
Virtual Prototype driven Application Specific
Hardware Optimization

Jan Zielasko1 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
Jan.Zielasko@dfki.de, drechsler@uni-bremen.de

Abstract—Most hardware in the area of IoT and embedded
systems only ever runs a single application. To reduce the cost
and increase performance the hardware can be tailored to this
application. Unfortunately, identifying, designing, and evaluating
application-specific optimizations is complex and requires signifi-
cant effort. However, application-specific hardware also performs
significantly better compared to using general-purpose processors.
Prior work attempts to address this problem via approaches from
the Register-Transfer Level (RTL) as well as the application level,
with RTL being effective but resource-intensive, while high-level
approaches are faster but lack accuracy.

In order to combine the advantages of high-level and low-
level approaches we propose an open source Virtual Prototype
(VP) based workflow to automatically identify promising hardware
optimization candidates based on recurring patterns. Our results
demonstrate that a VP can be used effectively as a starting point
for application-specific hardware optimization.

I. INTRODUCTION

In recent years, the demand for high-performance applications
in the fields of IoT and embedded systems has risen significantly.
However, due to power and area constraints, traditional General-
Purpose Processors (GPPs) have become increasingly unsuitable
for such applications, as most of these GPPs are only ever used
to run a few or even just a single program [1]. While GPPs offer
the advantage of a much lower amortized development cost (as it
is used in many different applications) and also the availability of
a software development ecosystem, it has a considerable overhead
when only used for this single embedded application, as they are
not optimized for the specific requirements. The design of Applica-
tion Specific Integrated Circuits (ASICs) and Application-Specific
Instruction-set Processors (ASIPs) offer a solution to this problem.
ASICs are processors that are tailored to a specific application
with the goal of drastically improving area utilization, power con-
sumption and performance compared to GPPs. Unfortunately, the
design of an ASIC is a complex and time-consuming process, that
requires a high level of expertise and experience. To address these
challenges, there has been work to aid the design and evaluation
of custom processors. The two major areas are high-level compiler
[2] and simulator-based approaches and low-level RTL-based [1]
approaches, with most existing work focusing exclusively on one
of the two. The high-level approaches are comparatively fast and
easy to use and have access to high-level control flow and source
code, but lack important low-level information such as accurate

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within projects Scale4Edge under grant no.
16ME0127, ECXL under grant no. 01IW22002 and VE-HEP under grant no.
16KIS1342.

979-8-3503-0737-5/23/$31.00 ©2023 IEEE

timing and performance estimations. This results in less accurate
optimizations. Conversely, low-level approaches can analyze the
application behavior on the gate level with accurate timing and
power information. While the results from this approach are ac-
curate, performing a gate-level simulation (as used in [1]) is much
more complex and slow while also lacking some of the higher-level
information that would allow for high-level optimizations.

In between, there exist Virtual Prototypes that model an entire
system at the Electronic System Level. Virtual Prototypes combine
the advantages of a high-level simulator with many of the advan-
tages of lower-level approaches. This allows us to gather additional
information about the application behavior which can be used to
drastically improve the analysis step, while the accurate simulation
of the system improves the relevance of the results.

In this paper, we intend to bridge the gap between the existing
high-level and low-level approaches and propose an improved
VP-driven approach on application-specific hardware optimization,
which identifies accurate optimizations while still being efficient
and easy to use. We focus on the VP-based analysis that is used
to determine the most promising optimization candidates. We use
the RISC-V Instruction Set Architecture (ISA) as a case study as it
is open source, and, most importantly, designed to be modular and
easy to extend. The tool we developed is based on the open source
RISC-V VP [3], available at GitHub [4].

There exists an overlap between the optimizations identified by
tools from the 3 different abstraction levels, which causes optimiza-
tions from higher levels to affect the optimizations identified by
tools from lower levels. This does not necessarily imply that com-
bining analysis and optimization strategies from different levels is
ineffective. On the contrary, we designed our tool to be compatible
with existing high and low-level techniques. To try to estimate
the diminishing returns of applying high-level optimizations, we
test the influence of compiler optimizations on the optimization
candidates identified by our tool.

This paper makes the following contributions:

• We extend on the VP-driven approach of Design, Implemen-
tation and Evaluation of RISC-V Instruction Set Extensions.

• We present an automated methodology for identifying
application-specific hardware optimizations.

• We estimate the potential for performance gain for identified
optimization candidates.

• We demonstrate and evaluate our new tool based on applica-
tions representative of typical embedded system applications.

To stimulate further research on this topic, we provide our tool as
open source. 1

1https://github.com/agra-uni-bremen/opt-vp

II. RELATED WORK

A. Virtual Prototype driven Design, Implementation and Eval-
uation of RISC-V Instruction Set Extensions

A recent paper [5] proposes a VP-driven approach for iden-
tifying suitable application-specific RISC-V extensions. The ap-
proach observes the instructions executed in the Instruction Set
Simulator(ISS) at runtime to identify potential optimizations. The
application itself is treated as a black box, while the goal is to
find an appropriate instruction sequence that can be replaced and
compressed into a single instruction to reduce fetch time. The paper
demonstrates the advantages and flexibility of a VP-based approach
and the extendability of the RISC-V ISA. The proposed dynamic
execution analysis tool shows promising results, although there is
still room for improvement in handling more complicated instruc-
tions like jumps and branches and improving the estimations.

B. Instruction-level Parallelism
As the parallel execution of instructions offers a considerable

performance increase, there has been a great amount of focus on
the design of superscalar Out-of-Order cores.

The paper on the Load Slice Core Microarchitecture [6] goes into
detail on the effects of instruction-level parallelism and proposes an
approach to designing an extension for in-order, stall-on-use cores
that drastically improves performance while still being energy-
efficient. They perform a sophisticated data dependency analysis
to identify the dependency between instructions. Their approach to
identifying the dependencies in sequences of instructions is similar
to the one used in our tool. However, in our case, we can simplify
parts of the analysis, as the underlying RISC-V ISA, being a load-
store architecture, simplifies the handling of many instructions and
we ignore caches.

In more recent work, Freeflow Core [7] improves on the Load
Slice Core. Freeflow Core is a new architecture that selectively
exploits inherent instruction level parallelism in applications to
improve performance of Out-of-Order superscalar cores. It de-
tects instructions dependent on unresolved memory instructions
and guides them to a dedicated independent execution path, en-
abling younger ready instructions to free flow through the compute
pipeline. The proposed architecture outperforms in-order and Load
Slice Core both in performance and energy efficiency metrics.

C. Combining high-level and low-level analysis
The idea of combining the advantages of high and low-level

approaches was also explored by Prof5 [8]. Prof5 is a profiler
for RISC-V designs, which combines functional simulation with
energy and timing models calibrated from RTL simulations and
power analysis. It uses the existing RISC-V simulator Spike [9]
to generate execution logs, which are then analyzed to estimate the
timing and energy usage for the entire execution, user, and system
modes or individual functions. Profiling requires no changes to the
executable and compared to a standard RTL evaluation method
reaches an accuracy of 95% for timing and power estimation.
As Prof5 uses an unmodified simulator and can only access the
information contained in the execution log, it has some limitations.
For example, it can only evaluate the core and can not cover more
complex architectures or caches.

D. Gate Level Optimization and Symbolic Execution
The paper Bespoke processors for applications with ultra-low

area and power constraints [1] proposes a low-level approach

to designing application-specific bespoke processors for ultra-low
area and power-constrained systems. It relies on automated gate-
level symbolic simulation to identify gates that are never toggled
by the target application. The identified gates are then removed
to create a new bespoke processor design with significantly lower
area and power consumption than the original general-purpose
processor. The resulting design does not require any updates or
modifications of the application. They address the problem of sup-
porting multiple applications or updates to the original application,
which can be a problem as eliminating unused gates is a destructive
optimization that breaks compatibility with applications that use
any of the removed gates. One proposed solution is to tailor the
bespoke processor to mutations of the target application to increase
the chances of remaining compatible with patched versions of the
application in the future. The average area and power savings
achieved by this approach are a 62% reduction in area and 50%
in power which can be further improved to 65% by exploiting the
timing slack introduced by the gate removal. While this approach
is very well suited for reducing area and power consumption, its
application for designing performance optimizations is limited.

Implementing destructive changes for bespoke processors or any
other type of potentially destructive optimization requires symbolic
execution, as without it we can only guarantee the correct behavior
of the hardware for the unchanged application with inputs used
during the analysis step. Otherwise, any untested input might
reach parts of the program that still require gates that have been
removed. This means if we want to use a VP-driven approach
to design destructive optimizations, we also need to perform a
full symbolic exploration during the analysis. While there exists
a variant of the RISC-V VP that supports symbolic execution [10],
we decided to use the base VP. This is because execution traces
from a symbolic execution are unsuited as a base for designing
performance optimizations. Using symbolic execution as a base
results in optimization recommendations that are tailored to the
application with no specific inputs (or normalized for all possi-
ble inputs), while in practice, specific inputs are likely to occur
much more frequently than others. For this reason, the application-
specific optimization analysis should design optimizations based
on inputs that are likely to occur in practice so that the estimated
performance gain is also likely to be reached in practice. Otherwise,
the tool might for example choose to optimize a loop that is in
practice and with realistic inputs only run once and then escaped,
but by using symbolic execution as a base, it makes up a large
amount of execution time, as for specific inputs, the loop is ex-
ecuted indefinitely and therefore shadows the better optimization
candidates.

III. PRELIMINARIES

A. RISC-V
RISC-V is a general-purpose Instruction Set Architecture that

was originally designed for research and education purposes, but
it aims to become a free and open industry standard [11]. The
project began in 2010 at the University of California, Berkeley, and
is now managed by the non-profit RISC-V Foundation, which was
established in 2015. The RISC-V Foundation consists of industry
leaders, such as Google [12] and Oracle [13], as well as academic
partners, and is responsible for managing the standard, creating
compliance tests, and organizing the RISC-V community.

RISC-V was developed as an alternative to the widely estab-
lished x86 and ARM architectures, which have a high degree of

complexity and restrictive licensing models, making them chal-
lenging to use for academic and experimental purposes [13].

The ISA is designed to be clean, modular, and scalable, with
the goal of avoiding over-architecting for specific architectures
or implementations. Its minimal integer base instruction set is
straightforward to implement and understand, making it well-suited
for research and education. In addition to the base instruction
sets and optional extensions, designers can create custom RISC-V
extensions to meet specific requirements.

The RISC-V ISA uses fixed-length instructions that are naturally
aligned on 32-bit boundaries [11, p.5]. It is a three-operand load-
store architecture [11, p.18], which means that only designated
load and store instructions can read from or modify memory. All
other instructions operate solely on CPU registers. The load-store
architecture simplifies tracking and analyzing data dependencies,
as for other instructions, only register dependencies need to be
checked. For RV32I, the registers consist of 32 32-bit general-
purpose integer registers (x0-x31), along with an additional register
holding the Program Counter (PC).

B. Virtual Prototypes

The open RISC-V ISA has rapidly gained popularity, leading to
the emergence of numerous hardware implementations and high-
speed Instruction Set Simulators (e.g. Spike [9]). However, in
the classical design flow of a new hardware system, a significant
amount of time is often wasted on designing physical prototypes,
and verification of the design is only possible after it is finished.
To address this issue, ISSs can be used for functional verification
of RISC-V RTL implementations and early software development,
saving time and shortening the time to market. Unfortunately,
these ISSs are primarily designed for speed and are not easily
extensible to support further system-level use cases such as design
space exploration, power/timing/performance validation [3], or the
analysis of complex hardware/software interactions. An industry-
proven approach to this problem is the use of Virtual Prototypes
in the early phases of the design flow. A VP is an executable
abstract model that represents the entire target hardware platform,
simulating the hardware architecture at the abstraction of the Elec-
tronic System Level. It can consist of one or multiple general or
special-purpose processors as well as hardware peripherals [14].
This allows for hardware designs to be tested without the need to
build or synthesize them.

The paper ”Extensible and Configurable RISC-V based Virtual
Prototype” [3] proposes such a prototype for the RISC-V archi-
tecture, using the standardized C++-based modeling language Sys-
temC [15] and Transaction Level Modeling 2.0 (TLM) to simulate
hardware interactions. These TLM transactions are exchanged over
a data bus architecture. This results in much faster simulation
speeds compared to classic RTL and eases modeling of devices and
peripherals, while still achieving a much higher accuracy than high-
level ISSs. The SystemC simulator core allows for hardware mod-
ules and software to be tested on this abstract design description.
This allows us to already verify software in the early development
stages.

A crucial aspect of the VP is the low-level access to the system
and high simulation accuracy. This access is necessary to gather
all information about a program’s execution during runtime that
is required for identifying relevant optimization candidates. The
source code is freely available [4] and written in a high-level
language, which enables all modifications necessary to obtain this

information. A high level of accuracy is equally important as any
inaccuracies or errors in the program execution and system behav-
ior potentially render all obtained results useless when applied to a
real system without those specific inaccuracies.

IV. METHODOLOGY

In this section, we present our proposed methodology on identi-
fying promising hardware optimization candidates using the RISC-
V Instruction Set Architecture (ISA) as a case study.

A. Overview
We use the RISC-V VP as a base and extended the Instruction

Set Simulator core with a tracing and analysis module. The ISS
is the central component of the VP and handles the decoding and
execution of individual instructions, thus we can get a detailed
insight into the execution. The resulting RVOPT VP can be used
in the same way as the RISC-V VP to execute RISC-V programs,
but additionally outputs execution analysis results on instruction
sequences that are the most promising candidates for performance
optimization and, in the default configuration, also generates a dot
graph visualization of the results. It is not necessary to modify the
analyzed applications in any way as tracing is implemented in the
core intercepting the decode and execute steps. Configuration of
the tracing and analysis is exclusively done on the VP side as well.
This ensures that the analysis results are authentic and applicable
for the real application run on the actual hardware later. Otherwise,
changes to the binary might affect execution and therefore the
results.

B. Execution Tracing
For the analysis step, we require detailed information about

each executed instruction. As this approach is code agnostic, we
can not rely on the source code and binary DWARF info to later
reconstruct parts of the information. This means we have to store
this information during the execution of each step. While the
concrete information we need to trace varies depending on the
concrete instruction type, some base set is required for all of them.
In most traditional execution tracing use cases, each execution step
is traced and logged individually. The resulting trace is then output
and processed independently of the simulator. An example of this
is Prof5, which also uses this tracing type [8]. This approach has
two major disadvantages: As the internal state of the simulator
is not available when analyzing the trace file, we have to know
all information required for it during execution or log everything
that could be required, which is either not trivial or not practical.
The second problem is also the scaling of the trace for realistic
applications.

A tracing technique better suited for our approach is to create
bounded execution trees. This allows for a drastically reduced
trace size by removing most of the unnecessary and duplicate
information for instructions that are executed multiple times. By
analyzing the trees during runtime we also have access to all other
runtime information from the simulator.

C. Internal Graph Structure
As mentioned in the previous section, we use a bounded

execution-tree-based approach for saving all required information
during runtime effectively and efficiently.

Internally a ring buffer is used to store information about the last
N instructions. Once an instruction would leave the ring buffer, we
insert its information and that of all subsequent instructions from

the buffer into a tree structure or create a new tree if this is the
first time this instruction is encountered during execution. This way
we construct a separate tree for each different instruction, always
containing the corresponding instruction itself as a root node. From
the root node, we start to insert new nodes for each subsequent
instruction in the instruction sequence currently held inside the ring
buffer or update the weight and data of nodes that were already
contained in the tree. As insertion always starts at the root node,
the tree can only grow up to depth N.

The number of nodes grows with each newly executed unique
instruction sequence, which results in a worst-case complexity of
M possible new branches at each existing node, where M is the
number of instructions supported by the core. While this theo-
retical complexity is astronomically high, in practice the number
of branches rarely reaches values above 20 for the root node
and roughly halves with each level of depth as can be seen in
Fig. 1. During execution, values close to the maximum tree size
are reached almost immediately in most cases. This relatively
low complexity and slow growth after the initial few cycles are
expected, as the tree only grows if new code is executed during
simulation because each new node added to the tree represents a
previously unexplored part of the program.

Executing the same code/instruction sequences over and over
only update the already existing nodes in the tree, meaning the size
of the trace does not grow, safe for a handful of special cases.

Fig. 1 shows an excerpt of the dot graph visualization of the
internal tree structure for the ADD instruction execution tree that
is created during the execution of the md5sum benchmark used
in the evaluation of our tool (see Section V). This execution tree
is created for each different instruction, with the corresponding
instruction as the root node. In this example, we can see that the
ADD instruction was executed 639.426 times, which accounted for
27.3% of all executed instructions. From the root node, a large
number of branches lead to its child nodes, which represent the
next instructions that were executed after an ADD instruction was
encountered, with the number on the edge representing the number
of times this instruction sequence occurred. For example, in this
specific case, for all the 639.426 times the ADD instruction was
executed, in 56.015 cases, the next instruction was a Load Word
(LW) instruction. The sequence following the two instructions is
also shown in the zoomed-in box. This sequence continues up to
a final leaf node at depth N. The depth is chosen arbitrarily and
set before executing the program on the simulator. Larger values
impact the performance of the simulation as the size of the tree and
the ring buffer, as well as the number of tree operations that have to
be performed, grows exponentially with N. However, if the depth
chosen is too small, it limits the scope of the analysis step and the
maximum size of identified optimization candidates. A good value
for N is best determined experimentally as one can simply increase
and rerun the simulation and analysis until the maximum length of
identified optimization candidates stops growing (i.e. is less than
N). In our experiments, very few applications required a depth
greater than 50, which roughly tripled execution time compared to
initial testing with smaller depths of around 20.

Depending on the specific instruction, the data that has to be
stored differs, but some base set of data has to be stored for every
instruction. The Information traced for each instruction is:

• The weight, representing the number of times this node oc-
curred/instruction was executed.

• The total cycles, the simulator spent executing this instruc-
tion.

• The powermode, the simulator was in executing this instruc-
tion.

• The registers, a list of registers that were used (rs1, rs2, rs3,
or rd) when this instruction was executed.

• The data dependencies, a list of offsets to previous instruc-
tions in the sequence on which it depended at least once when
it was executed.

• The sum of step ids, giving a rough estimate of when this
node occurred most frequently during execution (e.g. an ini-
tialization loop that was only executed at startup).

• The subtree hash, identifying this specific sequence of in-
structions.

Branch and jump instructions also save a list of Jump Targets
the instruction jumped to as relative offsets. This information is
required to properly handle loops later during the analysis step.
Load and store instruction save a list of memory accesses and the
memory region (e.g. Stack, Heap) it accessed. Lastly any leaf node
at depth N also stores a list of PCs it was executed at. For higher
bounds, this contains almost exclusively a single PC, but for lower
bounds or applications with a high level of code duplication, this
can contain multiple PCs. This also highlights how this approach
is source code agnostic as it allows us to identify optimizations
depending on the actually executed instructions decoupling this ap-
proach from compiler-based approaches and assuming an already
perfectly optimized application binary. Some of this information
is also incorporated in the visualization in Fig. 1. For example,
the numbers below opcode names indicate True dependencies to
preceding nodes in the sequence at that offset. It is important to
note, that the visualization omits any branch with a weight below a
certain threshold. This can be seen in branches that end before the
maximum depth. Without pruning the tree in the visualization, the
graph can not be rendered properly using a dot renderer, however,
the missing branches are still used during the analysis, though they
are unlikely to be promising optimization candidates.

During execution, whenever we encounter a sequence or partial
sequence of instructions that are already contained in the tree, we
update the existing nodes instead of inserting new ones. This is a
very effective method of compressing the information contained in
the trace without losing any data required for the analysis step.

Tracing register dependencies operates in the same bound N used
for the execution trees, while memory dependencies are addition-
ally traced globally using the PC of the accessing instruction. For
both memory and registers, we use tainting to track the effects of
writes on following instructions. For every instruction that writes
to a register ̸= x0, we taint that register with the current ring buffer
index. For every following instruction in the sequence that depends
on a tainted register, we add the corresponding offset to the list of
dependencies. The dependency relations can later be used in the
analysis step to improve the relevance of identified optimization
candidates.

D. Analysis

To find the most promising instruction sequences, we analyze all
execution trees we created during the simulation of the application.
With the default configuration, we proceed as follows: For each
tree, we start at the root node and try to find the path with the
highest score. For each node type, we defined a configurable score
function that returns a score value estimating how important this

Fig. 1. Excerpt from a bounded execution tree for the ADD instruction

node is for the execution and how well it is suited for optimization.
The base score value of a node is defined by the weight of the
node (or the total cycles if configured), which for the root node
of a tree represents the total amount of times this single instruction
was executed during simulation. Now we try to extend the path
from the root node to increase the total score of the path. For this,
we check all branches and test how the total path score changes
if we consider them part of the path. In the case of the simple
score function that uses the weight of instructions, we now take
the minimum weight of all instructions in the path and multiply
it by the length of the path. For each instruction we add to the
path, the weight can only ever decrease or stay the same. Using
this function we end up with the instruction sequence making up
the highest percentage of executed instructions executed by the
simulator regarding sequences that start at the instruction at the root
node. Sorting the identified best paths of each tree gives us a list of
promising optimization candidates. Many optimization candidates
identified using this simple score function are suitable for various
optimization techniques, however, there are several cases that cause
the analysis to miss the better optimization candidates or even
result in an inflated score of certain instruction sequences. One
important special case that has to be considered when analyzing
a tree is instruction sequences that contain branches or jumps.
Especially branches that result in a loop can be a challenge to
handle correctly. This problem is also a limitation in previous
work [5]. To properly handle branches and jumps, a more granular
score function is required. Our approach to better incorporate the
influence of individual instructions on the total score is to track a
score bonus and a sequence-wide score multiplier that is adjusted
by each new instruction we add to the path. The score multiplier
is used for instructions that increase or, in most cases, decrease the
optimization potential of the whole sequence. The most common
example is an instruction we do not want to add to the sequence.
In this case, setting its score multiplier to 0 prevents it from ever

being chosen during path extension. In contrast, the score bonus
can be used to change the value of an individual instruction. All
score bonuses of a path are added together and the resulting value
is multiplied by the minimum path weight and subtracted from
the total score. An example of this is an instruction that does not
provide any direct optimization potential, but a path extending past
it might still increase the total potential. In this case, setting the
bonus to -1 causes the instruction to be essentially ignored when
calculating the score during path extension. We have to track the
bonus score during the analysis and can not simply subtract the
weight of the current instruction from the score in this case, as
the minimum weight might still change when new instructions are
added to the path. This addition to the score function allows us
to properly handle jumps and branches, while allowing an easy
way to tweak the score function to identify optimization candidates
more suitable for specific hardware optimization techniques. For
example, adding a score bonus for instructions with few and a
penalty for instructions with many data dependencies will results
in sequences that are easier to use as a base for parallelizing or
reordering instructions.

Conditional Branches pose an additional challenge during anal-
ysis and, unless we want to design an application-specific branch
prediction backend (see Section IV-F), are not promising inclusions
for our optimization sequences. Generally, there exist 4 types of
branch behavior we have to consider: First is the case in which
the branch is not taken and acts as a NOP. In this case, we do
not have to do anything special besides assigning a score value to
this branch type. By default, we assign it a score bonus of -1. In
the second case, the branch jumps to its target address, which is
unrelated to the previous instructions in the sequence. In this case,
we also assign it a bonus of -1. In the 3rd case, the branch loops
back and includes the root node in its loop. This proper loop creates
the problem of nodes in the sequence being counted multiple times
when extending the path. In this case, we have to either terminate

the path when we encounter this type of branch or adjust the weight
to account for counting the sequence twice. The former can be done
by setting the score multiplier to 0, which results in the branch
instruction never being chosen during path extension. In most cases
for loops, this results in the path ending at this node as any other
chosen node would leave the loop after its first execution, likely
resulting in a much lower minimum weight. The latter requires a
proper analysis of the loop, but allows us to extend the sequence
over multiple iterations, essentially unrolling the loop. In the last
branching case, the branch is a loop that branches back, but does
not include the root of the tree, but at least one other instruction in
the sequence. In this case, we can include it without running into the
aforementioned problem by setting its score bonus to -1 identical to
the other 2 cases. This leaves us with a general score function for
our analysis that can identify promising optimization candidates
that are suitable for a wide range of hardware optimizations. We
use this analysis approach to identify the most promising sequence
for each execution tree. The resulting list is sorted by their score
value and output with some additional general information about
the analysis and execution.

E. Optimization Potential Estimation
Using the instruction sequences identified in the analysis step,

we can estimate, how much potential for application-specific op-
timizations each sequence holds. To compare the results of the
analysis for different inputs or applications, we need a normalized
value. For this reason, we introduce the Normalized optimization
Potential (NP). This value is calculated by:

Length ×Weight

Total Instr ×
∑Length

node=1
1

dep offsetnode

Where the inverse dependency score on the bottom right is cal-
culated based on the data dependencies between nodes in the
sequence. Specifically, we iterate over each node in the sequence,
and for each dependency, add the value 1/dep offset to the
inverse dependency score. The exception is a sequence of length
1 for which this potential is defined as 1. This results in a low
inverse dependency score for sequences with few direct data depen-
dencies on preceding instructions, which offer more opportunities
to reorder instructions in the sequence.

F. Designing and Testing Hardware Optimizations
The analysis results give a detailed view of the execution and

suggest the most promising optimization candidates. The tool does
not however automatically design a concrete hardware optimization
based on the best results. For the design of concrete hardware
optimizations, we can, for example, follow the existing VP-driven
approach [5] and design fused instructions that reduce fetch time.

To test new instructions, it is normally necessary to modify the
simulator as well as the compiler that generates the binaries to
include the new instructions. Using the results from our analysis,
however, we can simulate and test new instructions without having
to modify the compiler or change the binary in any way. The
path hash that is calculated for each instruction sequence uniquely
identifies that sequence. By using the same hash function during
simulation to calculate the hash of the next-to-be-executed instruc-
tion, we can identify every occurrence of the sequence during
simulation. Whenever this happens, we can discard the effects of
the original sequence and instead, simulate and test the effects
of the new instruction or hardware optimization we designed for

the sequence. This naive approach can become complicated for
larger instruction sequences, as we can only identify the sequence
with certainty at the last instruction in the sequence. At this point
discarding and replacing the effects would require to undo all the
previous steps in the sequence. There are two ways to solve this
problem. First, we could prefetch the next n instructions, where n is
equal to the length of the sequence. This approach works well for
most sequences but fails if the sequence contains any conditional
branches. Alternatively, we can rerun the tool by additionally
specifying the path hash as an argument. During the simulation,
the tool also collects any sequence of instructions with length p
preceding the target sequence and calculates the corresponding
path hash. The output is a list of path hashes for which we can
be certain, that whenever they are encountered, the next executed
instructions are the target sequence. The problem is, that we have
to discard any preceding sequence that can also leads to a different
sequence. In practice, however, this approach should be accurate
enough to estimate the performance gain of the optimization, as
during our experiments, with a p of more than 20, this problem did
not occur. Especially if the program is run on the same inputs as
those used for the analysis. Further optimizations are pipelining,
multiple-instruction-issue or caching as we have detailed statistics
for data dependencies between instructions in a sequence and
global memory access patterns.

Another use case for the execution trees is the design of a branch
prediction backend. When looking at branch instructions contained
inside a tree, we can calculate the likelihood of whether the branch
is taken or not by comparing the weight of outgoing branches.
During execution, whenever the previously executed instructions
match this sequence from the branch node up to the root node,
we can simply look up the corresponding value. A good starting
point for developing a brach prediction backend is the Berkeley
Out-of-Order Machine (BOOM) [16], which already implements
two levels of branch prediction for a RISC-V core. Designing an
improved branch prediction backend using the analysis results is
currently planned for future work.

V. EVALUATION

To evaluate our VP-based approach, we used it to analyze Em-
bench [17] binaries and two programs running inside the RIOT [18]
OS. Embench is a free and open-source benchmark suite designed
to test the performance of deeply embedded systems providing
a broad range of different applications that are representative of
typical applications in the domain. This allows us to evaluate how
our analysis approach performs for different types of applications
and the underlying algorithms. It is easy to use and used in many
other projects for evaluation purposes, which can make comparison
between different approaches easier. To cover the use case of hard-
ware running an operating system, we also evaluate our approach
using RIOT. Similar to Embench, RIOT is open source and targets
low-end embedded devices, specifically in the area of IoT.

The goal of this work is to bridge the gap between high and low-
level approaches. To this end, we seek to understand the compatibil-
ity between and the effect of high-level optimizations on low-level
ones. One of the most commonly applied high-level optimizations
is compiler-based code optimization. To understand the effect of
high-level compiler optimization on discovered hardware optimiza-
tions, we analyze all applications twice: Once with full compiler
optimizations turned on (-O3) and once without any compiler
optimizations (-O0). For the analysis, we use a depth of 50 and the

TABLE I
ANALYSIS RESULTS

Application
O0 O3

Root Len Weight Total # / % NP Root Len Weight Total # / % NP

aha-mont64 BGEU/LW 38 162816 13870K[44.60%] 78.68 SRLI 11 162432 4532K[39.4%] 185.0
crc32 ADDI 19 175104 6660K[49.94%] 86.27 JAL/LW 12 175104 3846K[54.62%] 71.5
edn BGE/LW 23 220000 12647K[40.02%] 40.0 LH 5 290400 3483K[41.68%] 104.2
huffbench BLTU/LW 33 67692 7850K[28.4%] 38.8 ADDI 1 661440 2515K[26.29%] 1
matmult-int ADD 48 376000 18908K[95.4%] 119.3 ADD 5 357200 4426K[40.35%] 80.7
md5sum LW 41 53248 4430K[49.2%] 69.9 SLLI 24 39936 2339K[40.9%] 105.3
minver ADDI 1 1070812 7375K[14.5%] 1 SW 5 100114 2818K[17.7%] 88.8
nettle-aes LW 47 98592 7612K[60.9%] 80.2 LW 31 32864 4481K[22.7%] 99.7
nettle-sha256 ADD 50 56168 6275K[44.75%] 60 XOR 1 670685 3973K[16.88%] 1
nsichneu ADDI 2 916624 3859K[47.5%] 95.0 LW 1 1227109 2238K[54.8%] 1
picojpeg SLLI 24 100352 12977K[18.56%] 31.8 ADDI 1 632637 4198K[15.07%] 1
primecount LW 6 1362394 14492K[56.4%] 84.6 ADDI 2 699732 4290K[32.6%] 65.2
qrduino LBU 1 2291333 7807K[29.34%] 1 ADD 1 619975 3427K[18.09%] 1
sglib-combined LW 1 2653499 6631K[40.01%] 1 LW 1 489436 2414K[20.27%] 1
slre LW 1 1930888 6129K[31.5%] 1 SW-SW 7 107007 2570K[29.145%] 204.0
tarfind ADDI 22 36960 2048K[39.7%] 64.7 JAL/LW 12 36960 1005K[44.12%] 57.76
ud LUI 2 149444 10624K[33.5%] 41.2 LW-LW 2 149444 915K[32.66%] 65.31
RIOT Hello World ADDI 1 4075 15K[26.99%] 1 ADDI 1 3893 13K[28.06%] 1
RIOT default ADDI 1 3556 11K[29.69%] 1 ADDI 1 3370 10K[30.89%] 1

Average - 19 1234690 41.1% 47.18 - 6.52 339986 30.95% 59.76

weight-based score function proposed in Section IV-D as it demon-
strates a general use case. For designing specific optimizations, the
score function can and should be adjusted to improve the practical
relevance of identified optimization candidates. Table I shows the
statistics for the most promising optimization candidate discovered
for each analyzed application. Each row lists the application and
its corresponding information on the most promising sequence that
was discovered. The two main columns compare the results for the
two different compiler optimization levels. The Root column lists
the first instruction of the sequence (or the first two in case of jumps
and branches). After it follows the Length of the sequence, its
Weight, i.e. the total number of times this sequence was executed,
and after that, the total number of instructions executed to give a
frame of reference of how much of the total execution time the
sequence amounts to. The last column lists the Normalized Opti-
mization Potential (see Section IV-E), which represents the relative
optimization potential of the sequence. For the binaries with no
high-level optimizations, we were able to find promising optimiza-
tion candidates for most applications. The most interesting results
are for the applications matmult-int, crc32, and nsichneu. All of
them start with an ADD/ADDI instruction, have a high NP, and
make up a large part of the total execution time. The sequence of 48
instructions identified for matmult-int for example makes up 95,4%
of execution time, being executed 376.000 times. The sequence for
the application nsichneu in contrast only contains 2 instructions
which make up 47,5% of execution time with an equally high NP,
resulting from the two instructions having no data dependency. The
result for nettle-aes is also very promising although as it has a
length equal to the bounded tree depth, the results could potentially
be improved by increasing the depth during the analysis. For some
instructions, the identified sequence is a single instruction. This
is usually the case for applications that are harder to optimize. A

good example are the applications running inside RIOT. For these
examples, we only execute a tiny amount of instructions compared
to the other examples, which are rarely spent executing the same
code. In contrast, for the edn application, we likely identified part
of a loop that executes 220000 times, which makes it an easy target
for optimizations. Applications with single instructions sequences
as their best optimization candidate do not necessarily mean, that
we could not identify actual instruction sequences. In all cases,
looking at the list of optimization candidates there were at least two
sequences longer than 3 instructions among the best 5 sequences
for each application. The average length of the most promising
instruction sequence is 19 instructions, which in most cases is a
loop or at least part of a recurring function. The average NP is
47.18, giving a reference value to compare applications to, to get
an estimate of how much potential they hold for optimization.

Comparing the results for the application without optimization
to those from the optimized ones, we can identify general relations
between them. For every application, the sequence length has at
least halved with an average length of about 1/3. This is expected,
as compiler optimizations reduce code size and remove unneces-
sary instructions. The weight of the sequences shows a similar
reduction, but the percentage of total execution time is surprisingly
almost identical for most applications. One aspect that is hard
to automatically determine or reflect in this table is the relation
between the two instruction sequences identified for an application.
The best sequence for O3 is not necessarily the optimized variant
of the O0 one. However, it is possible to identify the corresponding
sequence in the two full lists manually. One interesting observation
from the results table is that optimized sequences can be identified
quite easily with high accuracy for some of the applications. For
cases in which the weight of both sides is equal or nearly equal,
the O3 side lists the optimized equivalent in almost all cases. In

many other cases, however, the identified sequence is a single
instruction. This means, that the optimization can make certain
identified hardware optimizations obsolete or at least more difficult.
Contrary to our expectation, the NP increased on average. For some
applications that have a proper instruction sequence for the O3 case,
the optimization potential more than doubled, while the execution
percentage and Weight stayed roughly the same. This is likely
the result of compiler optimizations removing data dependencies
between instructions or at least reordering instructions.

Overall the evaluation shows promising results for the use of VPs
in the design flow of hardware optimization. Our results indicate,
that, while there is a level of redundancy when combining high and
lower-level approaches, it can improve the efficiency of the lower-
level tool for certain applications.

VI. CONCLUSION

We have presented an approach for identifying suitable applica-
tion specific hardware optimization candidates based on a Virtual
Prototype that bridges the gap between existing high-level and low-
level approaches.

By combining the advantages of both, we can recommend
optimization candidates that span a larger amount of instructions
while being better tailored to the specific application with a high
optimization potential. Furthermore, we have presented an imple-
mentation of our proposed approach in the form of an extension
for the RISC-V VP [4]. In order to evaluate our approach, we have
identified the best optimization candidates for the benchmark suite
Embench [17] and examples running on the operating system RIOT
[18]. To understand the effect of high-level compiler optimizations
on the optimization candidates, we also performed the evaluation
with different optimization levels. The results of our analysis
indicate, that, while the identified instruction patterns, sequence
sizes, and estimated performance gain varies greatly depending on
the application, we were able to identify promising optimization
candidates for almost all analyzed applications with an average
sequence runtime of over 41% (Table I) and an average estimated
normalized performance optimization potential of 47. Combining
our approach with high-level compiler optimizations showed that,
while the average length of instruction sequences was reduced
to less than 1/3, the optimization potential stayed the same and
even increased for some applications. However, it also showed
that there are many cases in which compiler optimizations solve
the same optimization candidates, that were previously identified
by our tool. Our approach extends on the previous work on ”Vir-
tual Prototype driven Design, Implementation and Evaluation of
RISC-V Instruction Set Extensions” [5] that proposed a VP-based
optimization approach and improves on its execution analysis ap-
proach, to fully leverage the advantages of a VP-based approach
and enable more complex optimization recommendations and a
higher potential performance gain. To the best of our knowledge,
we have presented the first approach for identifying application-
specific hardware optimizations candidates, that combines a VP-
driven approach with the proposed execution tree-based tracing and
analysis to leverage the advantages of a VP. To stimulate further
research on this VP-driven approach, we have released our RVOPT
VP as open-source software. We plan to improve our proposed
approach in future work by improving the timing model of the VP
to enable a more accurate performance estimation. Additionally, we
plan to implement an optimization recommendation extension, so
that the tool can automatically identify, recommend and evaluate

concrete hardware optimizations. Branch prediction would also be
an interesting research direction for our proposed analysis tool, as it
should be possible to design application specific branch prediction
engines with very high accuracy using the branching information
from the execution trees.

REFERENCES

[1] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Bespoke
processors for applications with ultra-low area and power constraints,”
in 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 41–54.

[2] D. Shapiro, M. Montcalm, and M. Bolic, “Parallel instruction set ex-
tension identification,” in 2010 IEEE 26-th Convention of Electrical and
Electronics Engineers in Israel, 2010, pp. 000 535–000 539.

[3] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and con-
figurable risc-v based virtual prototype,” in 2018 Forum on Specification
Design Languages (FDL), 2018, pp. 5–16.

[4] A. U. Bremen, “RISC-V based Virtual Prototype,” https://github.com/
agra-uni-bremen/riscv-vp, 2018, accessed on June 19, 2023.

[5] M. Funck, V. Herdt, and R. Drechsler, “Virtual prototype driven design,
implementation and evaluation of risc-v instruction set extensions,” in
2022 25th International Symposium on Design and Diagnostics of Elec-
tronic Circuits and Systems (DDECS), 2022, pp. 14–19.

[6] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The
load slice core microarchitecture,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
272–284. [Online]. Available: https://doi.org/10.1145/2749469.2750407

[7] R. K. Choudhary, N. Singh, H. Nair, R. Rawat, and V. Singh, “Freeflow
core: Enhancing performance of in-order cores with energy efficiency,” in
2019 IEEE 37th International Conference on Computer Design (ICCD),
2019, pp. 702–705.

[8] J. Silveira, L. Castro, V. Araújo, R. Zeli, D. Lazari, M. Guedes,
R. Azevedo, and L. Wanner, “Prof5: A risc-v profiler tool,” in 2022
IEEE 34th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2022, pp. 201–210.

[9] “Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim,
accessed on June 19, 2023.

[10] S. Tempel, V. Herdt, and R. Drechsler, “Symex-vp: An open source virtual
prototype for os-agnostic concolic testing of iot firmware,” in Journal of
Systems Architecture, vol. 126, 2022, p. 102456.

[11] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual,
2nd ed., https://riscv.org/specifications/, SiFive Inc. and CS Division,
EECS Department, University of California, Berkeley, 5 2018.

[12] “RISC-V Foundation,” https://riscv.org/members/, 2015, accessed on June
19, 2023.

[13] D. Kanter, “RISC-V OFFERS SIMPLE, MODULAR ISA,”
Microprocessor Report, 2016. [Online]. Available: https://riscv.org/
wp-content/uploads/2016/04/RISC-V-Offers-Simple-Modular-ISA.pdf

[14] R. D. Vladimir Herdt, Daniel Große, Enhanced Virtual Prototyping,
1st ed. Springer, 2021.

[15] IEEE, IEEE Standard SystemC Language Reference Manual, IEEE Std.
1666, 2011.

[16] “The Next-Line Predictor (NLP),” https://docs.boom-core.org/en/latest/
sections/branch-prediction/nl-predictor.html, accessed on 2023-05-10.

[17] “Embench™: Open benchmarks for embedded platforms,” https://github.
com/embench/embench-iot, accessed on June 19, 2023.

[18] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “Riot: An
open source operating system for low-end embedded devices in the iot,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4428–4440, 2018.

