
Efficient ML-Based Performance Estimation
Approach across Different Microarchitectures for

RISC-V Processors
Weiyan Zhang1 Mehran Goli2 Muhammad Hassan1,2 Rolf Drechsler1,2

1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

weiyan.zhang@dfki.de {mehran, hassan, drechsler}@uni-bremen.de

Abstract—High-level performance estimation using Machine
Learning (ML) can significantly facilitate the exploration of a wide
range of processor microarchitecture solutions at the early stage.
Moreover, for the selected microarchitecture, it can remarkably
accelerate the software optimization step. Recently, ML has
been successfully applied to estimate performance, in particular
the clock cycles, for various microarchitecture implementations.
However, this is clearly not sufficient as the modern processor
microarchitectures are complex and require deeper insights into
microarchitectural behaviors for better high performance estima-
tion. In this context, finding an accurate and fast approach that
can support performance estimation of various microarchitecture
implementations of RISC-V Instruction Set Architecture (ISA) is
very challenging.

In this paper, we go beyond performance estimation based
on clock cycles, i.e., we expand on ML techniques to estimate
microarchitectural behaviors. We propose a novel approach based
on ML to estimate the performance of embedded software
on RISC-V processors across different microarchitectures. Our
approach leverages a fast functional simulator, cycle-accurate
Register Transfer Level (RTL) implementations, and ML tech-
niques to generate Predictive Models (PMs) that provide accurate
performance estimation while maintaining fast simulation time.
In addition to measuring the clock cycles, we also provide
insights into the microarchitectural behavior of different microar-
chitectures by estimating cache misses/hits, branch prediction
behavior, and memory dependencies. Experimental results on
four real-world cycle-accurate implementations of RISC-V ISA
with different microarchitectures at RTL show that using the
proposed approach leads to a huge performance boost up to
2261.4× compared to RTL simulations with an average prediction
error 0.4%.

Index Terms—Performance estimation, Machine learning, Em-
bedded software

I. INTRODUCTION

In recent years, embedded systems have become more central
to automation and Internet of Things (IoT). They are becoming
more complex as the required functionality increases and sil-
icon technology becomes more advanced. As a result, there
is a growing need for open-source solutions that can keep
pace with this rapid development. RISC-V, a free and open-
source Instruction Set Architecture (ISA), has shown enormous
potential, in particular, for embedded systems used in various

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within projects Scale4Edge under grant no.
16ME0127, ECXL under grant no. 01IW22002 and VE-HEP under grant no.
16KIS1342.

utilization domains. RISC-V is characterized by its modular and
extensible design, empowering designers to create customizable
processor implementations that can be tailored to a wide variety
of applications. Various RISC-V implementations at different
levels of abstraction are available in its ecosystem, making it a
versatile choice for a wide range of applications.

Performance, measured in terms of the number of clock
cycles, is a critical design constraint that needs to be pro-
filed in system design. Traditionally, designers often rely on
different tools to simulate and analyze the performance impact
resulting from various design trade-offs, including system com-
ponents, interconnect, and memory layout. There are various
performance estimation tools implemented at different levels
of abstraction, ranging from high-speed functional simulator
that lack cycle information to low-speed Register Transfer
Level (RTL) implementations that provide accurate cycle in-
formation. Although RTL enables accurate performance mea-
surement and design optimization, slow RTL simulation often
becomes the bottleneck of the design process. To effectively
explore potential options for different design choices, a robust
performance estimation approach is needed.

Machine Learning (ML) is a popular technique that is ex-
tensively utilized in various fields, including embedded system
design. It has demonstrated the capacity to effectively address
both linear and nonlinear problems. Traditionally, architectural
and system optimizations were typically performed to speed
up the execution and enhance the performance of ML models.
However, there are now indications of utilizing ML in a
different way: to improve the design of embedded systems
themselves [1], [2]. This trend is challenging traditional meth-
ods of system design and creating new opportunities for opti-
mization and innovation. For embedded systems, the execution
process of hardware can be modeled by trained Predictive
Models (PMs). The basic idea is to collect the reference
executed cycles and performance-related parameters, such as
dynamic instruction counts, during hardware execution, and
apply ML algorithms to train the models. The performance-
related parameters are selected in such a way that the approach
has the lowest dependency on microarchitectural and software
details. To predict the performance of new software, a fast func-
tional simulator is used to quickly obtain their performance-
related parameters, which are then applied to the trained PMs.

Recently, [2] used ML techniques to predict the clock cycles.
However, this is clearly not sufficient as the modern processor
microarchitectures are complex and require deeper insights
into microarchitectural behaviors for better high performance
estimation.

In this paper, we propose an ML-based methodology to
estimate the performance of embedded software for RISC-V
processors. Considering that the real physical hardware may
not be available, we employ a combination of fast functional
simulator, cycle-accurate RTL implementations, and ML tech-
niques to generate PMs. Subsequently, the PMs are combined
with a fast functional simulator to enable fast and accurate
prediction of the performance of new embedded software.
We demonstrate the generalizability of our approach across
multiple microarchitectures for the RISC-V ISA by applying
it to four real-world, cycle-accurate RTL implementations of
the RISC-V ISA. We evaluate the performance of our approach
on a set of standard benchmarks from TACLeBench [3]. Our
results show that our approach is highly effective, resulting
in a remarkable speedup of up to three orders of magni-
tude, surpassing traditional RTL simulations. Additionally, our
predictions exhibit high accuracy in estimating clock cycles.
Furthermore, our approach has been shown to be scalable,
allowing for estimation of microarchitectural behaviors such
as branch prediction, memory dependency prediction, cache
miss/hit, LSU busy (i.e., the number of cycles waiting for data
memory), and fetch wait (i.e., the number of cycles waiting for
instruction fetches), which play a crucial role in achieving high
performance in many modern microarchitectures.

The paper is structured as follows. Section II gives an
overview of previous works on performance estimation. The
proposed methodology is introduced in section III. Experi-
mental results to show the effectiveness of our approach are
presented in section IV. Finally, section V concludes this paper
and provides an outlook.

II. RELATED WORK

A. Performance Estimation

Performance estimation techniques mimic the behavior of
real hardware, they always make a trade-off between simulation
accuracy and speed. They can be divided into two main
categories: simulation and analytic-based models.

Simulation based approaches model system architectures at
different levels of abstraction. Functional simulator such as [4]
allows fast prototyping but lack of precision. At the Electronic
System Level (ESL) [5], SystemC-based Virtual Prototype (VP)
is often used before the detailed hardware implementation
is finalized. This abstraction gives some speedup over cycle-
accurate modelling at a low abstraction level. RTL simulation
offers a high degree of accuracy in verifying the functionality
of digital circuit designs. It can detect errors at an early stage,
leading to reduced cost in the design process. However, its
simulation speed is comparatively slow. In addition, perfor-
mance profilers are employed to evaluate the performance
of embedded systems at different levels of abstraction by
analyzing the collected runtime data during the execution. For

instance, Prof5 [6] estimates time and power consumption
by modeling the per-cycle power and execution cycles of all
instructions. But it does not have the ability to predict more
complex architectures like out-of-orders and branch predictors.

To effectively explore potential options for different choices
of processor, performance estimation of embedded software at a
higher level of abstraction is necessary. Analytic-based models
are another option and may be linear [7]–[10] or nonlinear [2],
[11], depending on the modeling approach used to express the
model. It is easy to implement and efficient to train. During the
system design process, analytical models are highly suitable for
rapid performance prediction of embedded systems. The main
advantage of this approach is that system designer can apply an-
alytical models to quickly perform estimation without requiring
knowledge of the specific behavior of software and architectural
details. Linear Regression (LR) is one of the most widely used
algorithms for estimating the performance. In [12], the authors
have used analytical models to estimate the execution time
of software component on a specific architecture. The paper
[2] proposes a learning-based modeling approach that utilizes
Artificial Neural Network (ANN) models based on information
extracted from VP to estimate the number of clock cycles at a
higher level of abstraction. An important advantage of the ANN
model is that it can easily capture the nonlinear behavior of the
processor. The learning-based approaches are comprised of two
phases, training and prediction. The model is trained using Mat-
lab or Python on the host machine. Analytic-based approaches
have been verified using PowerPC 750 [11], Intel i960KB
processor [13], ARM processor [8], LEON3 processor [7] and
RISC-V processor [2] as target architectures. However, existing
models and approaches for performance analysis may not fully
capture the complexity of microarchitectural behaviors, such
as cache behavior and branch prediction. Furthermore, the
generalizability of the proposed techniques to target processors
beyond the testing conducted in each respective paper has not
been fully established by the authors.

Our work utilizes analytical modeling as the foundation.
While previous research in this field predominantly employed
LR or ANN, we aim to compare their performance with
newer techniques. Specifically, we investigate the extent to
which other regression algorithms can provide more accurate
predictions. To achieve this, we implement multiple supervised
learning algorithms for performance prediciton, including four
classic ML algorithms: Ordinary Least Squares (OLS) regres-
sion, LR with Mini Batch Gradient Descent (MGD), ridge
regression and ANN. OLS regression and LR with MGD are
LR techniques that optimize the model’s parameters differently.
Ridge regression is a regularized form of LR that prevents
overfitting. ANN is a more complex model capable of capturing
nonlinear relationships among variables.

B. RTL-based RISC-V Implementations

The advantage of RTL is that it is essential for the hardware
design development process and by definition, it is 100%
accurate. There are various RTL implementations available for
RISC-V, including many open-source cores that are easily
accessible. In the following, we exemplarily review some of

Validation
DatasetTraining Sub-dataset Testing

Dataset

Tune and
Validate

Predicted
Results

Evaluate

Training Dataset

Cross-validation

Training Software Set

Learning
Algorithm

Predictive
Model

Train

RISC-V ELFs

applying nns to performance estimation of embedded software

Benchmarks

*RISC-V ELFs

Runtime Data
Dynamic Instruction Counts

*Dynamic
Instruction

Counts

Training Dataset Testing
Dataset

Functional SimulatorRISC-V
Processor

RISC-V Compiler

RISC-V Compiler

Tune
and
Validate

Predicted
Performance

Evaluate

Learning
Algorithm

Train

Training
Sub-dataset

Validation
Dataset

Performance Reference,
Dynamic Instruction Counts

*Dynamic
Instruction

Counts

Training Prediction

Training Software Set Benchmarks

RISC-V ELFs *RISC-V ELFs

Functional Simulator RISC-V Processor

Training Dataset Testing Dataset

Predictive
Model

Predictive
Model

Predictive
Model

Fig. 1. Performance estimation workflow.
* indicates that RISC-V ELFs and dynamic instruction counts are for benchmarks.

these cores. For example, Ibex [14] is programmed using Sys-
temVerilog, which is highly parametrizable and well-suited for
embedded control applications. RSD [15] is a 32-bit RISC-V
out-of-order superscalar processor core written in SystemVer-
ilog. SweRV [16] is also programmed using SystemVerilog and
allows up to two instructions per clock cycle. Additionally,
Western Digital has open-sourced the SweRV Instruction Set
Simulator (ISS) called Whisper [4] along with the SweRV
Core. µRV32RTL [17] is implemented in the modern Scala-
based SpinalHDL and suitable for FPGA synthesis. To verify
the generalizability of our approach, our PMs are generated
based on these four cores.

III. PROPOSED METHODOLOGY

In this section, we present our proposed approach for per-
formance estimation, which involves coupling a fast functional
simulator with ML-based models. An overview of our approach

TABLE I
PERFORMANCE COUNTERS USED IN PREDICTION.

Core Language Predicted Counters

Ibex SystemVerilog Cycles, LSU Busy,
Fetch Wait

RSD SystemVerilog

Cycles, IC misses,
DC load misses,
DC store misses,

branch prediction misses,
memory dependency

prediction misses
SweRV SystemVerilog Cycles

µRV32RTL SpinalHDL Cycles
Abbreviations: IC - Instruction Cache, DC - Data Cache.

is depicted in Fig. 1. The foundation of our methodology
lies in supervised learning, a widely utilized ML technique.
It encompasses two crucial phases: the training phase and
the prediction phase. In the subsequent subsections, we will
delve into a detailed explanation of each phase, outlining their
significance and key components.

A. Predictive Model Training

During the training phase, a set of programs (which we
denoted as the “training software set”) is prepared. To generate
the RISC-V binaries on our host computer, we take advan-
tage of the cross-compilation. A set of training software is
compiled with the RISC-V GNU Compiler Toolchain [18] to
generate the Executable and Linkable Formats (ELFs). The
ELFs of training software are then executed on a fast functional
simulator to obtain the dynamic information using built-in
instruction counters and on a RISC-V processor to obtain
the reference executed cycles and microarchitectural behaviors
from performance counters. The RISC-V processor could be
either a real physical hardware, such as a development board, or
a cycle-accurate implementation at RTL, if physical hardware
is not available. In this paper, four RISC-V implementations
at the RTL were considered to show that our approach is
generalizable across the RISC-V microarchitectures. These
cores are simulated using Verilator [19], which is an open-
source Verilog/SystemVerilog simulator. Table I shows the
programming language and obtained performance counters for
each core. These performance counters will be predicted in the
next phase and can be seen as outputs of our PMs. Among these
four cores, only µRV32RTL is written in SpinalHDL [20]. In
addition to simulate Verilog and SystemVerilog, Verilator is
also supported as a backend for SpinalHDL.

The training dataset consists of the dynamic instruction
counts, the reference executed cycles and the other microarchi-
tectural behavior counts (if available), which are extracted from
runtime information. Dynamic instruction counts can be seen
as performance features for accurately and succinctly capturing
and representing program execution. For each program in the
training dataset, it is represented as a feature vector. Let N
be the total number of programs in the training software set.
The input matrix X = [xT

1 , · · · ,xT
N]T and the output matrix

Y = [yT
1 , · · · ,yT

N]T are defined, where xi ∈ N1×U denotes
the feature vector containing U features for program i and

yi ∈ N1×V represents its corresponding vectorized V outputs
obtained from the performance counters of the target processor.
The training dataset is then represented as

Dtrain = {di|di = {xi,yi}; 1 ≤ i ≤ N}. (1)

A cross-validation technique on the training dataset is
adopted to help us find the best parameters for our PMs
and prevent overfitting. The training dataset is divided into a
training sub-dataset and validation dataset. Furthermore, OLS
regression, LR with MGD, ridge regression and ANN are
applied to the generated training sub-dataset, and the validation
dataset is used to tune and validate the training models to build
PMs. The performance of each algorithm is compared to find
the best suited algorithm.

B. Performance Prediction

In this phase, the PM is tested by a set of new software
selected from standard benchmarks. The benchmarks are com-
piled to generate the ELF files. Subsequently, each ELF file
is executed on a functional simulator to obtain dynamic in-
struction counts (i.e. performance features). For a given testing
software set with M benchmarks, let X̂ = [x̂T

1 , · · · , x̂T
M]T de-

note the set of performance feature vectors, where x̂j ∈ N1×U

represents the performance feature vector for benchmark j. The
testing dataset consists exclusively of performance features,
namely:

Dtest = {dj |dj = {x̂j}; 1 ≤ j ≤ M}. (2)

The testing dataset is used as inputs to the PM to estimate
the clock cycles and microarchitectural behaviors. The overall
prediction for the whole testing set is represented as Ŷ =
[ŷT

1 , · · · , ŷT
M]T, where ŷj ∈ N1×V denotes the corresponding

vectorized performance counters for benchmark j.
To evaluate the performance of our PM, we calculated the

Absolute Percentage Error (APE) metric for each performance
counter of every benchmark, defined as

APE =

∣∣∣∣y − ŷ

y

∣∣∣∣ ∗ 100%, (3)

where y and ŷ are considered as the real and estimated values
of the performance counter for each benchmark.

By calculating the APE values, we were able to quantify the
extent of deviation between the real and estimated values for
each performance counter. To provide a more comprehensive
evaluation, the Mean Absolute Percentage Error (MAPE) is
computed. This involves summing up the APE values corre-
sponding to each performance counter and dividing the sum
by the total number of benchmarks, i.e.,

MAPE =

∑M
j=1 APEj

M
, (4)

where APEj is the APE of benchmark j. The resulting MAPE
value represents the average percentage deviation between the
predicted and actual values across all benchmarks.

C. Machine Learning Algorithms

We employed supervised ML algorithms to predict the per-
formance of new software. The accuracy of our approach is
dependent on the choice of the ML algorithm employed. To
find the most suitable algorithm for the target processor, various
ML algorithms are outlined below.

1) Ordinary Least Squares Regression: LR models the
linear relationship between features and results. OLS is a
LR technique that is used to estimate the coefficients of LR
models. Define coefficient matrix W = [wT

0 , · · · ,wT
V]

T and
the augmented matrix Xaug = [JNsub×1 | Xsub], where w0

denotes the intercept vector, Nsub is the number of training
software used to generate the training sub-dataset, JNsub×1 is
an all-ones matrix with dimension Nsub×1, and Xsub consists
of feature vectors in the training sub-dataset. We want to find
the best coefficient matrix Ŵ that allows the training sub-
dataset to fit

Ypre = XaugW, (5)

where Ypre is the predicted output matrix.
The problem in (5) can be solved by minimizing the residual

sum of squares between the real values in the dataset and
predicted values by the linear approximation. The solution is
given by

Ŵ = arg min
W

∥XaugW −Ysub∥2F (6)

= (XT
augXaug)

−1XT
augYsub,

where Ysub is the output matrix in the training sub-dataset, and
∥ · ∥F is the Frobenius norm. After solving the coefficients, the
LR model that can be used for prediction has the following
form:

y = [1 | x]Ŵ, (7)

where y is the predicted performance counter vector for a given
software and x is the corresponding feature vector.

2) Linear Regression with Mini Batch Gradient Descent:
Gradient Descent (GD) is the process of minimizing compu-
tational complexity and optimizing a loss function to find the
coefficients in an iterative way that corresponds to the best fit
between predicted values and actual values. MGD is a variant
of the GD algorithm and is used to calculate model error and
update model coefficients by splitting the training sub-dataset
into small batches. The loss function – the Mean Squared
Error (MSE) – is minimized during the training period.

3) Ridge Regression: Ridge regression is an extension of
LR where the loss function is modified by adding a penalty
parameter, known as ridge coefficient. Therefore, the problem
to find the best coefficients becomes:

min
W

∥XaugW −Ysub∥2F + α ∥W∥2F , (8)

where α is the tuning parameter that controls the shrinkage of
the penalty.

1 // Generate a specified number of SLTI instructions
2 // based on the value of num_slti
3 void slti_gen(int num_slti) {
4 int i = 0;
5 while (i < num_slti) {
6 bool slti = (i < 3);
7 i++;
8 }
9 }

Fig. 2. Training software module generating the SLTI instruction.

4) Artificial Neural Network: To capture the nonlinear be-
havior of software performance, feedforward and backpropaga-
tion ANN is used to create performance PM. ANN is composed
of an input layer, any number of hidden layers, and an output
layer. Each layer may have a different number of neurons
and different activation functions. The matrix Xsub is fed into
the input layer and sent forward through different connections
from one neuron to another in the network. Each neuron
holds a number bias and has an activation function, and each
connection holds a weight. Once they reach the output layer, the
estimated performance counters are obtained. Backpropagation
is for calculating the gradients efficiently. It always starts at the
output layer and propagates backward, updating weights and
biases for each layer in order to produce the desired output at
the output layer.

The architecture of an ANN is determined by a set of
hyperparameters. These hyperparameters play a crucial role
in shaping the network’s structure and behavior. In order to
identify the optimal hyperparameters, a technique known as
hyperparameter tuning is employed. This technique allows for
the exploration of a range of hyperparameter configurations and
facilitates the selection of the most suitable model architecture.
During our experiments, we focused on tuning five key hy-
perparameters: the learning rate, the number of hidden layers,
the number of neurons in each layer, the activation function
in each layer, and the number of epochs. Hyperparameter
tuning involves systematically exploring various combinations
of these hyperparameters to find the configuration that results
in the best-performing model. The goal is to minimize the
error and improve the accuracy of the model. To achieve this
goal, Adaptive Moment Estimation (Adam) optimizer is used to
minimize the MSE. The PM is generated when Adam converges
to the optimal solution.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

In the training phase, we took advantage of about 700
programs as training software set which were generated by
providing different inputs to self-written sample programs and
several standard benchmarks from TACLeBench [3]. Fig. 2
shows the module for generating the SLTI instruction in the
self-written sample program. The number of SLTI instructions
can be controlled by a specified value. During compilation,
RISC-V compiler was configured as RV32I. RV32I contains 40
instructions, except for EBREAK, which is used to return con-
trol to the debugging environment, we considered the remaining

TABLE II
SEARCH SPACE FOR ANN HYPERPARAMETER TUNING.

Parameters Search space
Learning rate 0.001 to 0.2

hidden layers 0 to 8
neurons in 8 to 512
Activation in sigmoid/softsign/tanh/

each hidden and selu/elu/exponential/
output layer LeakyReLU/relu/softplus

Epochs 1 to 1800

TABLE III
MAPE OF CYCLE PREDICTION USING DIFFERENT ML ALGORITHMS.

ML
MAPE(%) Core

Ibex RSD SweRV µRV32RTL

OLS Regression 2.2 % % 1.4
LR with MGD 1.8 19.5 2.8 0.4

Ridge Regression 2.1 % % 1.2
ANN 1.6 18.6 6.5 0.4

39 instructions as features for creating the training dataset. The
total number of executed instructions for the training software
set ranges from 1.8× 105 to 7.8× 107. Whisper [4] was used
as the functional simulator to execute the ELF files. Verilator
4.028 was used to obtain cycle accurate RTL simulation of
the four cores. PMs were then generated by using four dif-
ferent ML algorithms for each RISC-V core. In the prediction
phase, we selected 10 benchmarks from TACLeBench [3] that
were completely different from the training software set. The
benchmarks cover different domains, such as signal processing
and mathematical problem solving, and are freely available and
designed specifically for embedded systems. After compilation,
Whisper [4] was used as the functional simulator to execute the
ELF files.

The application of the ML algorithms and PMs was pro-
grammed using Python 3.8. The algorithms were implemented
with publicly available libraries, where the OLS regression and
ridge regression were implemented using Scikit-learn 1.0 [21]
and TensorFlow 2.6.0 [22] was used to implement LR with
MGD and ANN. The time required to generate each PM during
the training phase ranges from 3 to 1726 seconds, with the time
difference based on the complexity of the ML algorithm.

For ANN, we defined a comprehensive search space for
hyperparameters and employed a random search [23] technique
as the tuner to select the hyperparameters. In each trial, the hy-
perparameters were randomly chosen from the specified search
space. Table II provides a summary of the parameters and
the corresponding search space utilized in our hyperparameter
tuning approach.

B. MAPE Analysis

We predicted the number of execution cycles for each
benchmark on different cores using different ML algorithms.
Subsequently, we calculated the MAPE for each core while em-
ploying different ML algorithms. The corresponding results are
presented in Table III. A MAPE greater than 50% is considered
to indicate very low accuracy, to the extent that the prediction

Fig. 3. The APE of the model based on different cores for each benchmark and the corresponding speedup of our approach when predicting the number of
cycles.

is not deemed acceptable. In such cases, the low accuracy is
visually represented by %. For example, OLS regression cannot
accurately predict the number of execution cycles on RSD
and SweRV. For Ibex, the ANN-based model does not have
any hidden layers, and the activation function is LeakyReLU,
which can be regarded as linear when the negative half-axis
is not considered. OLS regression slightly underperforms the
other algorithms, but the difference in performance between
the four ML algorithms is not significant. This means that the
relationship between the number of execution cycles and the
instruction counts can be expressed linearly. For RSD, OLS
regression and ridge regression cannot predict the number of
cycles correctly, while LR with MGD and ANN have ability of
prediction. This may be due to the numerical instability of the
training sub-dataset caused by the weak correlation between
the number of execution cycles and instruction counts. GD
updates coefficients iteratively to solve the problem better. For
SweRV, it has the same problem as RSD. For µRV32RTL, it
also does not contain hidden layer and the activation function is
ReLU, results for different algorithms can be seen as equivalent.
Therefore, PM for µRV32RTL can be expressed by the linear
equation.

When using our approach to predict microarchitectural be-
haviors for Ibex and RSD, we found that that our approach
yields accurate results for Ibex but is ineffective for RSD. The
reason can be that other microarchitectural behaviors are not
related to instruction counts or considering only instruction

counts is insufficient in capturing the microarchitectural be-
haviors. The PM for Ibex achieves a MAPE of 1.3% for LSU
Busy counter and 7.3% for the Fetch Wait counter using ridge
regression.

C. APE and Simulation Time Analysis
For each core, we chose the best PM by finding the cor-

responding ML algorithm with the smallest MAPE. At the
same time, we compared the speedup between our PM and the
corresponding RTL core, while accounting for the prediction
phase simulation time, which is influenced by two primary
factors: the utilization of a functional simulator to obtain
runtime information of embedded software, and the use of
PM for performance prediction. However, due to the negligible
time spent on PM compared to the functional simulator, the
simulation time incurred by the functional simulator can be
considered as the simulation time for new software.

Fig. 3 illustrates the APE for each benchmark from the best
PMs and the speedup for each benchmark when predicting
the number of cycles. The x-axis represents 10 benchmarks,
while the left y-axis uses a linear scale to show the results
for APE in the form of bars. On the other hand, the right
y-axis is logarithmically scaled to represent the results of
speedup, with marked vertical lines. The logarithmic scale is
chosen for the right y-axis due to its wide dynamic range
and ability to visualize exponential relationships. For Ibex,
the PM based on the ANN is selected and the APE of each
benchmark is less than 3.5%, which means that this PM is

capable of modeling Ibex core. Our approach achieves up to
41.4× faster simulation speed than RTL simulation using Ibex.
PM for RSD is based on the ANN and the corresponding
APE ranged from 7.5% to 42.0%. The underlying reason is
that instruction counts are insufficient to represent the full
features related to the number of cycles for RSD. For simulation
speed, our approach is 208.4× to 531.2× faster than RSD. For
SweRV, the best PM is based on the LR with MGD. The APE
ranges from 0.04% to 6.8%, which means that PM can roughly
mimic the execution cycle behavior of the SweRV core. Our
approach can simulate 80.4× to 200.6× faster than SweRV.
The best PM for µRV32RTL is based on LR with MGD with a
maximum APE of 1.1%, which means this PM can accurately
model the µRV32RTL core in a linear fashion. Compared to
µRV32RTL, our approach achieves a speedup of 563.3× to
2261.4× in simulation speed. µRV32RTL simulation is very
slow compared to other cores. Therefore, for each benchmark,
the PM for µRV32RTL always achieves the maximum speedup.
It is meaningful to use our approach to estimate the number of
execution cycles on µRV32RTL.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel ML-based approach for
estimating the performance of embedded software on RISC-V
processors, and we demonstrate its generalizability across four
different microarchitectures. Our approach estimates the per-
formance of RISC-V processors by combining a fast functional
simulator and ML-based models. In our experiments, four ML
algorithms were implemented for each RTL core, and the best
PM was determined after comparing the MAPE generated using
different ML algorithms. For each RTL core, our approach is
able to predict the number of execution cycles quickly and
accurately.

In the future, we plan to extend our approach towards
more performance-related features which are not dependent on
instruction counts. Additionally, we plan to extend the approach
to multi-core processors or other computer architectures.

REFERENCES

[1] N. Wu and Y. Xie, “A survey of machine learning for computer architec-
ture and systems,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp.
1–39, 2022.

[2] W. Zhang, M. Goli, A. Mahzoon, and R. Drechsler, “ANN-based perfor-
mance estimation of embedded software for risc-v processors,” in 33rd
International Workshop on Rapid System Prototyping (RSP), 2022.

[3] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in International Workshop on Worst-Case Execution
Time Analysis (WCET), ser. OpenAccess Series in Informatics (OASIcs),
M. Schoeberl, Ed., vol. 55. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2016, pp. 2:1–2:10.

[4] “Whisper ,” https://github.com/chipsalliance/VeeR-ISS.
[5] M. Goli and R. Drechsler, “Automated design understanding of systemc-

based virtual prototypes: Data extraction, analysis and visualization,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
2020, pp. 188–193.

[6] J. Silveira, L. Castro, V. Araújo, R. Zeli, D. Lazari, M. Guedes,
R. Azevedo, and L. Wanner, “Prof5: A risc-v profiler tool,” in IEEE In-
ternational Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2022, pp. 201–210.

[7] M. Lattuada and F. Ferrandi, “Performance estimation of embedded
software with confidence levels,” in Asia and South Pacific Design
Automation Conference. IEEE, 2012, pp. 573–578.

[8] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-
based analytical cross-platform performance prediction,” in International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). IEEE, 2015, pp. 52–59.

[9] W. Zhang, M. Goli, and R. Drechsler, “Early performance estimation of
embedded software on risc-v processor using linear regression,” in 2022
25th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS). IEEE, 2022, pp. 20–25.

[10] V. Muttillo, P. Giammatteo, and V. Stoico, “Statement-level timing esti-
mation for embedded system design using machine learning techniques,”
in ACM/SPEC International Conference on Performance Engineering,
2021, pp. 257–264.

[11] M. S. Oyamada, F. Zschornack, and F. R. Wagner, “Applying neural
networks to performance estimation of embedded software,” Journal of
Systems Architecture, vol. 54, no. 1-2, pp. 224–240, 2008.

[12] I. Hafnaoui, R. Ayari, G. Nicolescu, and G. Beltrame, “A simulation-
based model generator for software performance estimation,” in Summer
Computer Simulation Conference, 2016, pp. 1–8.

[13] Y.-T. S. Li, S. Malik, and A. Wolfe, “Performance estimation of embedded
software with instruction cache modeling,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 4, no. 3, pp. 257–279,
1999.

[14] “Ibex RISC-V Core,” https://github.com/lowRISC/ibex.
[15] “RSD RISC-V Core,” https://github.com/rsd-devel/rsd.
[16] “SweRV RISC-V Core,” https://github.com/chipsalliance/Cores-VeeR-

EH1/tree/1.0.
[17] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The microrv32 framework:

An accessible and configurable open source risc-v cross-level platform
for education and research,” Journal of Systems Architecture, vol. 133, p.
102757, 2022.

[18] “RISC-V GNU Compiler Toolchain,” https://github.com/riscv-
collab/riscv-gnu-toolchain.

[19] W. Snyder, “Verilator,” https://www.veripool.org/wiki/verilator.
[20] “SpinalHDL,” https://github.com/SpinalHDL/SpinalHDL.
[21] “Scikit-learn,” https://scikit-learn.org/stable/.
[22] “TensorFlow,” https://www.tensorflow.org.
[23] “Random search,” https://keras.io/api/keras tuner/tuners/random/.

