
Polynomial Formal Verification of a Processor:
A RISC-V Case Study

Lennart Weingarten
Institute of Computer Science

University of Bremen
Bremen, Germany

len wei@uni-bremen.de

Alireza Mahzoon
Institute of Computer Science

University of Bremen
Bremen, Germany

mahzoon@uni-bremen.de

Mehran Goli
Institute of Computer Science

University of Bremen
Bremen, Germany

mehran@uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen/DFKI
Bremen, Germany

drechsler@uni-bremen.de

Abstract—Formal verification is an important task to ensure
the correctness of a circuit. In the last 30 years, several formal
methods have been proposed to verify various architectures.
However, the space and time complexities of these methods are
usually unknown, particularly, when it comes to complex designs,
e.g., processors. As a result, there is always unpredictability in
the performance of the verification tool. If we prove that a formal
method has polynomial space and time complexities, we can
successfully resolve the unpredictability problem and ensure the
scalability of the method.

In this paper, we propose a Polynomial Formal Verification
(PFV) method based on Binary Decision Diagrams (BDDs) to
fully verify a RISC-V processor. We take advantage of partial
simulation to extract the hardware related to each instruction.
Then, we create the reference BDD for each instruction with
respect to its size and function. Finally, we run a symbolic
simulation for each hardware instruction and compare it with the
reference model. We prove that the whole verification task can
be carried out in polynomial space and time. The experiments
demonstrate that the PFV of a RISC-V RV32I processor can be
performed in less than one second.

Index Terms—Polynomial Formal Verification, PFV, BDD,
BDD-based verification, Partial Simulation, RISC-V

I. INTRODUCTION

Nowadays, Central Processing Units (CPUs) are working
in very high frequencies and they usually contain millions of
logic gates. The big size and high complexity of CPUs make
them extremely error-prone. Thus, it is important to ensure
the correctness of a CPU after the design. In the last decades,
researchers have put a lot of effort to develop formal verification
methods to attack the hard problem of verifying CPUs. Several
formal techniques based on equivalence checking, theorem
proving, and model checking have been introduced to prove
the correctness of CPUs in different levels of abstraction [1] [2]
[3]. Although formal verification methods have reported very
good results in practice, the space and time complexities of
many of them remained unknown. As a result, there is always
unpredictability in the performance of formal methods.

The performance unpredictability causes serious problems
in the production process of a CPU: It cannot be predicted
before actually invoking the verification tool whether (a) it will
successfully terminate or (b) run for an indefinite amount of
time. As a result, the time schedule for the implementation and
fabrication of a CPU can be affected. In addition, it becomes

impossible to estimate the required resources, e.g., computa-
tional power and memory usage, to successfully carry out the
whole verification process. The unpredictability in performance
can be resolved by calculating the space and time complexi-
ties. If a verification method has polynomial space and time
complexities (i.e., O(nc), where n is a circuit parameter, and
c is a small positive number) it is scalable and it can be used
to verify the bigger instances of the circuit.

In the last few years, several Polynomial Formal Verification
(PFV) methods have been proposed to verify different types
of circuits [4] [5] [6] [7] [8]. The researchers have tried to
either prove the polynomial complexity bounds for the existing
verification techniques or extend the formal methods to achieve
PFV. Several research works have particularly focused on
arithmetic circuits. They have proven that the adder [9] and
multiplier [10] architectures can be polynomially verified with
some conditions on the availability of the design hierarchy.
They take advantage of bit-level methods (e.g., Binary Deci-
sion Diagrams (BDDs)), word-level techniques (e.g., Symbolic
Computer Algebra (SCA)), or a combination of them in their
flow. Moreover, the researchers have also considered PFV of
approximate circuits and tree-like circuits. Despite the progress
in PFV of various digital circuits, PFV of a complete CPU has
not been yet investigated.

In this paper, we propose a PFV method based on BDDs
to fully verify a single-cycle RISC-V processor. We first
illustrate the challenges of BDD-based verification in proving
the correctness of a processor. Then, we introduce a divide
and conquer strategy to overcome these challenges. We take
advantage of partial simulation to extract the hardware related
to each RISC-V instruction. Then, we create the reference
BDD for each instruction with respect to its size and function.
Subsequently, we perform the symbolic simulation for each
instruction hardware and obtain the output BDDs. Finally, we
compare the reference BDD and the instruction hardware BDD.
A BDD is a canonical representation; thus, if the two BDDs
are equivalent the correctness is ensured. We also calculate the
time complexity of symbolic simulation for each instruction
hardware to prove that our method is PFV. The experimental
results demonstrate that our method can ensured the correctness
of a RISC-V RV32I processor in less than one second. To
the best of our knowledge, this is the first work aiming to

polynomially verify a RISC-V processor. The ideas in this work
can be extended to more sophisticated RISC-V processors with
pipelining.

II. RELATED WORKS

Since the 90s, formal verification of processors has been
an active field of research [11], [12]. Several methods have
been developed in this regards ranging from the verification
of pipelined control [13], ensuring the correctness of advanced
data-path operations [14], improving scalability [15], HW/SW
co-verification [16] to complete formal verification [17], [18].

The methods presented in [19], [20] focus on verification
of a processor at the microcode level (i.e., very low-level
software). They proposed a tool called MicroFormal that takes
advantage of SAT/SMT techniques for backward compatibility
checks and assertion-based verification. A technique for the
automatic generation of a complete property suite from an
architecture description, that can be used to formally verify
a register transfer level (RTL) implementation of a processor
is presented in [21]. It starts with an architecture description
of the processor. By defining a number of mapping functions
designers capture how the abstract concepts are mapped to
the RTL implementation. These mapping functions refer to
pipeline stages, stall and cancel signals, and similar objects.
The method proposed in [22] enables designers to interconnect
RTL and microcode verification by including theorem proving
and SAT technique. An improved version of this work has
been presented in [23]. Although the aforementioned methods
are complementary to our approach and share some conceptual
similarities, none of them targeted the PFV of a processor.

The authors of [24] proposed a PFV technique to verify a
simple Arithmetic Logic Unit (ALU) using BDDs. However, the
ALU supports only a limited number of logic and arithmetic
operations. Moreover, it does not consider the other components
in a CPU.

In this paper, we propose a PFV method to prove the
correctness of single-cycle RISC-V processors. We ensure the
polynomial upper-bound complexities in theory and demon-
strate good performance by experimental evaluations.

III. PRELIMINARIES

In this section, we first introduce RISC-V processors. Then,
we review the formal verification method using BDDs.

A. RISC-V

RISC-V is a free and open Instruction Set Architecture (ISA)
originating from the University of Berkeley [25], [26] that
recently gained large momentum in both academia and industry.

A part from the open ISA feature, modularity and extensibil-
ity of RISC-V are the other main reasons for its popularity. Base
model specifications are provided for 32, 64, and 128-bit integer
instructions. The specification provides a long list of standard
extensions, for example, integer multiplication/division, atomic
instructions, and single/double floating-point precision among
many others. The open ISA allows designers to create custom-
built extensions, hence provide a great flexibility when design-
ing a system using the RISC-V ISA. In this work, we focus

on PFV of the base specification of n-bit RISC-V processors.
In the experimental evaluations, we consider the verification of
an RV32I base integer instruction set.

B. Formal Verification using BDDs

We briefly present some definitions:
• Binary Decision Diagram (BDD): a directed, acyclic

graph whose nodes have two edges associated with the
values of the variables 0 and 1. A BDD contains two
terminal nodes (leaves) that are associated with the values
of the function 0 or 1.

• Ordered BDD (OBDD): a BDD, where the variables
occur in the same order in each path from the root to
a leaf.

• Reduced OBDD (ROBDD): an OBDD that contains a
minimum number of nodes for a given variable order.

We refer to ROBDD as BDD in the rest of the paper since
it is the canonical representation that is used in the verification
of arithmetic circuits.

The ITE operator (If-Then-Else) is used to calculate the
results of the logic operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h). (1)

The basic binary operations can be presented using the ITE
operator:

f ∧ g = ITE(f, g, 0), f ∨ g = ITE(f, 1, g),
f ⊕ g = ITE(f, g, g), f̄ = ITE(f, 0, 1). (2)

ITE can be also used recursively in order to compute the
results:

ITE(f, g, h) = ITE(xi, ITE(fxi , gxi , hxi), ITE(fxi , gxi , hxi)),
(3)

where fxi (fxi) is the positive (negative) cofactor of f with
respect to xi, i.e., the result of replacing xi by the value 1 (0).

The result is computed recursively based on Eq. (3) in this
algorithm. When calculating the results of ITE operations for
the f , g, h BDDs, the arguments for subsequent calls to the ITE
subroutine are the subdiagrams of f , g and h. The number of
subdiagrams in a BDD is equivalent to the number of nodes.
For each of the three arguments, the sub-routine is called at
most once. Assuming that the search in the Unique Table is
performed at a constant time, the computational complexity of
the ITE algorithm, even in the worst-case, does not exceed
O(|f | · |g| · |h|), where |f |, |g| and |h| denote the size of the
BDDs in terms of the number of nodes [27].

In order to formally verify an adder, we need to have the
BDD representation of the outputs. Symbolic simulation helps
us to obtain the BDD for each primary output. In a simulation,
an input pattern is applied to a circuit, and the resulting output
values are observed to see whether they match the expected
values. On the other hand, symbolic simulation verifies a set of
scalar tests (which usually covers the whole input space) with a
single symbolic test. Symbolic simulation using BDDs is done
by generating corresponding BDDs for the input signals. Then,
starting from primary inputs, the BDD for the output of a gate

10 12 14 16 18 20 22

0

0.5

1

1.5

2
·108

Instruction size

N
um

be
r

of
ou

tp
ut

B
D

D
no

de
s

BDDsize

Fig. 1: Growth rate of the RV32I processor

(or a building block) is obtained using the ITE algorithm. This
process continues until we reach the primary outputs. Finally,
the output BDDs are evaluated to see whether they match the
BDDs of an adder.

IV. CHALLENGES

In this section, we explain the challenges of verifying a
RISC-V processor using BDDs.

A. BDD Size Explosion

While it has been shown that the size of BDD remains
polynomial during the verification of some digital circuits
(e.g., adders), there are many designs whose BDD sizes change
exponentially with respect to the input bit-width (e.g. multipli-
ers [28]). We now investigate the size of BDDs during the
verification of single-cycle RISC-V processors.

Fig. 1 reports the overall size of output BDDs after the
symbolic simulation of single-cycle RISC-V processors with
different instruction sizes. It is evident that the BDD size grows
exponentially with respect to the processor instruction size.
The output BDD of a 22-bit single-cycle RISC-V processor
contains more than 150 million nodes, and it takes more than 3
minutes to generate. We run out of memory during the symbolic
simulation of RISC-V processors with a bigger instruction size
on a running machine with 32 GByte of main memory.

Fig. 2 depicts the live overall size of BDDs during the
symbolic simulation of a 32-bit RISC-V processor (RV32I).
At each step of the symbolic simulation, the output BDD of a
logic gate is calculated using the ITE operation. It can be seen
in Fig. 2 that a huge growth occurs in the size of intermediate
BDDs at step 754, where there is a 27× increase in the number
of nodes. Eventually, the size of BDDs reach 3 million nodes
at step 1147, and we cannot further continue the symbolic
simulation as an explosion happens in the number of nodes.
As a result, we run out of memory and the verification process
remains incomplete.

B. Need for a Reference Model

In order to carry out a successful equivalence checking
problem, a reference model has to be available. In the case of
BDD-based verification, the reference model is a correct BDD
that represents the function of a circuit with respect to its inputs.
The reference model can be created by either symbolically
simulating a golden circuit (i.e., a correct circuit) or deducting
from the circuit function or algorithm. Unfortunately, none

0 200 400 600 800 1,000 1,200
100

102

104

106

Number of creation steps

N
um

be
r

of
liv

e
B

D
D

no
de

s

RV 32I
Gates

Fig. 2: RISC-V size with different input sizes

of these solutions are practical when it comes to a RISC-V
processor.

On one hand, a golden circuit is usually not available in the
case of a RISC-V processor. The processors support different
sets of instructions; thus, we require a golden circuit for each
variation. Moreover, the correctness of a golden model has to
be ensured using a formal method (not equivalence checking),
which is usually not possible. On the other hand, generating
a BDD based on the function of a RISC-V processor is not
trivial. Processors contain several instructions with different
functionalities. Consequently, it is very difficult to represent
the whole function of a CPU as a BDD.

V. METHODOLOGY

In this section, we present our methodology to verify a
single-cycle RISC-V processor. First, we outline assumptions
made for the RTL-Model then we give an overview of our
methodology followed by a more detailed description of our
partial simulator and reference model generator.

A. RTL-Model Assumptions

For the RTL-Model of the RISC-V a few assumptions were
made. For the single-cycle RV32I processor we assume that
the inputs (outputs) of registers and memories are the primary
outputs (inputs) of the circuit. Thus, the circuit under verifica-
tion is fully combinational. However, we can still activate each
instruction, apply desirable inputs, and observe the expected
outputs. Moreover, the variable order is chosen interleaved,
since it gives us the smallest BDD sizes.

B. Overview

An overview of our methodology is presented in Fig. 3. It
consists of two pathways. The top path describes the process
of constructing BDDs for each instruction hardware from the
RTL description. The bottom path demonstrates the process
of generating reference BDDs of each instruction. Finally, the
BDDs from the two paths are checked for equivalency.

The top path in Fig. 3 helps us to overcome the challenge
of exponential growth in the BDD sizes using a divide and
conquer strategy. We extract each instruction hardware by
partial simulation and construct the BDDs using symbolic
simulation. Thus, we break the problem into smaller problems,
which can be solved in a polynomial time. The main steps in
the top path are as follows:

RISC-V
(RTL)

Synth.
Partial

Simulator
Symbolic
Simulation

Equivalence
checking

Function
Ref. BDD
Generator

EQ/NEQ/Abort

Verilog AIG

Stimuli

Reduced
AIG

BDD

Reference BDD

1 2 3 4

5 6

Fig. 3: The proposed verification methodology overview

1) The inputs and outputs of registers and memories are
detected; then, they are considered as the new primary
outputs and inputs, respectively.

2) The RTL description is converted into the AND-Inverter
Graph (AIG) representation, which later facilitates the
partial simulation.

3) First, the opcode of an instruction is set to specify
the instruction type (e.g., R-Type). Then, based on the
specified type the remaining parts of instruction (func3
and func7) are assigned. Subsequently, the general parts
of instruction (e.g., register address or immediate value)
are considered unknown. Finally, the circuit is partially
simulated based on the set and unknown values to obtain
the instruction hardware. This process is repeated for all
instructions.

4) The symbolic simulation is performed for each instruc-
tion hardware and the output BDDs are obtained.

The bottom path in Fig. 3 helps us to overcome the problem
of the reference model:

5) We generate the reference model individually for each
instruction based on its function.

6) The output BDD for each instruction hardware generated
by symbolic simulation and the reference BDD are com-
pared to prove the correctness.

In the next sections, we explain the partial simulation and
reference model generation in more details.

C. Partial Simulation

The Partial Simulator (PSIM) receives two input files: an
AIG and a set of stimuli. In the case of a RISC-V processor, the
AIG file is the full description of the processor. The stimuli set
is selected by following the instruction definition determined by
the RISC-V specification manual. For each instruction a stimuli
file is used. The stimuli file consists of a list of bit-vectors,
while each bit is either set to a value (0 or 1) or specified as
unknown (X). In order to extract specific instruction hardware,
the stimuli file has to be configured as follows:

• The opcode bit-vector is set to values in order to determine
the instruction type (e.g., ADD).

• The func3 and func7 bit-vectors are set to values in order
to determine the type of operation (e.g., immediate).

• The remaining bit-vectors which are related to the input of
operations (e.g., from registers or immediate values) are
set to unknown.

The partial simulation is performed in two levels: In the first
step, the values given by the stimuli are applied to the primary

inputs of the circuit. Then, each node is evaluated by the input
values. The nodes are iteratively simplified and removed if
at least one of their inputs is set to a value. Subsequently,
the garbage fan-ins which do not have any influence on the
circuit outputs are cleaned up and the hardware related to them
is removed. Finally, we perform a high-level optimization to
detect the group of nodes, which can be reduced to a fewer
number of nodes.

D. Reference Model Generator

We introduce a Reference Model Generator (RMG) to create
reference BDDs for each instruction of an n-bit RISC-V
processor. To generate them a known architecture with the
same functionality as the instruction is utilized (e.g. for addition
the architecture of the Ripple Carry Adder (RCA)). RMG has
to generate all reference BDDs for the outputs of instruction
hardware. These outputs include data out[n : 0] (the result of
the operation), zero flag (one if all bits of data out is zero),
sign flag (one if data out is negative), and carry flag (one
if there is a carry out). RMG takes advantage of interleaved
variable ordering since it gives the smallest BDDs for most
of the instructions, and it matches the variable ordering of
symbolic simulation.

For the logic instructions, including AND, OR, and XOR, as
well as the immediate variations, i.e., ANDI, ORI and XORI,
the reference BDDs of data out are created by the bit-wise
logic operations. The zero flag BDD is generated by NORing
the data out BDDs. The sign flag BDD is related to the most
significant bit of data out, i.e., data out[n − 1]. These two
flags are generated similarly for the other instructions. Finally,
the carry flag BDD is a constant zero terminal.

There are the ADD and ADDI instructions in a RISC-
V processor, that directly compute the addition of inputs.
Moreover, there are the jump (e.g., JAL, JALR, LUI, and
AUIPC), load, and store instructions that work based on the
addition. The jump instructions add an offset to the current
address to obtain the final jump address. Similarly, the load
and store functions add an offset to the current address to
find the location of target data for loading or storing. RMG
takes advantage of an adder function to generate the BDDs
for the addition-based instructions. Moreover, the BDD for the
carry flag is equal to the carry-out BDD of the addition.

The SUB instruction in a RISC-V processor is performed
by subtracting the inputs. However, there are also some other
instructions, including branch instructions (e.g., BEQ, BNE,
BGE, and BLT) that use subtraction. They compare two register
entries through subtraction and decide about the branching.
Moreover, the comparison instructions (SLT, SLTI, SLTU, and
SLTIU) are done based on subtraction. There is an implementa-
tion of the SUB function in RMG that helps with the reference
BDD generation of the aforementioned instructions.

Lastly, the SLL and SRL shift operations are simply recon-
necting primary input to primary outputs using a given number
of shift bits. Thus, we do not require reference BDDs for them.

B0A0B1A1B2A2Bn-1An-1

C0C1C2Cn-2Sn=Cn-1

S0S1S2Sn-1

HAFAFAFA

Fig. 4: Ripple Carry Adder

VI. POLYNOMIAL FORMAL VERIFICATION

In this section, we first group the instructions based on the
underlying ALU operation. The groups are Logic, Additive,
Subtractive, and Shifts. Then, we prove that the symbolic
simulation of instructions in each group has polynomial time
complexities.

A. Logic

The Logic group contains the logic operations, including
AND, ANDI, OR, ORI, and XOR, XORI. We calculate the
time complexity of symbolic simulation for the AND in-
struction when it is applied to two inputs An−1An−2 . . . A0
and Bn−1Bn−2 . . . B0. The bit-wise AND operation can be
translated into ITE operation as follows:

Ai ∧Bi = ITE(Ai, Bi, 0). (4)

Since there are in total n AND operations, the complexity
Cpx of symbolic simulation is calculated as follows:

Cpx[AND] = n · |Ai| · |Bi| = 16n = O(n). (5)

The time complexity of symbolic simulation for other logic
instructions can be obtained, similarly.

B. Additive

The Additive group contains the operations based on ad-
dition, including jump, load, and store operations. We calcu-
late the time complexity of symbolic simulation for addition
which can be easily extended to other addition-based opera-
tions. We assume that the adder architecture is implemented
based on ripple carry algorithm and An−1An−2 . . . A0 and
Bn−1Bn−2 . . . B0 are the inputs.

Fig. 4 presents the structure of an n-bit RCA. In order to
obtain the computational complexity of symbolic simulation
for an n-bit RCA, we first calculate the complexity of symbolic
simulation for a single full-adder. The sum and carry bits of a
full-adder can be expressed in terms of ITE operations:

Si = Ai ⊕Bi ⊕ Ci−1 = ITE(Ci−1, Ai �Bi, Ai ⊕Bi),
Ai �Bi = ITE(Ai, Bi, Bi),
Ai ⊕Bi = ITE(Ai, Bi, Bi). (6)

Ci = (Ai ∧Bi) ∨ (Ai ∧ Ci−1) ∨ (Bi ∧ Ci−1)
= ITE(Ci−1, Ai ∨Bi, Ai ∧Bi),
Ai ∨Bi = ITE(Ai, 1, Bi),
Ai ∧Bi = ITE(Ai, Bi, 0). (7)

Note that the size of the BDD for a single variable (|xi|),
AND/OR of two variables (|xi ∧ yi| and |xi ∨ yi|), and
XOR/XNOR of two variables (|xi⊕yi| and |xi�yi|) equals 3, 4,

and 5, respectively. As a result, the complexities of computing
Si and Ci are as follows:

Cpx(Si) = Cpx(Ai �Bi) + Cpx(Ai ⊕Bi) (8)
+ |Ci−1| · |Ai �Bi| · |Ai ⊕Bi|

= |Ai| · |Bi| · |Bi|+ |Ai| · |Bi| · |Bi|
+ |Ci−1| · |Ai �Bi| · |Ai ⊕Bi|

= 3 · 3 · 3 + 3 · 3 · 3 + |Ci−1| · 5 · 5
= 25 · |Ci−1|+ 54,

Cpx(Ci) = Cpx(Ai ∨Bi) + Cpx(Ai ∧Bi) + |Ci−1| · |Ai ∨Bi| · |Ai ∧Bi|
= |Ai| · |Bi|+ |Ai| · |Bi|+ |Ci−1| · |Ai ∨Bi| · |Ai ∧Bi|
= 3 · 3 + 3 · 3 + |Ci−1| · 4 · 4
= 16 · |Ci−1|+ 18,

Cpx(FAi) = Cpx(Si) + Cpx(Ci)
= 41 · |Ci−1|+ 72, (9)

where the computational complexities depends on the size of
the incoming carry BDD to the full-adder.

It has been proven in [29] that the BDD size of the ith

carry bit (Ci) is bounded above by 3i + 4. Thus, the overall
complexity of verifying a RCA can be obtained as follows:

Cpx[RCA] =
n−1∑
i=1

(41 · |Ci−1|+ 72) =
n−1∑
i=1

(41 · (3(i− 1) + 4) + 72)

=
n−1∑
i=1

(123 · i + 113) = O(n2). (10)

C. Subtractive

The Subtractive group contains the operations based on
subtraction, including branch and comparison operations. Sub-
traction uses the ripple carry architecture, while it adds XOR
gates to the primary inputs to allow the negation of one of
the operands. The complexity calculation of a subtractor is
very similar to an adder and the time complexity of symbolic
simulation is bounded by O(n2). We do not include the
calculation due to page limitations.

D. Shifts

The shift operations are proven by showing the correct input-
output correctness for all possible combinations. Since there
are n possible variations, the verification complexity is O(n).
We proved that the time complexity of verifying all hardware
instructions is polynomial. Thus, we conclude that the PFV of
an n-bit single-cycle RISC-V processor is possible using our
proposed method.

VII. EXPERIMENTAL RESULTS

We have implemented our PFV method in C++. We used
CUDD package [30] to perform operations on BDDs. All
experiments are carried out on an Intel(R) Core(TM) i7-8565U
CPU with 1.80GHz and 16 GByte of main memory. In order to
evaluate the efficiency of our verifier in practice, we consider a
32-bit single-cycle RISC-V processor (RV32I). It contains the
four groups of instructions, i.e., Logic, Additive, Subtractive,
and Shifts.

Table I reports the verification results for the RV32I pro-
cessor. The first column G. denotes the instruction group
based on the underlying ALU operation. The second column

TABLE I: Results of verifying RV32I processor

G. Inst. PSIM [s] PFV [ms] #Steps #Nodes Peak

L
og

ic

AND 5.97 0.20 161 211 245
ANDI 6.22 0.22 141 203 218
OR 6.24 0.22 225 160 194
ORI 6.05 0.29 205 203 218
XOR 7.28 0.54 353 349 382
XORI 7.13 0.67 333 347 362

A
dd

iti
ve

ADD 6.35 1.59 872 7692 7725
ADDI 6.64 2.42 786 6911 6926
JAL 6.29 1.30 806 7836 7869
JALR 6.58 1.23 806 7836 7869
AUIPC 5.55 0.07 113 121 144
LUI 5.53 0.07 113 121 144
LB 6.55 2.32 852 6744 6759
SB 6.57 1.96 786 6911 6926
LW 6.29 1.99 786 6911 6926
SW 6.33 2.00 786 6911 6926

Su
bt

ra
ct

iv
e

SUB 6.56 1.49 811 7773 7806
BEQ 6.28 1.58 898 7721 7754
BNQ 6.40 1.57 899 7721 7754
BGE 6.64 1.45 811 7773 7806
BLT 6.46 1.58 906 7807 7840
SLT 5.93 0.35 496 903 936
SLTI 6.17 0.54 476 740 755
SLTU 5.97 0.35 489 729 762
SLTIU 6.05 0.53 469 633 648

Sh
if

ts

SLL 193.69 0.16 97 112 131
SLLI 206.08 0.13 97 112 131
SRL 176.13 0.13 97 112 131
SRLI 201.12 0.16 97 112 131∑

969.21 27.14 14767 101715 102418

Inst. represents the instruction name. The run-time of partial
simulation is reported in the third column PSIM. The fourth
column PFV represents the run-time of symbolic simulation,
reference model generation, and comparison. The number of
symbolic simulation steps is reported in the fifth column
#Steps. The sixth column #Nodes gives the number of output
BDD nodes after the symbolic simulation. Finally, the last
column Peak reports the BDD nodes’ peak size during the
symbolic simulation. Please note that the experiments were run
1000 times for each instruction, and the PFV run-times were
averaged to avoid outliers.

The overall run-time for partial simulation and PFV is
around 16 minutes. Most of this run-time is dedicated to
the verification of shift instructions since they require several
partial simulations. The overall size of output BDDs merely
exceeds 100 K nodes, which is much smaller than the size
of output BDDs generated for the entire processor in Fig. 1
and Fig. 2. As a result, our proposed technique can verify an
RV32I processor in a short time while it keeps memory usage
very low. Moreover, the difference between the size of output
BDD and the peak BDD size is subtle. Thus, we never observe
a huge increase in the number of nodes during the symbolic
simulation.

VIII. CONCLUSION

In this paper, we presented a PFV method to fully verify a
single-cycle RISC-V processor using BDDs. We overcame the
challenges of BDD-based verification (i.e., BDD size explosion
and reference model) by proposing a divide and conquer

approach. The hardware related to each instruction is extracted
using partial simulation and its output BDD is obtained by sym-
bolic simulation. Then, it is compared to a generated reference
BDD to ensure the correctness. We ensured the polynomial
upper-bound complexities in theory and demonstrated good
performance by experimental evaluations. Based on our results
and the assumptions made about the RISC-V processor, we
thereby demonstrated the capabilities of our methodology.

In our future research, we consider the PFV of multi-cycle
and pipelined RISC-V CPUs. Moreover, we plan to consider
the PFV of RISC-V models with F and M extensions, which
include floating point operations and multiplication/division,
respectively.

ACKNOWLEDGMENT

This work was supported in part by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1).

REFERENCES

[1] V. Patankar, A. Jain, and R. Bryant, “Formal verification of an ARM
processor,” in VLSI Design, pp. 282–287, 1999.

[2] P. Mishra and N. Dutt, “A methodology for validation of microprocessors
using equivalence checking,” in MTV Workshop, pp. 83–88, 2003.

[3] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:
A survey,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, pp. 123–193,
apr 1999.

[4] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensuring
correctness under resource constraints,” in ICCAD, pp. 70:1–70:9, 2022.

[5] R. Drechsler, A. Mahzoon, and M. Goli, “Towards polynomial formal
verification of complex arithmetic circuits,” in DDECS, pp. 1–6, 2022.

[6] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Polynomial formal
verification of floating point adders,” in DATE, 2023.

[7] M. Schnieber, S. Fröhlich, and R. Drechsler, “Polynomial formal verifi-
cation of approximate adders,” in DSD, pp. 761–768, 2022.

[8] M. Schnieber, S. Fröhlich, and R. Drechsler, “Polynomial formal verifi-
cation of approximate functions,” in ISVLSI, pp. 92–97, 2022.

[9] R. Drechsler, “PolyAdd: Polynomial formal verification of adder circuits,”
in DDECS, pp. 99–104, 2021.

[10] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level
verification of arithmetic circuits,” in MEMOCODE, pp. 1–9, 2021.

[11] W. A. Hunt Jr, “Microprocessor design verification,” J. Autom. Reason.,
vol. 5, no. 4, pp. 429–460, 1989.

[12] K. Hamaguchi, H. Hiraishi, and S. Yajima, “Design verification of a
microprocessor using branching time regular temporal logic,” in CAV
(G. von Bochmann and D. K. Probst, eds.), vol. 663 of Lecture Notes in
Computer Science, pp. 206–219, 1992.

[13] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micropro-
cessor control,” in CAV, vol. 818 of Lecture Notes in Computer Science,
pp. 68–80, 1994.

[14] R. Kaivola and K. R. Kohatsu, “Proof engineering in the large: formal
verification of Pentium 4 floating-point divider,” Int. J. Softw. Tools
Technol. Transf., vol. 4, no. 3, pp. 323–334, 2003.

[15] R. Kaivola, “Formal verification of Pentium® 4 components with sym-
bolic simulation and inductive invariants,” in CAV, vol. 3576 of Lecture
Notes in Computer Science, pp. 170–184, 2005.

[16] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal hard-
ware/software co-verification by interval property checking with abstrac-
tion,” in DAC, pp. 510–515, 2011.

[17] N. Ayewah, N. Kikkeri, and P. Seidel, “Challenges in the formal veri-
fication of complete state-of-the-art processors,” in ICCD, pp. 603–608,
2005.

[18] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. W. Barrett, S. Mitra,
W. Ecker, D. Stoffel, and W. Kunz, “Gap-free processor verification by
s2qed and property generation,” in DATE, pp. 526–531, 2020.

[19] T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli, J. Shalev,
E. Singerman, A. Tiemeyer, M. Y. Vardi, and L. D. Zuck, “Formal
verification of backward compatibility of microcode,” in CAV, vol. 3576
of Lecture Notes in Computer Science, pp. 185–198, 2005.

[20] A. Franzén, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev, “Applying
SMT in symbolic execution of microcode,” in FMCAD, pp. 121–128,
2010.

[21] U. Kühne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal
verification of processors based on architectural models,” in FMCAD,
pp. 129–136, 2010.

[22] J. Davis, A. Slobodová, and S. Swords, “Microcode verification - another
piece of the microprocessor verification puzzle,” in ITP, vol. 8558 of
Lecture Notes in Computer Science, pp. 1–16, 2014.

[23] S. Goel, A. Slobodová, R. Sumners, and S. Swords, “Verifying x86
instruction implementations,” in CPP, pp. 47–60, 2020.

[24] R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial formal
verification of arithmetic circuits,” in ICCIDE, pp. 457–470, 2021.

[25] A. Waterman and K. Asanović, “The RISC-V instruction set manual;
volume i: Unprivileged ISA,” in SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, 2019.

[26] A. Waterman and K. Asanović, “The RISC-V instruction set manual;
volume ii: Privileged architecture,” in SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, 2019.

[27] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in DAC, pp. 40–45, 1990.

[28] R. E. Bryant, “On the complexity of VLSI implementations and graph
representations of boolean functions with application to integer multipli-
cation,” TC, vol. 40, no. 2, pp. 205–213, 1991.

[29] I. Wegener, Branching Programs and Binary Decision Diagrams. SIAM,
2000.

[30] F. Somenzi, “CUDD: CU decision diagram package release 2.7.0.”
available at https://github.com/ivmai/cudd, 2018.

