ToPoliNano and fiction:
Design Tools for Field-coupled Nanocomputing
(Invited Paper)

Umberto Garlando*, Marcel Walter, Robert Wille*$Y, Fabrizio Riente*, Frank Sill Torres”, Rolf Drechsler’$

*Department of Electronics and Telecommunications, Politecnico di Torino, Italy
TGroup of Computer Architecture, University of Bremen, Germany
nstitute for Integrated Circuits, Johannes Kepler University Linz, Austria
§Cyber Physical Systems, DFKI GmbH, Bremen, Germany
TSoftware Competence Center Hagenberg GmbH (SCCH), Austria
||Department for the Resilience of Maritime Systems, DLR, Bremerhaven, Germany

Abstract—Field-coupled Nanocomputing (FCN) is a computing
concept with several promising post-CMOS candidate imple-
mentations that offer tremendously low power dissipation and
highest processing performance at the same time. Two of the
manifold physical implementations are Quantum-dot Cellular
Automata (QCA) and Nanomagnet Logic (NML). Both inherently
come with domain-specific properties and design constraints that
render established conventional design algorithms inapplicable.
Accordingly, dedicated design tools for those technologies are
required. This paper provides an overview of two leading
examples of such tools, namely fiction and ToPoliNano. Both tools
provide effective methods that cover aspects such as placement,
routing, clocking, design rule checking, verification, and logical
as well as physical simulation. By this, both freely available tools
provide platforms for future research in the FCN domain.

I. INTRODUCTION

The tremendous advancement of the capabilities of digi-
tal systems over the last decades is strongly related to the
miniaturization of the transistor sizes, which for the longest
time followed Moore’s prediction from 1965 [1l]. However,
reducing the transistor size no longer yields the improvements
it used to. In contrast to what one would expect, main limiting
factors are not restrictions due to fabrication constraints or
parasitic effects of current technologies, but the high power
density of integrated circuits based on today’s conventional
technologies. This restraint led to a stagnation of the clock
speeds in the beginning of this millennium and an increasing
number of the so-called dark silicon, i.e., regions of a chip
that must be powered off to avoid overheating [2].

This problem is worsening with the emergence of new
types of applications that have to compute with massive
amount of data, such as deep learning or high-resolution
image processing. On the end of the scale, novel embedded
systems intended for ubiquitous computing, e. g., Internet-of-
Things related applications or portable biomedical devices, are
strongly restricted by their energy supply, i.e., batteries or
energy harvesting solutions.

Consequently, there is an increasing interest in alternative
technologies that enable fast computations with considerably

This paper discusses ToPoliNano version 1.2.0 and fiction version 0.3.1.

lower energy dissipation compared to the state of the art.
Among the several candidates, Field-coupled Nanocomput-
ing (FCN) [3] is a class of emerging technologies that is
constantly gaining more attention. In contrast to conventional
technologies, FCN conducts computations without any electric
current flow — allowing operations with a remarkable low
energy dissipation that is several magnitudes below current
CMOS technologies [4]], [S)], [6]. This promising outlook
motivated explorations on its feasibility which led to several
suitable contributions to the physical implementation of FCN
technology, many of them very recently (i.e., in the last 3—4
years) [7l], [8].

Based on these promising physical implementations, sev-
eral researchers started to consider how to efficiently design
corresponding FCN circuits. While initial solutions have been
obtained manually [9], also automatic solutions, e.g., for
physical design, are available in the meantime [10], [L1],
[12], [13] — even though the underlying problem is NP-
complete [14]].

This paper presents two physical design tools for FCN
circuit layouts, namely fiction and ToPoliNano. While fiction
focuses on providing an open-source platform for design-
ers, algorithm developers, and researchers alike, ToPoliNano
comes with a user-centric interface to enable the study and
exploration of the FCN design concepts.

The remainder of the paper is structured as follows. To keep
this work self-contained, Section [l provides background on
the FCN concept and covers two implementations, namely
Quantum-dot Cellular Automata (QCA) and Nanomagnet
Logic (NML). Sections [[I] and [IV] discuss the design tools
fiction and ToPoliNano, respectively, and demonstrate their
usability. Finally, the paper is concluded in Section

II. FIELD-COUPLED NANOCOMPUTING

This section provides the background on Field-Coupled
Nanocomputing (FCN) technologies, and the basis for the
remainder of this work. Instead of transistors, FCN circuits
consist of elements usually called cells that interact via mutual
repulsion of local fields. In Quantum-dot Cellular Automata

a new stable condition depending on the interaction among
each other. The principle of an external clock mechanism is
common to the FCN technologies. Elements are placed in
different clock zones [19], [20], [13] and, in this way, the

information is correctly propagated through the circuit. The

need for clock zones sets completely new paradigms in the
design of circuits based on FCN technologies. Furthermore,
the circuits behave like a pipeline, where the data need to move
across the different clock zones. The physical design task in
FCN is not compatible with the placement of gates and routing
of wires of CMOS technology. The new paradigms brought-in

by the technological constraints require new techniques, for
example, signal path balancing throughout the entire design.

(a) States in QCA (b) QCA Majority (c) QCA OR

I11. FICTION
(d) States in NML (e) NML Majority (f) NML OR This section describestion [21], a framework for_eld-

Fig. 1: FCN states and basic gates coupled _echnology-ndependent pen _ranocomputing which
is available at https://github.com/marcelwa/ ction. Thtion

(QCA) [15], one possible implementation of the FCN concep! ,am_ework is written in C++ and comes with data_struptures
a cell is composed of four or siguantum dotswhich can or tile-based and cell-based FCN layouts, gate libraries for

con ne an electric charge and are arranged at the cornerst%(fhmlogy .mappi.ng, algorithms for I.ogic. synthesis, physical
a square [16], [17]. Adding two free and mobile electronges'gn' Ioglcal_ simulation, ‘and veri cat_lon, as vyell as a
into each cell, that can tunnel between adjacent dots, yield 'mand-llne. !F“erfa‘:*(?“)’ benghmarkmg, scripting, and
stable state due to Coulomb interaction (note that a poten 2y9!ng capabilities. Besides thatlion also supports several

barrier prevents tunneling to the outside of the cell). TheH‘,put a“?' output le formats._ By thisction provides a com-
because of the mutual repulsion, the two electrons tend !%ehenswe sandbox for designers, researchers, and developers

locate themselves at opposite corners of the cell — eventud he FCN dolmam. . S
leading to two possibleell polarizations namelyP = 1 and In the following sections, a ow from the speci cation level
P =+1 which can be de ned as binary 0 and binary 1 (Segown to physical simulation is described and illustrated by

Fig. 1a). In contrastanomagnet LogiNML) cells are based emonstrating the interaction witletion's store-based CLI

on single domain nanomagnets that can assume only two staige [22.]' All commands @spussed N the foIIowmg can be
magnetization states, namelf = 1 andM =+1 which called with the- h ag to print information about their further

also can be used to represent the binary values 0 and 1 (§%téings and arguments.

Fig. 1d). Both concepts allow to implement Boolean functiong, Speci cations

such as AND, OR, NOT, Majority. The starting point of all ows is a logic network of elemen-
Fig. 1a and 1d show the two cell polarization and thgyy primitives that serves as a speci cation for the layout that
two stable magnetization states which are used to represghiy pe generated. Two input le formats for logic networks
the binary values 0 and 1 in QCA and NML, respectivelyare supported: gate-levelerilog that exclusively uses the
Furthermore, Fig. 1b shows for QCA how those cells can %sign statement and logic primitives as well d&ER [23]
combined to implement a Majority function. Here, the output that speci esAnd-inverter graphgAIGs). Suitable les can

valuesxy; Xz; X3 is assignedl; otherwise,y evaluates ta0. -
stras

Locking one of the three inputs to the O-state turns this q> " ,

. . .~ 2| write <outputfile>

into an AND gate. On the contrary, locking one of the inpu-

to the 1-state results into an OR gate, as shown in Flg lﬁ] any |Ogic network in store whei<out put file> uses

In a similar fashion, those functions can be implemented #ither the.v or .aig le extension.

NML; as shown in Fig. le for the Majority function and in The parser libraryorina [22] used in ction supports MAJ

Fig. 1f for the OR gate. In the latter, a so-callsidnted-edge operations in Verilog. Alternatively, logic networks can also be

magnef{18] is applied that give preference to a magnetizatiogynthesized as MAJ networks from a truth table speci cation
As per the FCN concept, when two cells, both QCA andsing Akers' synthesig25] or be generated randomly with

NML, are placed closed to each other, the eld effects wilbr without MAJ nodes. This enables one to quickly test

interact, enabling information propagation. Unfortunately, thedgorithms on a multitude of inputs. The following snippet

effect of a neighboring cell is not enough to change thaeates three logic networks as speci cations, one read from a

magnetization of a cell. An external eld, commonly referredle, one synthesized from a truth table, and one generated at

to as clock signals, is used to force the cells in an unstalsBndom with 4 primary inputs and 8 logic nodes (not counting

state. When the external eld is removed, the cells will readinverters and fan-outs).

.

Additionally, optimization targets can be set to minimize, e.g.,

read ../benchmarks/ISCAS85/c17.v . .
tt 0001110010100111: akers the ngmber of wire segments, or crossings gsed. Symme’Fry
random -n 4 -g 8 breaking and sophisticated encoding mechanisms are applied

to reduce solving time as much as possible. Nevertheless, the
Furthermore, truth tables can be generated from logic nefature of an exact approach limits its applicability to rather

works which can then again be used for synthesis. This dfall logic networks with only a few dozens of nodes.

one possible way to generate a Majority network from a non- However, this approach is highly parameterizable and can

Majority one. The following commands exploit this use cas@roduce results for a variety of settings, thereby allowing

read /benchmarks/TOY/Xor5R.v for design space exploration. The commaexact calls
simulate -n --store this algorithm on the current logic network in store. Some
akers important parameters are listed in the following.

Note that truth tables represent single-output functionzS D€ nes the clocking scheme to be used. Possible val-
Therefore, this approach generates multiple truth tables for Ues are 2DDWave [26], USE [27], RES [28], and
multi-output networks. BANCSJ[29], and ToPoli Nano [30]. If no scheme is

Initially, no logic network incorporates designated fan-out ~ 9iven, the solver takes this degree of freedom to nd the
nodes. However, during the physical design, fan-outs are real- MOSt compact one for the network. Note that this has a
ized as elements that occupy one tile and, by this, contribute NU9€ negative impact on the runtime and should only be
to the critical path and the throughput. To substitute high- USed for the smallest of networks. _
degree fan-out nodes in any logic network, the commar:X Enables wire crossings. Note that most networks require
fanouts can be used that is parameterizable with a degree, Wiré crossings to be layouted. . _

a strategy (breadth vs. depth), and a threshold. Furthermg:1, Enables designated pins for the primary inputs and out-
certain algorithms in related work propose path balancing Puts of the layout. ‘
as an important pre-processing step to physical design. T:.P Routes all primary inputs and outputs to the layouts
commandbal ance provides this possibility. However, this POrders. .
command has been introduced for the sake of completenc!; Enables the use of clock latches (synchronization el-
as the state-of-the-art physical design algorithms implemented €Ments) to arti cially balance signal paths by stalling

in ction achieve better results on unbalanced networks. information [31]. . .
To print statistics about a logic network, the commanc @ Alloyvs for de-synchronized (unbal_anced) signal paths re-
ps -n can be used. Alternatively, the commaigates sulting in more compact layouts with reduced throughput.

provides a detailed listing of the gate types. Additionally; W Minimizes the number of wire segments used.
show -n allows to inspect the network by creating a € Minimizes the number of crossings used.
Graphviz.dot le from it and opening it with the platform's ~& SPecies a number of threads to run asynchronously.

standard viewer. Since the threads cannot share learned clau§es, this does
not always increase performance. However, it turned out
B. Physical Design to be helpful especially for larger networks.

The process of physical design is the transformation of aSecond, a scalable method [32] is implemented which is
logic network into a fabricable circuit layout satisfying allbbased on an approximation faDrthogonal Graph Draw-
technology-speci ¢ constraints so that it conducts the santeg (OGD) [33]. It represents the logic network as a graph that
functionality as the original logic network. This has beeis to be embedded in the plane orthogonally and solves this
proven to be anNP -complete problem [14]. The physicalproblem using Biedl's algorithm [34]. It has a huge runtime
design contains the steps of placement, routing, timing (clockdvantage compared to the exact approach. Although the
ing), and technology mapping. In the followingtion's im- layouts generated by this approach are non-optimal in terms
plementations of state-of-the-art algorithms for FCN physicaf area and restricted to the 2DDWave clocking scheme, this
design are brie y discussed. technique is applicable even for larger networks and provides

First, an approach based on a rst-order logic descriptigiesults in reasonable runtime.
of the FCN physical design problem is described. It generatesThis algorithm can be called using the commeor tho
optimal FCN circuit layouts in terms of area while meeting athat has the sam-i and-b ags asexact .
design constraints by a sequence of incremental SMT solveGenerated layouts of both algorithms are gate-level abstrac-
calls [10]. Intuitively speaking, sets of rules are generated thains. After creation, they are placed in a respective store just
encode all possible placements and routings on a xed laydike logic networks. To print statistics, commaps -g can
size symbolically. An SMT solver is then called to nd a validbe used.
one that ful lls all design constraints. If none exists, the layout To apply a gate library and thereby conduct a technol-
size is incremented and the process is started all over agaigy mapping from the gate-level down to the cell-level, the
Various options and toggles allow for the use of, e. g., arbitracpmmandcell is available. The default library to apply is
prede ned clocking schemes, crossings, primary input/outp@QCA ONE[35]. The command generates a QCA cell layout
locations, unbalanced paths, and synchronization elemertsd places it in a store from where it can be inspected via

.

N

C. Validation

The correctness of designed layouts can be validated on the
structural, the logical, and the physical level.

For gate-level layouts, the rst step after the physical design
is the design rule checking, i.e., a process that inspects the
structural integrity of the generated layout. This is also a useful
tool for algorithm designers that want to debug their code as it
directly points to the locations of design rule violations in the
layout. The commanicheck executes design rule checking
on the current gate-level layout and outputs a summary report.
Among other features, this algorithm checks for proper wire
routing, spacing, and crossing, whether data ow respects
clocking, and primary input and output pin locations.

(a) exact -ixbs 2DDWave (b) exact -ds USE If the layout's structure is valid, its logical functionality can
be checked. Therefore, the logical simulation via command
simulate -g is available to generate a truth table for
each primary output. Due to the exponential growth in the
show - c — generating a scalable vector graphic and openiRgmber of primary inputs, the simulation-based approach is
it in the platform's standard viewer. Area information can bﬂot reasonable for |arger-5ca|e |ay0uts_ Therefore a SAT-
displayed via commanarea and its energy consumption campased veri cation approach can be used to prove functional
be approximated via commarenergy (using the physical equivalence of a generated layout and a speci cation that can
model presented in [5]). either be a logic network or another layout [38]. The respective
Consider the following sequence of commands that putemmand isequiv which compares a layout against the
the entire physical design ow together by generating twlogic network it was created from. Adding parame- g <n>
differently parameterized layouts from tc17 logic network, allows comparison against another layout in store wi<n>
printing their statistics, conducting technology mapping, andust be replaced with the respective store entry identi er.

Fig. 2: Two differently layouted variants «17.v

generating graphics. However, this veri cation only validates functional correct-
read /benchmarks/ISCASS5/c17 v ness. To achieve a notion of the p.hysical b(.ahavio.r of a circuit,
exact -ixbs 2DDWave QCA cell-level layouts can be written as simulation les for
s|ps -g the QCADesignef39], a standard tool for physical simulation
' gﬁ'(')w . of QCA structures, by using commaigca <file name>.
ol exact -ds USE In addition, INML cell-level layouts can be written as compo-
ps -g nent les for ToPoliNano and MagCAD, which are described
¢ gﬁ'(')w . in Section IV, by using commanqgcc <file name>.

The following statistical information about the layouts i®- SCripting & Benchmarking

printed? All demonstrated functionalities can be embedded into
cl7: 5 x 7, #G: 18, #W: 18, #C: 3, CP: 11, TP: 1/1 several.types Qf S_C“ptS- _
cl7: 4 x 5, #G: 11, #W: 7, #C: 0, CP: 13, TP: 1/3 A ction script is a text le that contains a sequence of

commands. It can be passed ition by calling it with
This reads as the dimension of the resulting layout in tile./fic tion -f <file name>.

the amount of gate#G) and wire tiles #W, crossings #C) Since ction scripts are rather in exible, for the next sce-

used, the length of the critical patiCP) in tiles, and the nario, we want to layout all les from a folder, log their

throughput TP), i. e., the highest delay difference of any gatetatistical information, and generate simulation models for

in the layout, wherel/x means that input data must be hel@QCADesigner. To this end, we create the following bash script.

constant forx full cycles to synchronize all signals whil , ,
1| for filepath in ../benchmarks/TOY/ *.v; do

correct outputs occur only once evexyfull clock cycles [31], | t=gfilepathi * [}

[36]. Note that fan-outs and 1/O pins are counted as gates s| .fiction -c "read $filepath; ortho -i; ps -g;

they are xed by the input. This way, the displayed amou cel; gca ${f%. +}qca” - ${f%. +}json

of wires represents the net costs [37]. The resulting grapl done

are shown in Figure 2.

Using the- ¢ ag, a semicolon-separated list of commands
can be provided and the output is logged in a JSON le by
1The number of synchronization elements has been omitted from both lin he i ag. For both, the phyS|CaI models as well as the IOg

(as this design feature was not even enabled) to shorten the output and pre\fgﬁ the original lename is used extended by the respective
unaesthetic line breaks. le extension.

Fig. 3: Main window of ToPoliNano. In the central part a VHDL le opened in the built-in text editor. The language keywords
are highlighted to improve readability.

For more sophisticated analyses and interoperability wiAD can be used as custom components in ToPoliNano. On
statistical tools,ction can expose a Python API. Refer to thehe other hand, automatically generated layouts by ToPoliNano

of cial alice documentation to learn more [22]. can be modied and embedded in larger designs by using
MagCAD. This information exchange is possible thanks to a
IV. TOPOLINANO common le format de ned in the framework. Layout and
This section describes the ToPoliNano iffie Politecnico components les are saved in a specic format associated
Nandechnology) framework, which is available atwith the .qll - and .qcc -extensions, respectively. In the

https://topolinano.polito.it. The project has grown around tHellowing sections, a rough description of the ToPoliNano ow

idea of creating a exible set of tools enabling the desigis provided.

simulation, and test of FCN circuits. This framework aims)

to provide a uni ed approach to the exploration of emergin@' HDL Parsing

technologies [40]. The framework is a cross-platform EDA ToPoliNano enables the physical design and simulation

software developed by the VLSI group of Politecnico dof circuits in the same tool. The ToPoliNano starting point

Torino. It closes the gap between device engineers aisda post-synthesis HDL description of the circuit. Logic

system-level engineers enabling the same top-down desiggiworks synthesized by tHgynopsys Design Compil§42]

ow usually available with CMOS. It enables architecturabr ABC[24] are applicable for instance. The synthesis needs to

exploration with a primary focus on FCN. ToPoliNano ide performed using a particular target library. As an example,

developed in C++ and comes with a portable user interfafir the iINML design, the synthesis should be performed using

written in Qt to operate across Linux, macOS, and Windows speci c library that we provide on the ToPoliNano website

The ToPoliNano framework is composed of two separats a.db le. The library contains the basic cells available

software: ToPoliNano [30] and MagCAD [41]. The former isn the target technology. Note that only combinational logic

an automatic place & route tool that also embeds a simulatioetworks can be handled by ToPoliNano.

engine. The latter enables custom circuit design using aFig. 3 presents a screenshot of ToPoliNano's main window.

graphical user interface (GUI). Four parts can be identi ed in the GUI. On the left, source les
Currently, the ToPoliNano framework supports theplane are listed in a tree-view. The user selects a workspace folder,

Nano Magnetic Logi¢iNML) and perpendicular Nano Mag- and the tool handles all the les present in that folder. On the

netic Logic(pNML) technologies. Circuits designed with Mag-ight, a similar tree-view shows the components available in

Fig. 4. Example of full adder layout obtained with ToPoliNano.

the user library. The bottom part of the GUI is reserved for a
log panel. Log messages appear here, and a user can also enter
commands using @ommand line interfac€CLI) . All the
commands can also be performed using the buttons and menus
of the interactive GUI. Finally, the center part of the window
holds a set of tabs. Different tabs are available: a simple text
editor, a layout visualizer, and simulation waveforms.

The user can modify the descriptive code of synthesized
logic networks (which can be provided in both, Verilog or
VHDL) using the integrated text editor (see Fig. 3). Then, itis
possible to select a top-level le, and the tool will compile all
the elements in the hierarchy. ToPoliNano will automatically
scan the source les and build an internal data structure that
will be used during the layout phase.

B. Physical Design

The next phase is the layout generation. This phase cons
of two main steps: (1) the graph elaboration and (2) t
physical mapping. During the graph elaboration phase, the
netlist is analyzed and optimized to verify the maximum fan-
out allowed by each node. It synchronizes signals and reduces
as much as possible the number of wire crossings. The user cahoPoliNano can handle large logic networks exploiting
select different optimization algorithms and technology pararfilerarchy to reduce the computation time. ToPoliNano can
eters. Those algorithms are derived from the physical design'8fise components available within the user library or generate
CMOS circuits, but have been adapted to meet the technolddyyat layout from a hierarchical netlist. The user can choose
constraints of FCN. The algorithms aims at reducing tt&mnong different layout approachest, partially, and fully
number of crossings in the layout. Given that INML is a plandterarchical In the at approach, the hierarchy of the network
techno|ogy’ the number of Crossings has a Signi cant |mpa@ attened, while it is fU”y eXplOited in the fU”y hierarchical
on the layout dimension and, therefore, the performance. TH@de. In the partially hierarchical approach, only the rst
user can select among four different algorithms: Barycentégvel of the hierarchy will be used, and inner components
Kernighan-Lin, and two versions of simulating annealing [30vill be attened. In the hierarchical approach, the user has
The user can de ne a sequence of algorithms to be app“@a additional pOSSlbI'lty It is possible to force ToPoliNano
(cf. Fig. 5). It is possible to have multiple entries of the sani® perform the layout of every component in the hierarchy.
algorithm in the sequence. Furthermore, the user can modi the contrary, enabling the “Load from library” checkbox,
the parameters for the simulated annealing execution. It is af§€ tool will scan the workspace and load previously designed
possible to change the design rules for the layout. For examgiemponents used in the layout. These components could have
the maximum number of fan-out, the number of verticallplso been modi ed with MagCAD [41].
stacked elements, and the number of magnets placed in eachfter this phase, the resulting circuit layout is displayed (see
clock zone. Furthermore, the user can modify some eleméig. 4). The user can inspect the layout up to the single element
parameters, like the magnets geometry and the spacing. Tdmsl it is possible to expand the components and examine all
possibility is extremely interesting for emerging technologieghe hierarchical levels. During the layout execution, detailed
it is possible to understand how these parameters affect thormation are reported in the log panel present in the bottom
nal layout. part of the ToPoliNano GUI. In particular, the execution time

Fig. 5: Layout parameter window in ToPoliNano. In the
{8% part the optimization algorithms, in the centre layout
rameters, and in the bottom part the layout approach.

	Introduction
	Field-coupled Nanocomputing
	fiction
	Specifications
	Physical Design
	Validation
	Scripting & Benchmarking

	ToPoliNano
	HDL Parsing
	Physical Design
	Simulation

	Common Integrated Design Flow
	Conclusion
	Acknowledgments
	References

