
Automated Polynomial Formal Verification:
Human-Readable Proof Generation

Rolf Drechsler∗† Martha Schnieber∗
∗Institute of Computer Science, University of Bremen, Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{drechsler, schnieber}@uni-bremen.de

Abstract—The importance of verification of digital circuits has
increased significantly, as their complexity has grown. Simulation
based techniques cannot fully guarantee their correctness, as the
correctness has to be shown for every possible input assignment.
Thus, formal verification has to be applied. However, formal
verification methods may require exponential time and space in
the worst case. Therefore, Polynomial Formal Verification (PFV)
has been researched in the past years, where polynomial upper
bounds have been proven for the complete formal verification
process. By this efficient run times of the tools are guaran-
teed. Polynomial bounds have been proven successfully for the
verification of several types of circuits, like e.g. adders and
multipliers. However, due to the lack of automation techniques,
all previous proofs were conducted manually. A tool enabling the
automatic proof generation has recently been introduced, which
demonstrates the concept of automatic proofs on the example
of Binary Decision Diagrams (BDDs). We enhance the tool
to automatically generate an extended human-readable proof,
detailing the automatic reasoning, such that the produced proof
is fully comprehensible.

I. INTRODUCTION

In the past years, the significance of verification of digital
circuits has increased, due to their rising complexity. However,
the correctness of a circuit can only be guaranteed by formal
verification techniques, because simulation can only test the
circuit for a limited amount of input assignments. To prove the
correctness of a circuit, formal verification techniques based on
decision diagrams, e.g. Binary Decision Diagrams (BDDs) [1],
[2], Kronecker Functional Decision Diagrams (KFDDs) [3]
or Multiplicative Binary Moment Diagrams (*BMDs) [4] can
be employed, as well as Boolean Satisfiability (SAT) [5] or
Symbolic Computer Algebra (SCA) [6]. However, in the worst
case, all formal verification techniques require exponential
time and space, potentially causing the verification to fail
due to time or space constraints. Thus, in the past years,
PFV [7], [8] has been introduced to predict the verification
time beforehand. Here, the verification complexity of several
circuits has been researched, proving polynomial upper bounds
for the time and space complexity of the verification of specific
circuits.

Circuits for which a polynomial time and space complex-
ity has already been proven using BDDs include several
adders, i.e. the Ripple Carry Adder (RCA), Conditional Sum
Adder (CSA) and Carry Look Ahead Adder (CLA) [7], [9],

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1).

as well as several Prefix Adders (PAs) [10]. Furthermore,
polynomial upper bounds were also proven for the BDD-
based verification of e.g. BDD circuits and tree-like cir-
cuits [11], as well as symmetric functions [12] and floating
point adders [13]. Apart from BDDs, other types of decision
diagrams can be used as well. Here, it was proven that PFV
using KFDDs is possible for KFDD circuits [14] and general
tree-like circuits [15], whereas *BMDs have been used for
the PFV of Wallace-tree like multipliers [16]. Furthermore,
SCA has been used to prove polynomial upper bounds for
the verification of arithmetic circuits [6] and for complex
multipliers [17], whereas Answer Set Programming (ASP) has
been applied for PFV of circuits with a constant cutwidth [18].

However, all polynomial upper bounds were proven man-
ually, leading to a time-consuming and also error-prone pro-
cess. Thus, a concept for automatically generated proofs for
polynomial upper bounds was introduced recently [19]. Here,
a tool was developed, illustrating the concept at the example
of BDDs. The concept of automatic proofs has already been
explored in other research fields, e.g. automated theorem
proving [20] or the four color problem [21]. However, for users
to understand the automated reasoning, producing a human-
readable proof is essential. Thus, in this paper, we extend the
previously introduced concept of automatic proofs for PFV by
generating an elaborate human-readable proof, detailing the
induction and reasoning.

II. AUTOMATED POLYNOMIAL FORMAL VERIFICATION

In [19], the concept for automated PFV was introduced,
alongside a tool exemplarily showing the concept for BDD-
based verification. In this section, the previously introduced
proof engine is outlined and the extension for the human-
readable proof is presented.

A. Automatic Proof Engine

The automatic proof engine flow is shown in Figure 1.
For an iterative input function, the tool automatically finds a
pattern for the generalized BDD by comparing the BDD for an
iteration k to the BDD for the iteration k+1. Figure 2 shows an
example, where the nodes v1 and v2 are added in the (k+1)-th
iteration for a function f(x1, ...xn). All required information
for the proof is stored in the pattern, including the base case,
meaning the BDD for the first iteration. Furthermore, the



Input function

Find Pattern

Perform induction

Success?

Generate proof

Proof

yes

no

Fig. 1: Automatic proof engine flow [19]

pattern stores all new nodes in the BDD for k+1, as well as
their respective high- and low-edges.

If a pattern is found, its correctness is proven by induction
on the number of iterations k. To conduct the proof by
induction, the base case is first checked, where the BDD for the
first iteration is compared to the base case stored in the pattern.
For the induction step, the If Then Else (ITE) operator [22] is
propagated through the pattern for the BDD with k iterations
according to the function description, obtaining the BDD
for k + 1 based on the BDD for k. The correctness of the
pattern can be proven, if each node from the propagated ITE
operator can be matched to a node from the pattern, proving
the correctness of the pattern for k + 1 iterations, given its
correctness for k iterations.

If the induction is successful, the human-readable proof is
generated. Otherwise, a different pattern is searched for and
the process is repeated. If the induction fails for a set amount
of patterns, the process terminates and the automatic proof
of a polynomial upper bound is unsuccessful for the given
function.

B. Human-Readable Proof Generation

We define a human-readable proof as a structured proof that
is easily understandable and closely resembles a proof written

v1

v2

0 1

Fig. 2: BDD for f(x1, ...xn) with k = 2 [19]

Polynomial size of
generalized BDD

Pattern illustration

Pattern explanation

Base case

Induction step
illustration

Induction step
explanation

Matching nodes
explanation

Fig. 3: Human-readable proof generation



manually by a human. The structure of the proposed extended
automatic human-readable proof generation is outlined in
Figure 3.

Firstly, the size of the generalized BDD is determined and
printed in the proof. The size consists of the number of
nodes in the base case plus the number of nodes added per
iteration, which can both be extracted from the saved pattern.
To underline the BDD size, an example of a BDD highlighting
the added nodes is automatically printed as an illustration, as
shown in Figure 2. To enhance the comprehensibility of the
proof, the pattern is also textually explained. Here, the nodes
added per iteration are described, including their respective
high- and low-edges.

Additionally, the induction is explained in the proof. To
depict the base case, both the base case stored in the pattern,
as well as the BDD for the first iteration are displayed and
compared. The induction step consists of an illustration de-
picting the propagation of the ITE operator through the pattern
for k iterations. Furthermore, each step of the propagation of
the ITE operator is automatically explained textually. Finally,
to prove the correctness of the pattern, all new nodes resulting
from the propagated ITE operator are matched to a node from
the pattern.

Following the proposed steps, a complete human-readable
proof is generated. Thus, for each proof conducted by the
engine, the generated proof can be checked manually to ensure
its correctness.

III. CONCLUSION

Due to the time consuming and error-prone manual work
of conducting proofs for PFV, an automated approach has
been introduced recently. In this paper, we have enhanced
the concept of automatically generated proofs for PFV by
extending the automatic human-readable proof generation to
include a more detailed explanation of the proof by induction.
In future work, the tool can be extended to perform proofs for a
wider range of functions and support other formal verification
methods, such as SAT or other types of decision diagrams.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[2] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and
Implementation. Springer US, 2013.

[3] ——, “Ordered Kronecker functional decision diagrams-a data structure
for representation and manipulation of Boolean functions,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 10, pp. 965–973, 1998.

[4] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits with bi-
nary moment diagrams,” in Proceedings of the 32nd Annual ACM/IEEE
Design Automation Conference (DAC), 1995, p. 535–541.

[5] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, pp. 1377–1394, 2002.

[6] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level
verification of arithmetic circuits,” in 2021 19th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design
(MEMOCODE), 2021, pp. 1–9.

[7] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in 2021 24th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS). IEEE, 2021, pp. 99–104.

[8] R. Drechsler and A. Mahzoon, “Polynomial formal verification: En-
suring correctness under resource constraints : (invited paper),” in
2022 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2022, pp. 1–9.

[9] A. Mahzoon and R. Drechsler, “Late breaking results: Polynomial formal
verification of fast adders,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 1376–1377.

[10] ——, “Polynomial formal verification of prefix adders,” in 2021 IEEE
30th Asian Test Symposium (ATS), 2021, pp. 85–90.

[11] R. Drechsler, “Polynomial circuit verification using BDDs,” in 2021
5th International Conference on Electrical, Electronics, Communication,
Computer Technologies and Optimization Techniques (ICEECCOT),
2021, pp. 49–52.

[12] R. Drechsler and C. Dominik, “Edge verification: Ensuring correctness
under resource constraints,” in 2021 34th SBC/SBMicro/IEEE/ACM
Symposium on Integrated Circuits and Systems Design (SBCCI), 2021,
pp. 1–6.

[13] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Polynomial formal
verification of floating point adders,” in 2023 Design, Automation Test
in Europe Conference Exhibition (DATE), 2023, pp. 1–2.

[14] M. Schnieber and R. Drechsler, “Polynomial formal verification of
KFDD circuits,” in 2023 21th ACM-IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE), 2023.

[15] A. Mahzoon and R. Drechsler, “Polynomial formal verification of
general tree-like circuits,” in 2022 China Semiconductor Technology
International Conference (CSTIC), 2022, pp. 1–4.

[16] M. Keim, R. Drechsler, B. Becker, M. Martin, and P. Molitor, “Poly-
nomial formal verification of multipliers,” Formal Methods in Systen
Design, vol. 22, no. 1, pp. 39–58, 2003.

[17] R. Drechsler, A. Mahzoon, and M. Goli, “Towards polynomial formal
verification of complex arithmetic circuits,” in 2022 25th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2022, pp. 1–6.

[18] M. Nadeem, J. Kleinekathöfer, and R. Drechsler, “Polynomial formal
verification of adder circuits using answer set programming,” in 2023
Reed-Muller Workshop (RM2023), 2023.

[19] R. Drechsler and M. Schnieber, “Next-generation automatic human-
readable proofs enabling polynomial formal verification,” in 2023 21th
ACM-IEEE International Conference on Formal Methods and Models
for System Design (MEMOCODE), 2023.

[20] D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fun-
damental Studies in Computer Science). Elsevier North-Holland, Inc.,
1978.

[21] K. Appel and W. Haken, “Every planar map is four colorable,” Bulletin
of the American Mathematical Society, vol. 82, no. 5, 1976.

[22] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in 27th ACM/IEEE Design Automation Conference,
1990, pp. 40–45.


