic solutions, e. g., for
physical design, are available in the meantime [10], [11],
[12], [13] – even though the underlying problem is NP-
complete [14].

This paper presents two physical design tools for FCN
circuit layouts, namely fiction and ToPoliNano. While fiction
focuses on providing an open-source platform for design-
ers, algorithm developers, and researchers alike, ToPoliNano
comes with a user-centric interface to enable the study and
exploration of the FCN design concepts.

The remainder of the paper is structured as follows. To keep
this work self-contained, Section II provides background on
the FCN concept and covers two implementations, namely
Quantum-dot Cellular Automata (QCA) and Nanomagnet
Logic (NML). Sections III and IV discuss the design tools
fiction and ToPoliNano, respectively, and demonstrate their
usability. Finally, the paper is concluded in Section VI.

II. FIELD-COUPLED NANOCOMPUTING

This section provides the background on Field-Coupled
Nanocomputing (FCN) technologies, and the basis for the
remainder of this work. Instead of transistors, FCN circuits
consist of elements usually called cells that interact via mutual
repulsion of local fields. In Quantum-dot Cellular Automata

(a) States in QCA (b) QCA Majority (c) QCA OR

(d) States in NML (e) NML Majority (f) NML OR

Fig. 1: FCN states and basic gates

(QCA) [15], one possible implementation of the FCN concept,
a cell is composed of four or sixquantum dotswhich can
con�ne an electric charge and are arranged at the corners of
a square [16], [17]. Adding two free and mobile electrons
into each cell, that can tunnel between adjacent dots, yields a
stable state due to Coulomb interaction (note that a potential
barrier prevents tunneling to the outside of the cell). Then,
because of the mutual repulsion, the two electrons tend to
locate themselves at opposite corners of the cell – eventually
leading to two possiblecell polarizations, namelyP = � 1 and
P = +1 which can be de�ned as binary 0 and binary 1 (see
Fig. 1a). In contrast,Nanomagnet Logic(NML) cells are based
on single domain nanomagnets that can assume only two stable
magnetization states, namelyM = � 1 and M = +1 which
also can be used to represent the binary values 0 and 1 (see
Fig. 1d). Both concepts allow to implement Boolean functions
such as AND, OR, NOT, Majority.

Fig. 1a and 1d show the two cell polarization and the
two stable magnetization states which are used to represent
the binary values 0 and 1 in QCA and NML, respectively.
Furthermore, Fig. 1b shows for QCA how those cells can be
combined to implement a Majority function. Here, the outputy
evaluates to the binary state 1, if the majority of the input
valuesx1; x2; x3 is assigned1; otherwise,y evaluates to0.
Locking one of the three inputs to the 0-state turns this cell
into an AND gate. On the contrary, locking one of the inputs
to the 1-state results into an OR gate, as shown in Fig. 1c.
In a similar fashion, those functions can be implemented in
NML; as shown in Fig. 1e for the Majority function and in
Fig. 1f for the OR gate. In the latter, a so-calledslanted-edge
magnet[18] is applied that give preference to a magnetization.

As per the FCN concept, when two cells, both QCA and
NML, are placed closed to each other, the �eld effects will
interact, enabling information propagation. Unfortunately, the
effect of a neighboring cell is not enough to change the
magnetization of a cell. An external �eld, commonly referred
to as clock signals, is used to force the cells in an unstable
state. When the external �eld is removed, the cells will reach

a new stable condition depending on the interaction among
each other. The principle of an external clock mechanism is
common to the FCN technologies. Elements are placed in
different clock zones [19], [20], [13] and, in this way, the
information is correctly propagated through the circuit. The
need for clock zones sets completely new paradigms in the
design of circuits based on FCN technologies. Furthermore,
the circuits behave like a pipeline, where the data need to move
across the different clock zones. The physical design task in
FCN is not compatible with the placement of gates and routing
of wires of CMOS technology. The new paradigms brought-in
by the technological constraints require new techniques, for
example, signal path balancing throughout the entire design.

III. FICTION

This section describes�ction [21], a framework for �eld-
coupled technology-independent open nanocomputing which
is available at https://github.com/marcelwa/�ction. The�ction
framework is written in C++ and comes with data structures
for tile-based and cell-based FCN layouts, gate libraries for
technology mapping, algorithms for logic synthesis, physical
design, logical simulation, and veri�cation, as well as a
command-line interface(CLI), benchmarking, scripting, and
logging capabilities. Besides that,�ction also supports several
input and output �le formats. By this,�ction provides a com-
prehensive sandbox for designers, researchers, and developers
in the FCN domain.

In the following sections, a �ow from the speci�cation level
down to physical simulation is described and illustrated by
demonstrating the interaction with�ction 's store-based CLI
alice [22]. All commands discussed in the following can be
called with the- h �ag to print information about their further
settings and arguments.

A. Speci�cations

The starting point of all �ows is a logic network of elemen-
tary primitives that serves as a speci�cation for the layout that
is to be generated. Two input �le formats for logic networks
are supported: gate-levelVerilog that exclusively uses the
assign statement and logic primitives as well asAIGER [23]
that speci�esAnd-inverter graphs(AIGs). Suitable �les can
be generated, e. g., withABC [24] by using commands

1 strash
2 write <outputfile>

on any logic network in store where<out put file> uses
either the.v or .aig �le extension.

The parser librarylorina [22] used in�ction supports MAJ
operations in Verilog. Alternatively, logic networks can also be
synthesized as MAJ networks from a truth table speci�cation
using Akers' synthesis[25] or be generated randomly with
or without MAJ nodes. This enables one to quickly test
algorithms on a multitude of inputs. The following snippet
creates three logic networks as speci�cations, one read from a
�le, one synthesized from a truth table, and one generated at
random with 4 primary inputs and 8 logic nodes (not counting
inverters and fan-outs).

1 read ../benchmarks/ISCAS85/c17.v
2 tt 0001110010100111; akers
3 random -n 4 -g 8

Furthermore, truth tables can be generated from logic net-
works which can then again be used for synthesis. This is
one possible way to generate a Majority network from a non-
Majority one. The following commands exploit this use case.

1 read ../benchmarks/TOY/xor5R.v
2 simulate -n --store
3 akers

Note that truth tables represent single-output functions.
Therefore, this approach generates multiple truth tables for
multi-output networks.

Initially, no logic network incorporates designated fan-out
nodes. However, during the physical design, fan-outs are real-
ized as elements that occupy one tile and, by this, contribute
to the critical path and the throughput. To substitute high-
degree fan-out nodes in any logic network, the command
fanouts can be used that is parameterizable with a degree,
a strategy (breadth vs. depth), and a threshold. Furthermore,
certain algorithms in related work propose path balancing
as an important pre-processing step to physical design. The
commandbal ance provides this possibility. However, this
command has been introduced for the sake of completeness
as the state-of-the-art physical design algorithms implemented
in �ction achieve better results on unbalanced networks.

To print statistics about a logic network, the command
ps - n can be used. Alternatively, the commandgates
provides a detailed listing of the gate types. Additionally,
show - n allows to inspect the network by creating a
Graphviz.dot �le from it and opening it with the platform's
standard viewer.

B. Physical Design

The process of physical design is the transformation of a
logic network into a fabricable circuit layout satisfying all
technology-speci�c constraints so that it conducts the same
functionality as the original logic network. This has been
proven to be anNP -complete problem [14]. The physical
design contains the steps of placement, routing, timing (clock-
ing), and technology mapping. In the following,�ction 's im-
plementations of state-of-the-art algorithms for FCN physical
design are brie�y discussed.

First, an approach based on a �rst-order logic description
of the FCN physical design problem is described. It generates
optimal FCN circuit layouts in terms of area while meeting all
design constraints by a sequence of incremental SMT solver
calls [10]. Intuitively speaking, sets of rules are generated that
encode all possible placements and routings on a �xed layout
size symbolically. An SMT solver is then called to �nd a valid
one that ful�lls all design constraints. If none exists, the layout
size is incremented and the process is started all over again.
Various options and toggles allow for the use of, e. g., arbitrary
prede�ned clocking schemes, crossings, primary input/output
locations, unbalanced paths, and synchronization elements.

Additionally, optimization targets can be set to minimize, e. g.,
the number of wire segments, or crossings used. Symmetry
breaking and sophisticated encoding mechanisms are applied
to reduce solving time as much as possible. Nevertheless, the
nature of an exact approach limits its applicability to rather
small logic networks with only a few dozens of nodes.

However, this approach is highly parameterizable and can
produce results for a variety of settings, thereby allowing
for design space exploration. The commandex act calls
this algorithm on the current logic network in store. Some
important parameters are listed in the following.

- s De�nes the clocking scheme to be used. Possible val-
ues are 2DDWave [26], USE [27], RES [28], and
BANCS[29], and ToPoli Nano [30]. If no scheme is
given, the solver takes this degree of freedom to �nd the
most compact one for the network. Note that this has a
huge negative impact on the runtime and should only be
used for the smallest of networks.

- x Enables wire crossings. Note that most networks require
wire crossings to be layouted.

- i Enables designated pins for the primary inputs and out-
puts of the layout.

- b Routes all primary inputs and outputs to the layout's
borders.

- l Enables the use of clock latches (synchronization el-
ements) to arti�cially balance signal paths by stalling
information [31].

- d Allows for de-synchronized (unbalanced) signal paths re-
sulting in more compact layouts with reduced throughput.

- w Minimizes the number of wire segments used.
- c Minimizes the number of crossings used.
- a Speci�es a number of threads to run asynchronously.

Since the threads cannot share learned clauses, this does
not always increase performance. However, it turned out
to be helpful especially for larger networks.

Second, a scalable method [32] is implemented which is
based on an approximation forOrthogonal Graph Draw-
ing (OGD) [33]. It represents the logic network as a graph that
is to be embedded in the plane orthogonally and solves this
problem using Biedl's algorithm [34]. It has a huge runtime
advantage compared to the exact approach. Although the
layouts generated by this approach are non-optimal in terms
of area and restricted to the 2DDWave clocking scheme, this
technique is applicable even for larger networks and provides
results in reasonable runtime.

This algorithm can be called using the commandor tho
that has the same- i and- b �ags as ex act .

Generated layouts of both algorithms are gate-level abstrac-
tions. After creation, they are placed in a respective store just
like logic networks. To print statistics, commandps - g can
be used.

To apply a gate library and thereby conduct a technol-
ogy mapping from the gate-level down to the cell-level, the
commandcell is available. The default library to apply is
QCA ONE[35]. The command generates a QCA cell layout
and places it in a store from where it can be inspected via

(a) ex act - ixbs 2DDWave (b) ex act - ds USE

Fig. 2: Two differently layouted variants ofc17.v

show - c – generating a scalable vector graphic and opening
it in the platform's standard viewer. Area information can be
displayed via commandarea and its energy consumption can
be approximated via commandenergy (using the physical
model presented in [5]).

Consider the following sequence of commands that puts
the entire physical design �ow together by generating two
differently parameterized layouts from thec17 logic network,
printing their statistics, conducting technology mapping, and
generating graphics.

1 read ../benchmarks/ISCAS85/c17.v
2 exact -ixbs 2DDWave
3 ps -g
4 cell
5 show -c
6 exact -ds USE
7 ps -g
8 cell
9 show -c

The following statistical information about the layouts is
printed.1

1 c17: 5 x 7, #G: 18, #W: 18, #C: 3, CP: 11, TP: 1/1
2 c17: 4 x 5, #G: 11, #W: 7, #C: 0, CP: 13, TP: 1/3

This reads as the dimension of the resulting layout in tiles,
the amount of gate (#G) and wire tiles (#W), crossings (#C)
used, the length of the critical path (CP) in tiles, and the
throughput (TP), i. e., the highest delay difference of any gate
in the layout, where1/x means that input data must be held
constant forx full cycles to synchronize all signals while
correct outputs occur only once everyx full clock cycles [31],
[36]. Note that fan-outs and I/O pins are counted as gates since
they are �xed by the input. This way, the displayed amount
of wires represents the net costs [37]. The resulting graphics
are shown in Figure 2.

1The number of synchronization elements has been omitted from both lines
(as this design feature was not even enabled) to shorten the output and prevent
unaesthetic line breaks.

C. Validation

The correctness of designed layouts can be validated on the
structural, the logical, and the physical level.

For gate-level layouts, the �rst step after the physical design
is the design rule checking, i. e., a process that inspects the
structural integrity of the generated layout. This is also a useful
tool for algorithm designers that want to debug their code as it
directly points to the locations of design rule violations in the
layout. The commandcheck executes design rule checking
on the current gate-level layout and outputs a summary report.
Among other features, this algorithm checks for proper wire
routing, spacing, and crossing, whether data �ow respects
clocking, and primary input and output pin locations.

If the layout's structure is valid, its logical functionality can
be checked. Therefore, the logical simulation via command
sim ulate - g is available to generate a truth table for
each primary output. Due to the exponential growth in the
number of primary inputs, the simulation-based approach is
not reasonable for larger-scale layouts. Therefore a SAT-
based veri�cation approach can be used to prove functional
equivalence of a generated layout and a speci�cation that can
either be a logic network or another layout [38]. The respective
command isequiv which compares a layout against the
logic network it was created from. Adding parameter- g <n>
allows comparison against another layout in store where<n>
must be replaced with the respective store entry identi�er.

However, this veri�cation only validates functional correct-
ness. To achieve a notion of the physical behavior of a circuit,
QCA cell-level layouts can be written as simulation �les for
theQCADesigner[39], a standard tool for physical simulation
of QCA structures, by using commandqca <file name>.
In addition, iNML cell-level layouts can be written as compo-
nent �les for ToPoliNano and MagCAD, which are described
in Section IV, by using commandqcc <file name>.

D. Scripting & Benchmarking

All demonstrated functionalities can be embedded into
several types of scripts.

A �ction script is a text �le that contains a sequence of
commands. It can be passed to�ction by calling it with
./fic tion - f <file name>.

Since�ction scripts are rather in�exible, for the next sce-
nario, we want to layout all �les from a folder, log their
statistical information, and generate simulation models for
QCADesigner. To this end, we create the following bash script.

1 for filepath in ../benchmarks/TOY/ * .v; do
2 f="${filepath## * /}"
3 ./fiction -c "read $filepath; ortho -i; ps -g;

cell; qca ${f%. * }.qca" -l ${f%. * }.json
4 done

Using the- c �ag, a semicolon-separated list of commands
can be provided and the output is logged in a JSON �le by
the - l �ag. For both, the physical models as well as the log
�les, the original �lename is used extended by the respective
�le extension.

Fig. 3: Main window of ToPoliNano. In the central part a VHDL �le opened in the built-in text editor. The language keywords
are highlighted to improve readability.

For more sophisticated analyses and interoperability with
statistical tools,�ction can expose a Python API. Refer to the
of�cial alice documentation to learn more [22].

IV. TOPOLINANO

This section describes the ToPoliNano (Torino Politecnico
Nanotechnology) framework, which is available at
https://topolinano.polito.it. The project has grown around the
idea of creating a �exible set of tools enabling the design,
simulation, and test of FCN circuits. This framework aims
to provide a uni�ed approach to the exploration of emerging
technologies [40]. The framework is a cross-platform EDA
software developed by the VLSI group of Politecnico di
Torino. It closes the gap between device engineers and
system-level engineers enabling the same top-down design
�ow usually available with CMOS. It enables architectural
exploration with a primary focus on FCN. ToPoliNano is
developed in C++ and comes with a portable user interface
written in Qt to operate across Linux, macOS, and Windows.
The ToPoliNano framework is composed of two separate
software: ToPoliNano [30] and MagCAD [41]. The former is
an automatic place & route tool that also embeds a simulation
engine. The latter enables custom circuit design using a
graphical user interface (GUI).

Currently, the ToPoliNano framework supports thein-plane
Nano Magnetic Logic(iNML) and perpendicular Nano Mag-
netic Logic(pNML) technologies. Circuits designed with Mag-

CAD can be used as custom components in ToPoliNano. On
the other hand, automatically generated layouts by ToPoliNano
can be modi�ed and embedded in larger designs by using
MagCAD. This information exchange is possible thanks to a
common �le format de�ned in the framework. Layout and
components �les are saved in a speci�c format associated
with the .qll - and .qcc -extensions, respectively. In the
following sections, a rough description of the ToPoliNano �ow
is provided.

A. HDL Parsing

ToPoliNano enables the physical design and simulation
of circuits in the same tool. The ToPoliNano starting point
is a post-synthesis HDL description of the circuit. Logic
networks synthesized by theSynopsys Design Compiler[42]
or ABC[24] are applicable for instance. The synthesis needs to
be performed using a particular target library. As an example,
for the iNML design, the synthesis should be performed using
a speci�c library that we provide on the ToPoliNano website
as a.db �le. The library contains the basic cells available
in the target technology. Note that only combinational logic
networks can be handled by ToPoliNano.

Fig. 3 presents a screenshot of ToPoliNano's main window.
Four parts can be identi�ed in the GUI. On the left, source �les
are listed in a tree-view. The user selects a workspace folder,
and the tool handles all the �les present in that folder. On the
right, a similar tree-view shows the components available in

Fig. 4: Example of full adder layout obtained with ToPoliNano.

the user library. The bottom part of the GUI is reserved for a
log panel. Log messages appear here, and a user can also enter
commands using acommand line interface(CLI) . All the
commands can also be performed using the buttons and menus
of the interactive GUI. Finally, the center part of the window
holds a set of tabs. Different tabs are available: a simple text
editor, a layout visualizer, and simulation waveforms.

The user can modify the descriptive code of synthesized
logic networks (which can be provided in both, Verilog or
VHDL) using the integrated text editor (see Fig. 3). Then, it is
possible to select a top-level �le, and the tool will compile all
the elements in the hierarchy. ToPoliNano will automatically
scan the source �les and build an internal data structure that
will be used during the layout phase.

B. Physical Design

The next phase is the layout generation. This phase consists
of two main steps: (1) the graph elaboration and (2) the
physical mapping. During the graph elaboration phase, the
netlist is analyzed and optimized to verify the maximum fan-
out allowed by each node. It synchronizes signals and reduces
as much as possible the number of wire crossings. The user can
select different optimization algorithms and technology param-
eters. Those algorithms are derived from the physical design of
CMOS circuits, but have been adapted to meet the technology
constraints of FCN. The algorithms aims at reducing the
number of crossings in the layout. Given that iNML is a planar
technology, the number of crossings has a signi�cant impact
on the layout dimension and, therefore, the performance. The
user can select among four different algorithms: Barycenter,
Kernighan-Lin, and two versions of simulating annealing [30].
The user can de�ne a sequence of algorithms to be applied
(cf. Fig. 5). It is possible to have multiple entries of the same
algorithm in the sequence. Furthermore, the user can modify
the parameters for the simulated annealing execution. It is also
possible to change the design rules for the layout. For example,
the maximum number of fan-out, the number of vertically
stacked elements, and the number of magnets placed in each
clock zone. Furthermore, the user can modify some element
parameters, like the magnets geometry and the spacing. This
possibility is extremely interesting for emerging technologies:
it is possible to understand how these parameters affect the
�nal layout.

Fig. 5: Layout parameter window in ToPoliNano. In the
top part the optimization algorithms, in the centre layout
parameters, and in the bottom part the layout approach.

ToPoliNano can handle large logic networks exploiting
hierarchy to reduce the computation time. ToPoliNano can
reuse components available within the user library or generate
a �at layout from a hierarchical netlist. The user can choose
among different layout approaches:�at , partially, and fully
hierarchical. In the�at approach, the hierarchy of the network
is �attened, while it is fully exploited in the fully hierarchical
mode. In the partially hierarchical approach, only the �rst
level of the hierarchy will be used, and inner components
will be �attened. In the hierarchical approach, the user has
an additional possibility. It is possible to force ToPoliNano
to perform the layout of every component in the hierarchy.
On the contrary, enabling the “Load from library” checkbox,
the tool will scan the workspace and load previously designed
components used in the layout. These components could have
also been modi�ed with MagCAD [41].

After this phase, the resulting circuit layout is displayed (see
Fig. 4). The user can inspect the layout up to the single element
and it is possible to expand the components and examine all
the hierarchical levels. During the layout execution, detailed
information are reported in the log panel present in the bottom
part of the ToPoliNano GUI. In particular, the execution time

	Introduction
	Field-coupled Nanocomputing
	fiction
	Specifications
	Physical Design
	Validation
	Scripting & Benchmarking

	ToPoliNano
	HDL Parsing
	Physical Design
	Simulation

	Common Integrated Design Flow
	Conclusion
	Acknowledgments
	References

