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Abstract—Ubiquitousness of modern feature-rich heterogeneous
systems has significantly increased their security requirements.
One weak point of entry might spread catastrophically over large
areas, blocking the accessibility of different Intellectual Properties
(IPs), and thereby disabling the system’s functionality. Hence,
it becomes vital to consider the trust and security implications
during the design phase of these heterogeneous systems and
identify possible security breaches due to the system design
itself. Recently, various security validation methods have been
successfully employed very early in the design phase at the
system level using Virtual Prototypes (VPs). These methods have
facilitated the investigation of digital systems with a focus on
data leakage and untrusted access. However, modern systems are
heterogeneous with heavy reliance on sensor inputs. Hence, similar
security validation methods should also be considered from the
analog/mixed-signal (AMS) perspective using SystemC AMS, to
ensure availability security properties.

In this paper, we propose VAST, a novel validation tool for VP-
based heterogeneous systems against availability security proper-
ties. VAST employs static Information Flow Tracking (IFT) at the
system-level to ensure the availability, i.e. timely accessibility, of
IPs. In this regard, VAST analyzes analog-to-digital, digital-to-
analog, as well as digital-to-digital behaviors of the underlying
heterogeneous system. We demonstrate the applicability and
scalability of the proposed tool on two real-world VPs with
different sizes of complexity, a car anti-trap window system, and
a thermal house system.

I. INTRODUCTION

Heterogeneous embedded systems are ubiquitous in Internet
of Things (IOT) devices. Combined with Software (SW), digital
Hardware (HW) employing microcontrollers and microproces-
sors, and Analog/Mixed-Signal (AMS) Intellectual Property
(IP), these heterogeneous systems provide feature-rich func-
tionality. Simultaneously, IOT devices are storing an increasing
amount of private and sensitive data in addition to carrying out
security-critical tasks. As a result, the security requirements of
such devices have increased significantly in the last decade.
Since IOT devices are heterogeneous, security validation for
such systems should not only focus on SW or digital HW,
but also on AMS IPs (e.g., physical interfaces, sensors, and
actuators) [1]–[3] in a comprehensive and inclusive manner,
i.e., a holistic view rather than focusing on individual IPs.
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Traditionally, security validation was always considered an
afterthought, however, recent security breaches, such as a back-
door via JTAG [4], emphasize the importance of considering
security implications from the start. Also, since a System-on-
Chip (SoC) cannot be patched once it has been manufactured,
fixing hardware security vulnerabilities, after deployment be-
comes quite costly. As a result, it is vital for the industry
to integrate security considerations early into the SoC design
process [5], [6].

Therefore, Completeness-Driven Development (CDD) [7] is
often used in which the design process is divided into different
abstraction levels, consequently, shifting focus towards verifi-
cation. The high-level idea is to use Virtual Prototypes (VPs) at
the abstraction of Electronic System Level (ESL) as the starting
point for early design and verification process, and it progresses
to the next abstraction level only after achieving completeness,
i.e verifying the complete behavior of the design at each level
of abstraction. With this aim in mind, Virtual Prototypes (VPs),
which are abstract SW models of the HW implemented in
SystemC [8] with its Transaction Level Modeling (TLM) [9]
and AMS extensions [10], are currently heavily used as a
golden reference for early SW and HW development [11]–[14].

Recent advances in security validation methods in the digital
domain have been successfully employed very early in the
design phase at the system-level using VPs [5], [15]–[18].
These methods leverage Information Flow Tracking (IFT) as
the underlying technology and mainly focus on digital HW
from different aspects, e.g., confidentiality, integrity, and tim-
ing channel. By using IFT, the flow of information across
a system can be understood. IFT techniques target security
flaws in circuit design, verification, testing, manufacturing, and
deployment. They can identify malicious circuit modifications,
timing side channels, access control violations, unintended
design faults, and other insecure hardware behaviors. IFT tags
data objects to represent security classes, which have varying
meanings based on the type of security property (SP) being
analyzed. It observes the status of tags to verify information
flow properties and updates tags when the data is computed.
With the help of information tracking, it is possible to enforce
rules for secure information flow, including confidentiality,
integrity, isolation, constant time, and availability.

Availability describes the requirement for data, services, or



TABLE I
A COMPARISON OF VAST WITH STATE-OF-THE-ART IFT TECHNIQUES AT

THE SYSTEM LEVEL

Source Method Target Security
Property

[5] Static IFT Data leakage, Untrusted
access

Confidentiality,
Integrity

[16] Static IFT Timing Flow Constant Time

[18] Dynamic IFT Run-Time SW
Vulnerabilities Confidentiality

[21] Dynamic IFT Data leakage,Untrusted
access

Confidentiality,
Integrity

[22] Dynamic IFT Data leakage, DIFT for
accelerators

Confidentiality,
Integrity

[23] Symbolic
Execution

Verify firmware security
properties

Confidentiality,
Integrity

VAST Static IFT Availability of IPs for
AMS Systems Availability

other assets to be readily available and usable when requested
by authorized entities [19]. One weak point of entry into IOT
devices might spread over large areas if the availability of
security-critical signals is dependent on the values of exposed
signals. These compromised signals can cause the system
dysfunctional and possibly block the accessibility of IPs, if the
availability of critical signals is not guaranteed. Accordingly,
there have been numerous attacks, such as Denial of Service
(DoS) and flooding attacks, which endanger availability and
cause hardware and software failure [19]. Thereby, to assure the
availability of information in the IOT context, proper detection
and protection algorithms must be established.

Although some initial works towards security validation
methods and tools at system-level VPs using IFT have been
done, as discussed in [20], there is a lack of information flow
research in three directions:

1) Developing IFT techniques for heterogeneous embedded
systems, in particular SystemC AMS VPs.

2) Specifying security properties for availability problems.
3) Verifying them at the system level.

In this paper, we introduce VAST: a novel VP-based IFT
tool against availability security properties for heterogeneous
systems. VAST employs a method that combines multiple
passes of static analysis and operates directly on the Sys-
temC/AMS VP models. At the heart of VAST is a scalable
static IFT analysis, which not only checks information flow
through digital-to-digital interactions, but also analyzes analog-
to-digital, and digital-to-analog interactions. VAST leverages the
flexible LLVM/Clang compiler infrastructure to gather useful
information from the VP, e.g., data flow, call-graph, Data
Dependency Graph (DDG), and Control Flow Graph (CFG).
As a result, VAST can capture static paths based on availability
security properties. These captured paths are reported for
further analysis. VAST provides a sound analysis, i.e., it over
approximates but never misses a violating path if it exists. We
demonstrate the applicability and scalability of VAST on two
real-world VPs, a car anti-trap window system and a thermal
house system.

II. RELATED WORK

One of the powerful security validation methodologies, IFT,
is particularly useful in detecting unintentional design flaws,
malicious circuit modifications, timing side channels, access
control violations, and other insecure hardware behaviors [20].
Depending on the assumptions regarding modifiability, IFT can
have different variations. Several IFT methods and tools have
been successfully introduced as seen in Table I. The appropriate
technique among these depends on the requirements and needs
of the target system. For instance, if we cannot change or
examine the source code, we are confined to binary or dynamic
analysis [18], [21], [22], which is performed on an executing
program on real or virtual hardware and can be done without
access to the source code. On the other hand, if we have access
to the target system’s source code, we can undertake static
analysis [5], [16], which can be performed without executing
the program and requires access to the source code and/or
object code. Symbolic execution [23] is another reasonable and
convincing solution for SystemC AMS VP models, but it is a
challenging approach that still needs further research.

Regarding the application of IFT to AMS systems, there
has been a first attempt at the transistor level in [24]. The
authors demonstrated that the method can detect sensitive
data leakage from the analog to the digital domain and vice
versa. Their work expands on the previous PCHIP-based IFT
techniques [25] and establishes information flow policies for
numerous analog components, including MOSFETs, bipolar
transistors, capacitors, inductors, resistors, and diodes. They
employ an automated framework called VeriCoq-IFT to convert
the netlist of the analog/RF circuitry into a Verilog representa-
tion. Another similar work [26] detects charge-domain Trojans
at the circuit level. They employ a technique that puts forth
an abstracted model of contaminated information, flowing to
user-controllable or accessible flip-flops from charge-domain
leakage structures.

Although, as seen in Table I, information flow properties
such as confidentiality, integrity, isolation, timing channels,
and Hardware Trojans have been specified in various powerful
hardware IFT tools and methods, in this paper, we have focused
on the validation of heterogeneous systems using SystemC
AMS VPs against availability SPs.

III. VAST OVERVIEW

This section provides a high-level overview of the architec-
ture of VAST. First, we describe the threat model under con-
sideration. Then, we discuss a motivating example to highlight
the security problem VAST solves. At the end, we provide an
overview of the complete workflow.

A. Threat Model

Threat modeling is a structured method of identifying and
prioritizing potential threats to a system. One security hole
is all it takes for an attacker to take control of an entire
system. As a result, it’s crucial to follow a set of methodologies
when it comes to threat modeling so that all known/unknown
threats and vulnerabilities can be handled. Considering a het-
erogeneous system, we are particularly interested in protecting
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Fig. 1. The SystemC AMS design of the motivating example

assets that rely on AMS interactions, e.g., sensors. These
interactions happen at analog-to-digital as well as digital-to-
analog interfaces in conjunction with transporting the sensi-
tive data via buses between the different IP components. We
consider a threat model based on the Confidentiality, Integrity,
Availability, Authentication (CIAA) principles [20], in partic-
ular availability. Availability problems arise when an IP uses
some shared resources to the point that they are unavailable to
other IPs.

B. Motivating Example

We provide here an example that is used to demonstrate
the fundamental aspects of our tool throughout this paper.
The motivating example represents a simplified AMS design
consisting of an Electrocardiography (ECG) sensor, an Analog
IP with Schmitt Trigger and Analog Trigger circuit, Digital
Controller, Bus, and Memory as shown in Fig. 1. The ECG
sensor is connected to the Schmitt Trigger circuit, which uses
hysteresis behavior as described in [27] to eliminate minor
fluctuations in the signal. Then, it is passed to the Analog
Trigger circuit, which determines whether the signal should
be stored in the Memory.

In principle, this system is designed to detect a person’s level
of activity using the ECG sensor. When ECG signals exceed
a predefined threshold, the Analog IP must detect irregularity
and send a request via Bus to Memory to save this information.
The Digital Controller performs read/write operations in the
Memory as a normal routine. The intuition here is that the
Digital Controller and Analog IP should have equal opportunity
to access the Memory, i.e., no resource should be allowed to
block access to Memory. This is ensured by access policies
commonly implemented in components with routing functions,
in our case the Bus.

Now consider a scenario where a designer implements the
access control policy in Bus as shown in Fig. 2. The access
policy uses a priority encoder to give the highest priority to
Analog IP1. The benefit of such a policy is to detect abnormal
levels of heartbeats for precautionary or emergency purposes.
In Line 4 (Fig. 2), the first priority is determined: If the output
signal of Analog IP has a voltage of 1.75 V (cap == 1.75),
the signal grant analog is set and data is transferred from
Analog IP to Memory. The second priority is shown in Line 8.

1It is a common practice to use such policies in interrupt controllers.

1 ...
2 grant_analog = 0;
3 grant_digital = 0;
4 if (cap == 1.75) { // 1.75 Volts
5 grant_analog = 1;
6 write_mem.write(1);
7 }
8 else if (request_digital == "1") {
9 grant_digital = 1;

10 write_mem.write(1);
11 }
12 else
13 write_mem.write(0);
14 if (grant_analog == "1")
15 data_bus_out.write(data_analog_in);
16 else if (grant_digital == "1")
17 data_bus_out.write(data_digital_in);
18 ...

Fig. 2. Code excerpt from Bus IP implementing priority encoded access policy

When request digital signal for the Digital Controller is high,
grant digital is set to allow access to Memory.

Because of the higher priority for Analog IP, the Digital
Controller and the Bus have an indirect information flow.
An adversary can exploit the Analog IP to block the Digital
Controller, rendering the Memory inaccessible. Such indirect
information flow across another IP is difficult to detect, partic-
ularly without an automated analysis, such as used by VAST.

C. VAST Overall Workflow

Fig. 3 depicts the overall workflow of VAST to perform
IFT analysis for heterogeneous systems. As VAST leverages
scalable static analysis, it only needs to be executed once to
validate the security properties. Essentially, VAST reads the
security properties and identifies the critical signals and their
security attributes. It leverages data flow analysis to perform
static taint analysis, and finally IFT to validate the availability
security properties. VAST performs the IFT in two phases:
1) Information extraction, 2) Information flow analysis.

Static Analyzer

Security PropertiesSystemC AMS
model

Clang

Data Dependency Graph

Call-Graph

Information Extraction 

Results

Binding Information

Control Flow Graph

Information Flow
Analysis

Static Taint Analysis

Data Flow Analysis

Dependeny Set

Fig. 3. VAST Tool Overview



During the information extraction phase, VAST obtains IP
connectivity information (binding information) to identify how
data flows through the heterogeneous VP. It is followed by
the construction of call-graphs which are used in IFT at the
end. Afterwards, the CFG is obtained for each IP to get more
information about access control policies in particular and the
control flow of the VP in general. At the end, the DDG is
constructed to extract the data path including all modules’
signals, ports, and global and local variables.

During phase two, information flow analysis is performed. It
starts with over-approximated data flow analysis to identify the
set of all possible data flow values computed at different points
in a system. Afterwards, static taint analysis between critical
signals (as defined in security properties) is performed and the
dependency sets based on them are obtained. In the end, all the
information is interleaved to identify if there exists any direct
or indirect information flow between critical signals which can
potentially make an IP unavailable for use. Essentially, the
result shows which availability security properties have been
satisfied and which are not satisfied at the end. A property is
satisfied if both of the two following conditions are satisfied:

1) There does not exist direct information flow between
critical signals.

2) There does not exist indirect information flow between
critical signals.

In the following section, we detail the essential blocks
of VAST as well as demonstrate them using the motivating
example.

IV. STATIC INFORMATION FLOW ANALYSIS AND
ILLUSTRATION

A. Information Extraction

Information flows can be captured by detecting updates
caused by conditional statements (i.e. if-else) induced by criti-
cal signals and sensitive data. This can be handled by detecting
and tracking interactions of all the variables until output. In
order to detect these interactions, the identification of internal
variables is necessary that have the possibility of accepting new
values, as well as the ones that remain at the current value. As
a result, the first step is to extract information from the given
VP.

1) Security Property Specification: As mentioned earlier, we
focus on the availability SP. It is defined such that various IPs
are required to be available in a timely manner [28]. Each SP
has inputs with the High Security (HS) tag and outputs that
must be Always Available (AA) when needed. Thus, we define
SPs as follows:

SP =
{
(SI, SO)|SI ← {.. = HS} , SO ← {.. = AA}

}
(1)

For example, the SP of the motivating example can be
defined as follows:

SP = ({st_in = HS} , {grant_digital = AA}) (2)

The SP in Eq. (2) ensures that the signal grant_digital
sent by the Digital Controller to the Bus module must not be

1 ...
2 z_hysteresis = ltfz(num, den, s, dz_hysteresis);
3 st_module_out.write(z_hysteresis+ vertical_shift);
4 if (z_hysteresis >= 0) {
5 if (st_in + a - horizontal_shift >= 0)
6 dz_hysteresis = alpha * (b - z_hysteresis);
7 else if (st_in + a - horizontal_shift < 0)
8 dz_hysteresis = alpha * (-b - z_hysteresis);
9 }...

Fig. 4. Code excerpt from Schmitt Trigger implementing hysteresis behavior

dependent on the primary input st_in of the Schmitt Trigger
module (Fig. 4).

2) Binding Information: Next, we extract the Binding In-
formation (BI). If BI is not available, module connectivity
cannot be determined statically before execution. This assists
in determining how data flows through the system and also in
the construction of call-graphs.

3) Call-Graph: VAST constructs the call-graph once at the
beginning. Furthermore, the behavior of commonly occurring
system function calls is already described within the analysis,
e.g., memcpy(). The call-graph is used to coordinate the analysis
so that the information is propagated to the correct function
inside the AMS VP. As a result, it makes use of the BI to
appropriately identify the function calls.

4) Control Flow Graph: VAST leverages the CFG and the
Abstract Syntax Tree (AST) of the VP in order to know how
different statements (data and control flow) of a given design
are related to each other. For example, a part of the CFG of
Schmitt Trigger is shown in Fig. 5a, according to its code
excerpt (Fig. 4). In Fig. 5a, the nodes with claret red borders
refer to the conditional statements (L4, L5, L7). Similarly, a
part of the CFG of Bus is shown in Fig. 5b, where conditional
statement nodes (L4, L8, L14, L16) are circled with dark green.

5) Data Dependency Graph: The DDG explains how the
design’s variables (such as all modules’ signals, ports, and

L6L2,3,4

L6
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L8

L9

(a)

L6

L13

L6

L9,10

L8
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L5,6

L14

L15 L16

L18

L17

(b)

Fig. 5. A part of the CFG of (a) the Schmitt Trigger design and (b) the Bus
design
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variables) relate to one another [5]. The DDG can be formally
defined as follows:

Definition 1: A Data Dependency Graph (DDG) is a structure
(N,E,Z), where N is a set of nodes, E is a set of edges, and
Z ⊆ N is a set of output variables. The edge from node A to
node B shows that B is dependent to A.

Based on the definition, a part of the DDG of the SystemC
AMS model is shown in Fig. 6. Orange-colored nodes represent
input ports of modules, green-colored nodes are internal signals,
and purple-colored nodes are output ports of modules. Please
note that binding information is abstracted away.

B. Static Analysis

1) Data Flow Analysis: A data-flow analysis algorithm takes
as input the VP to compute test objectives (i.e., definition-use
(def-use) pairs). A reaching uses procedure - an instance of
data flow analysis techniques - is used to identify these test
objectives for a VP, which actually answers such a question:
for each variable defined, which uses can potentially use the
values? Our data flow analysis is inspired by [5] but we do not
use the associations as defined. Rather, we only define def-use
pairs according to their classification to help in our analysis.
VAST defines a def-use pair as an ordered triple (x, d, u) such
that d is a statement where variable x is defined and u is
a statement where x is used. Furthermore, there is a static
path from d to u in the program without a re-definition of
x in-between. The analysis identifies all possible def-use pairs
of a VP by performing intra-function analysis. Inter-function
analysis is deliberately not performed as it will be compensated
for during the taint analysis.

2) Static Taint Analysis: Static taint analysis is used to
generate the Dependency Set. It starts with a tainted source
and adds variables based on dependence data from the CFG,
such as def-use pairs and use-to-dependence pairs. Similar to
def-use pairs, use-to-dependence pairs represent dependence for

Algorithm 1: Information Flow Analyzer
Require: Security property SP , DDG, CFG
Ensure: Information Flows Violation IFV , IFVsuspicious

1: Secure Inputs SI ← Extract from (SP )
2: Secure Outputs SO ← Extract from (SP )
3: Sensitive List Secure Inputs SLSI ← SI
4: Sensitive List Secure Outputs SLSO ← ∅
5: for all secure input Si ∈ SI do
6: SLSI ← ForwardTraverse (DDG,Si, SO)
7: for all secure output So ∈ SO do
8: SLSO ← BackwardTraverse (DDG,Si, SO)
9: nconds ← {n |(n ∈ CFG) [n.type() = cond]}

10: for all ncond ∈ nconds do
11: nctrl ← Extract list of controllers from ncond
12: if nctrl ∩ SLSI ̸= ∅ then
13: nchildren ← Extract child elements of ncond
14: for all child c ∈ nchildren do
15: if (c.type() ̸= cond) and (vars in c ∈ SO) then
16: IFV ← (ncond, c)
17: else if (c.type() ̸= cond) and (vars in c ∈ SLSO) then
18: IFVsuspicious ← (ncond, c)
19: else
20: for all child c ∈ nchildren do
21: if (c.type() ̸= cond) and (vars in c ∈ SO) then
22: FCflag ← 1
23: if (IFV = ∅) and (FCflag = 0) then
24: IFV ← IFVsuspicios

25: return IFV , IFVsuspicios

variables in the conditional statement of CFG blocks, where
definitions in the possible successors to the conditional state-
ment are stored as dependent to the variables in the conditional
statement. In Fig. 6, we aim to show clearly the critical path
from the Schmitt Trigger input to the grant digital with red
arrows, which consist of nodes in the Dependency Set.

3) Information Flow Analysis: Algorithm 1 is proposed to
detect all potential information flows in a given AMS VP.
The motivating example is used to illustrate each part of the
algorithm. The algorithm takes as inputs DDG, CFG, and a set
of SPs, and returns a list of nodes in the CFG.

To determine whether a variable is affected by secure inputs
(HS tag), a DDG uses forward tracing from the corresponding
secure input node to an output node (AA tag). The HS tag
is assigned to all nodes in this trace that are related to the
secure input and are added to the sensitive list of secure inputs
SLSI (Lines 5–6). Furthermore, because the output variables
may receive their final values via the intermediate variables,
a backward tracing on the DDG is also performed to extract
the variables of assignment statements that are implicitly or
explicitly related to the outputs with the AA tag. These nodes
(along with the corresponding design variables) are added to
the sensitive list of secure outputs SLSO (Lines 7–8).

With regards to the motivating example, the list of secure in-
puts is SLSI = {n1, n2, n3, n4, n5, n6, n7, n8, n15} and the se-
cure outputs is SLSO = {n17, n15, n8, n7, n6, n5, n4, n3, n2}.

The CFG of VP is then analyzed (Lines 9-22) to find all
sensitive control signals (which are in SLSI ) that influence the
occurrence of updates on variables with AA tags (which are in
SO and SLSO). Each CFG condition node type (e.g., if-else) is
visited, and its control variables nctrl are retrieved (Lines 9–11).
If the intersection of the condition node’s extracted control



Fig. 7. The block diagram of the Electrical Control Unit subsystem of the Car Anti-Trap Window System

variables nctrl and the sensitive list of secure inputs SLSI is not
empty, additional analysis is performed on the condition node’s
child nodes (which are not condition node types) nchildren

(Lines 12–18). The purpose of this analysis is to identify
assignment statements whose left-hand side variables are in
the secure outputs list SO (in the case of explicit flow) or
the sensitive list of secure outputs SLSO (case of implicit
flow). A flow occurs in the design if there is at least one child
node that matches the first criteria (Line 15). As a result, the
nodes in the CFG that include the condition and assignment
(as well as the matching LoC in the design source code) are
stored in IFV and reported to designers. If, on the other hand,
the second criterion (Line 17) occurs, there may be a flow
in the design. To determine whether the suspicious situations
are actual leakage flows, we must identify a circumstance in
which its control signals are not in SLSI and it fully controls
the updates on variables in SO (Lines 19–22). Fully controlling
control signal means that variables in SO only receive a new
value if and when the controllers do. The suspicious case
becomes an actual leakage flow scenario if there isn’t such
a condition in the design and no direct leakage flow is present;
in this case, it is kept in IFV (Lines 23–24).

In the motivating example, we found an explicit flow by
using Algorithm 1. As seen in the source code of the Bus
design, given in Fig. 2, Line 4 (L4) is a conditional type
statement. Its only control variable in the nctrl list, “cap”,
is in the list SLSI . We, therefore, look at its children, which
are L5, L6, L8, L9, L10, and L13, as seen in Fig. 5b. Since the
variable “grant_digital” (in L9) is in the list SO, there
exist an explicit flow. The runtime of this analysis took 6.58 s.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate how various security proper-
ties with respect to availability are specified and verified using
VAST, based on the concept of IFT. We consider two complex
real-world heterogeneous systems from our industrial partner
implemented as SystemC AMS designs: 1) car anti-trap win-
dow system (26604 LoC), 2) thermal house system (7381 LoC).
All the experiments were carried out on a PC equipped with
24 GB RAM and an Intel Core i7-8565U CPU running at 1.8
GHz.

1 ...
2 clamping_protection_current_state =

iop->clamping_protection_next_state;
3 switch (clamping_protection_current_state) {
4 case clamping_protection__STOP_state: {
5 ...
6 if (transition_fired == 0) {
7 if ((downKey_i && !upKey_i)) {
8 iop->clamping_protection_next_state =

clamping_protection__Move_state;
9 ...

10 case clamping_protection__BACK_state: {
11 ...
12 if (transition_fired != 0) {
13 switch (transition_fired) {
14 ...
15 case 198: {
16 obstacle_detected_o = false;
17 ...

Fig. 8. Code excerpt from the Car Anti-Tap Window System

A. Car Anti-Trap Window System

The Anti-Trap Window System dramatically increases car
safety by reversing the window when sensing a human presence
to prevent individuals from getting trapped, hurt, or killed. In
this experiment, we concentrate on an AMS system that regu-
lates the window’s movement (up and down) while preserving
the safety of the passengers. The system includes the Electrical
Control Unit (ECU) given in Fig. 7 and a complete window
environment, which includes the motor, mechanical elements
such as the window, and control buttons. The ECU model
consists of a motor current filter to reduce noise from current
measurements, an ADC for motor current conversion, a current
detector for over-current detection, a decoder for the raw
signals from the control buttons (UPDOWN DECODER), and
a microcontroller (UC BEH TOP). In the microcontroller of
this modern window system, an algorithm that is implemented
as a state machine, manages the movement of the window.
As the window moves, the current flowing through the lifter
motor is continually monitored. When an obstacle such as
a passenger’s finger is detected, the current flow changes,
notifying the controller to halt and prevent hazards. An excerpt
from this algorithm is given in Fig. 8.

Now consider a scenario where a security breach results in
an attacker being able to take control of the system. Regarding
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availability, the detection of the obstacle must be independent
from unrelated signals such as the up/down control buttons
that change the movement of the car window. The signals
that are used for the detection of the obstacle, such as the
obstacle detected o signal from Line 16, Fig. 8, must be avail-
able in the ECU regardless of the values of any unrelated signal,
such as the up key o signal sent by the UPDOWN DECODER
module. Otherwise, an attacker can alter the up key o signal in
a way that the controller does not stop the window movement,
endangering the passenger. To assess the security of the design
against this attacker, we have defined five availability SPs. They
check whether the flow of the obstacle detected o signal to
the ECU is dependent on the other signals. Our tool finds that
one of these SPs is unsatisfied, which is given in Eq. 3.

SP = ({up key o = HS} , {obstacle detected o = AA})
(3)

This means that the signal up key o, which is supposed
to be isolated from obstacle detected o, may affect the
detection of the obstacle. The DDG created by our static
analyzer had 996 nodes, and 482 nodes were determined

to be dependent to up key o. An excerpt of this DDG is
shown in Fig. 9, where the critical path from up key o
to obstacle detected o is highlighted with red arrows. The
connection between n1 and n2 is seen in Fig. 7, whereas the
portion of the DDG from n3 until n10 is seen in Fig. 8. The
variable clamping protection current state, which VAST
found to be dependent to up key o, was a controlling variable
of a switching block that affects obstacle detected o, and
caused the SP to fail. The run time for this example was 167.2 s.

B. Thermal House System

The Thermal House System given in Fig. 10 computes the
energy loss over different surfaces (window, wall, roof, etc.),
considering the ambient temperature over time of a typical
day and night cycle. The inside temperature is monitored
by a thermostat controlling the heater. Essentially, the inside
temperature of the house is compared with the set temperature
and their difference is sent to the Heat Control Mechanism
(HCM). The HCM controls the heater’s activation, by checking
whether the difference is positive or negative. To assess the
security of the design, we have defined three availability SPs.
For example, one of the SPs is given in Eq. 4.

SP = ({ambient temp in = HS} , {heat enable = AA})
(4)

They check whether the flow of the ambient temperature signal
to the house is dependent on the SIs. The SPs ensure that there
are no dependencies that affect the ambient temperature signal.
The created DDG had 550 nodes, whereas the dependency sets
of the SPs had between 100 to 300 nodes. No variable that
was dependent on SIs, was a controlling variable to the ambient
temperature signal, therefore all SPs were satisfied. The static
analyzer took 58.3 s to finish.

VI. CONCLUSION

In this paper, we presented VAST: a novel VP-based IFT
tool against availability security properties for heterogeneous
systems. At the heart of VAST is a scalable static information
flow analysis that operates directly on the SystemC AMS VP
models. The analysis performs data flow analysis and static
taint analysis to identify static paths that violates specified
availability properties. These potentially vulnerable paths are

Fig. 10. The block diagram the Thermal House System



reported back to the user for further inspection. We have
demonstrated the effectiveness of VAST on two real-world
systems.

VAST utilizes an overapproximation technique, which guar-
antees the correctness of all solutions found, while also poten-
tially providing additional solutions for further analysis. Future
work in this area could include investigating correctness of
these security properties at lower levels of abstraction. These
studies would help to further our understanding of the trans-
ferability of verified security properties. Overall, this research
represents a significant step forward in security validation.
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