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ABSTRACT
As the complexity of digital circuits increases, their verification

poses an increasingly difficult challenge. Simulation techniques

cannot fully guarantee the correctness of a circuit and thus, formal

verification techniques (such as BDDs or SAT) have to be used.

However, their application can generally require exponential time

and space. Consequently, the verification complexity of several

circuits has been researched in recent years. Among other circuits,

it has been proven that circuits derived from BDDs can be veri-

fied efficiently in polynomial time and space. However, for some

functions, circuits derived from KFDDs have at most the same size

and can even be exponentially smaller than BDD circuits. In this

paper, we show that the verification complexity of KFDD circuits

is linear and improve the previously proven upper bound for BDD

circuits. The verification is carried out using KFDDs, where we

give linear upper bounds for the KFDD size during the verification

process, as well as for the overall time complexity. The theoretical

results presented in this paper are supported by an experimental

evaluation verifying several KFDD circuits.
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1 INTRODUCTION
During the design and synthesis of digital circuits, numerous bugs

can appear, leading to faulty circuits on physical chips. Therefore,

the verification of circuits remains an essential task for their de-

sign process. However, verification approaches like discrete sim-

ulation fail to be able to fully guarantee a correct design, as it is

not feasible to test the circuit for all possible input assignments.

Thus, only formal verification methods can formally guarantee
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the correctness of a circuit. Several formal verification techniques

can be applied, such as techniques based on Boolean Satisfiabil-
ity (SAT) [20], Symbolic Computer Algebra (SCA) [1, 24] or Binary
Decision Diagrams (BDDs) [5], [11]. Apart from BDDs, other kinds

of decision diagrams can be employed as well, such as Kronecker
Functional Decision Diagrams (KFDDs) [16, 12] or Binary Moment
Diagrams (BMDs) [8, 13].

While formal verification methods like decision diagrams can be

used to verify a variety of circuits, formally verifying a circuit can

generally have an exponential time and space complexity, poten-

tially causing the verification process to fail due to time or space

constraints. Even if the formal representation of the final output

has a polynomial size, they can reach an exponential size during the

verification process. For multipliers, it has been proven that the veri-

fication using BDDs always requires exponential time and space [6].

Thus, the possibility of an efficient verification of specific circuit

classes using various verification methods has been researched in

the past years. Here, Polynomial Formal Verification (PFV) has been

established [9, 15], where it was proven that for several circuits and

verification methods, the verification can be carried out in polyno-

mial time and space. Some of the circuits included in this class of

polynomially verifiable circuits are several adders [9, 23], [21], mul-

tipliers [19], tree-like circuits [10], integer arithmetic circuits [1]

and circuits computing symmetric functions [14]. The research

results on verification complexity are beneficial during design-time,

as the scalability of using specific methods to verify circuit classes

can be estimated beforehand, as well as the verification time and

space. Furthermore, the design of circuits can be adjusted, such that

the resulting circuit can be verified efficiently.

A circuit for a specific function can be derived from its BDD,

where each node is replaced by a multiplexer [2]. In recent years,

it has been shown that BDD circuits can be verified polynomi-

ally regarding the circuit size [10], where the circuit size directly

depends on the BDD size. For some Boolean functions however,

more efficient representations than BDDs exist. For some functions,

the KFDD can even be exponentially smaller than the respective

BDD [3]. Using multiplexers, AND, XOR and NOT gates, circuits

can be derived fromKFDDs as well [17]. As the circuit size for KFDD

circuits directly depends on the KFDD size as well, the resulting

KFDD circuit can also be exponentially smaller than the respective

BDD circuit. Despite the potential decrease of the circuit size, it has

not been researched yet how the employment of KFDDs affects the

verification complexity. In general, the application of operations

like AND and OR to KFDDs can require an exponential amount of

steps [12]. Nonetheless, in this paper, we prove that circuits derived

from KFDDs can be formally verified in linear time and space with

respect to the circuit size. By this, we also improve the bound for

BDD circuits given in [10]. For the verification, symbolic simulation
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Figure 1: Example of a reduced and ordered KFDD

is used. We give upper bounds for the maximum KFDD size dur-

ing the verification process and calculate the resulting linear time

complexity. In addition to the theoretical results, we evaluate the

upper bounds for the verification of 10,000 random KFDD circuits.

The results of this paper also hold for BDDs, read-once KFDDs and

Pseudo-KFDDs.

2 PRELIMINARIES
This section provides an overview of KFDDs, operations on KFDDs,

circuits derived from KFDDs and the formal verification of circuits

using symbolic simulation.

2.1 KFDDs
A KFDD [16, 12] is a directed acyclic graph with a root node and

two terminal nodes that represent the values 0 and 1, where every

non-terminal node has two outgoing edges and is associated with

a variable. If the KFDD is ordered, the variables occur in the same

order in every path from the root to a terminal node. Furthermore,

a KFDD is reduced if it consists of a minimal amount of nodes. In

the remainder of this paper, we operate on ordered and reduced

KFDDs. We denote the size of an ordered and reduced KFDD 𝐹

as |𝐹 |.
For KFDDs, three different decomposition types can be used to

expand a node. Let 𝑓 0
𝑖
be the cofactor of 𝑓 , where 𝑥𝑖 is set to 0 and

analogously, let 𝑓 1
𝑖
be the cofactor of 𝑓 , where 𝑥𝑖 is set to 1. The

Shannon (S) decomposition expands the node for 𝑓 with

𝑓 = 𝑥𝑖 𝑓
0

𝑖 + 𝑥𝑖 𝑓
1

𝑖 . (1)

Furthermore, let 𝑓 2
𝑖
be defined as the XOR operation performed

on both cofactors 𝑓 2
𝑖

= 𝑓 0
𝑖

⊕ 𝑓 1
𝑖
. Then, the positive Davio (pD)

decomposition is defined as

𝑓 = 𝑓 0𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 . (2)

Analogously, the negative Davio (nD) decomposition is defined as

𝑓 = 𝑓 1𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 . (3)

If BDDs are used, every variable is decomposed using the Shan-

non decomposition. However, for KFDDs, every variable can be

decomposed using one of the three decomposition types, which can

reduce the size of the decision diagram exponentially for some func-

tions [3]. The Decomposition Type List (DTL) of a KFDD specifies

the decomposition type chosen for each variable. Figure 1 shows an

Algorithm 1: XOR Operation

Input :𝐹,𝐺
Output :𝐹 ⊕ 𝐺

1 if terminal case or (𝐹,𝐺) ∈ computed-table then
2 return result
3 else
4 let 𝑣 be the top node of 𝐹,𝐺

5 𝑙𝑜𝑤 (𝑣) = XOR(𝐹𝑙𝑜𝑤 (𝑣) ,𝐺𝑙𝑜𝑤 (𝑣) )
6 ℎ𝑖𝑔ℎ(𝑣) = XOR(𝐹ℎ𝑖𝑔ℎ (𝑣) ,𝐺ℎ𝑖𝑔ℎ (𝑣) )
7 if Shannon(v) then
8 if 𝑙𝑜𝑤 (𝑣) == ℎ𝑖𝑔ℎ(𝑣) then
9 return 𝑙𝑜𝑤 (𝑣)

10 else
11 if ℎ𝑖𝑔ℎ(𝑣) == 0 then
12 return 𝑙𝑜𝑤 (𝑣)
13 𝑅 = find-or-add-unique-table(𝑣, 𝑙𝑜𝑤 (𝑣), ℎ𝑖𝑔ℎ(𝑣))
14 insert-computed-table(𝐹,𝐺, 𝑅)
15 return R

Algorithm 2: AND Operation

Input :𝐹,𝐺
Output :𝐹 ·𝐺

1 if terminal case or (𝐹,𝐺) ∈ computed-table then
2 return result
3 else
4 let 𝑣 be the top node of 𝐹,𝐺

5 𝑙𝑜𝑤 (𝑣) = AND(𝐹𝑙𝑜𝑤 (𝑣) ,𝐺𝑙𝑜𝑤 (𝑣) )
6 if Shannon(v) then
7 ℎ𝑖𝑔ℎ(𝑣) = AND(𝐹ℎ𝑖𝑔ℎ (𝑣) ,𝐺ℎ𝑖𝑔ℎ (𝑣) )
8 if 𝑙𝑜𝑤 (𝑣) == ℎ𝑖𝑔ℎ(𝑣) then
9 return 𝑙𝑜𝑤 (𝑣)

10 else
11 ℎ𝑖𝑔ℎ(𝑣) = AND(𝐹ℎ𝑖𝑔ℎ (𝑣) ,𝐺ℎ𝑖𝑔ℎ (𝑣) ) ⊕

AND(𝐹𝑙𝑜𝑤 (𝑣) ,𝐺ℎ𝑖𝑔ℎ (𝑣) ) ⊕ AND(𝐹ℎ𝑖𝑔ℎ (𝑣) ,𝐺𝑙𝑜𝑤 (𝑣) )
12 if ℎ𝑖𝑔ℎ(𝑣) == 0 then
13 return 𝑙𝑜𝑤 (𝑣)
14 𝑅 = find-or-add-unique-table(𝑣, 𝑙𝑜𝑤 (𝑣), ℎ𝑖𝑔ℎ(𝑣))
15 insert-computed-table(𝐹,𝐺, 𝑅)
16 return R

example of a reduced and ordered KFDD with the variable order-

ing (𝑥1, 𝑥2, 𝑥3, 𝑥4), where the DTL (𝑆, 𝑝𝐷, 𝑆, 𝑛𝐷) is used to specify

the decomposition type for every variable.

Let 𝑓 and 𝑔 be two functions and let 𝐹 and 𝐺 be their respective

KFDDs. The execution of the XOR operation on 𝐹 and 𝐺 has a

quadratic time and space complexity of O(|𝐹 | · |𝐺 |) regarding the
size of both KFDDs 𝐹 and𝐺 , assuming an optimal hashing in O(1).
Similar to the XOR operation on BDDs, the XOR operation for nodes

with the Shannon decomposition can be computed recursively as

follows:

𝑓 ⊕ 𝑔 = 𝑥𝑖 · (𝑓 0𝑖 ⊕ 𝑔0𝑖 ) + 𝑥𝑖 · (𝑓 1𝑖 ⊕ 𝑔1𝑖 ) (4)
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Figure 2: Circuits for the three decomposition types S, pD and nD

For nodes with the positive or negative Davio decomposition, the

computation of the XOR operation is adjusted according to Equa-

tions (2) and (3), respectively. The XOR operation for the positive

Davio decomposition is defined as follows:

𝑓 ⊕ 𝑔 = (𝑓 0𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 ) ⊕ (𝑔0𝑖 ⊕ 𝑥𝑖𝑔
2

𝑖 )
= (𝑓 0𝑖 ⊕ 𝑔0𝑖 ) ⊕ 𝑥𝑖 · (𝑓 2𝑖 ⊕ 𝑔2𝑖 )

(5)

To realize the XOR operation for the negative Davio decomposition,

the variable and the cofactors have to be adjusted as in Equation (3):

𝑓 ⊕ 𝑔 = (𝑓 1𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 ) ⊕ (𝑔1𝑖 ⊕ 𝑥𝑖𝑔
2

𝑖 )
= (𝑓 1𝑖 ⊕ 𝑔1𝑖 ) ⊕ 𝑥𝑖 · (𝑓 2𝑖 ⊕ 𝑔2𝑖 )

(6)

The algorithm for the XOR operation with the input KFDDs 𝐹 and𝐺

is shown in Algorithm 1. Here, the result is returned immediately if

a terminal case is reached or if the result has already been computed

in an earlier step. A terminal case is reached if one of the inputs

is a terminal. Otherwise, the two cofactors 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣)
are computed according to Equations (4) and (5), followed by a

reduction based on the decomposition type.

Other operations may have an exponential time and space com-

plexity on KFDDs, such as the AND operation, which is shown in

Algorithm 2. For the Shannon decomposition, the cofactors 𝑙𝑜𝑤 (𝑣)
and ℎ𝑖𝑔ℎ(𝑣) are computed similar to the XOR operation. However,

for the positive and negative Davio decomposition, the AND opera-

tion has an exponential worst case time complexity. For the positive

Davio decomposition, it is computed as follows:

𝑓 · 𝑔 = (𝑓 0𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 ) · (𝑔
0

𝑖 ⊕ 𝑥𝑖𝑔
2

𝑖 )
= (𝑓 0𝑖 · 𝑔0𝑖 ) ⊕ 𝑥𝑖 ((𝑓 2𝑖 · 𝑔2𝑖 ) ⊕ (𝑓 0𝑖 · 𝑔2𝑖 ) ⊕ (𝑓 2𝑖 · 𝑔0𝑖 ))

(7)

Again, for the negative Davio decomposition, the variable and the

cofactors have to be adjusted according to Equation (3):

𝑓 · 𝑔 = (𝑓 1𝑖 ⊕ 𝑥𝑖 𝑓
2

𝑖 ) · (𝑔
1

𝑖 ⊕ 𝑥𝑖𝑔
2

𝑖 )
= (𝑓 1𝑖 · 𝑔1𝑖 ) ⊕ 𝑥𝑖 ((𝑓 2𝑖 · 𝑔2𝑖 ) ⊕ (𝑓 1𝑖 · 𝑔2𝑖 ) ⊕ (𝑓 2𝑖 · 𝑔1𝑖 ))

(8)

Therefore, ℎ𝑖𝑔ℎ(𝑣) is computed differently for the Davio decompo-

sition types, as shown in Line 11 of Algorithm 2.

TheOR operation is computed analogously to theANDoperation.

Furthermore, the NOT operation can be realized using the XOR

operation, as 𝑓 = 1 ⊕ 𝑓 , and is therefore efficient.

nD

S

pD pD

S

1 2

1 0

0 2 0 2

1 0

0 1

1

1

𝑥4

𝑥3

𝑥2 𝑥2

𝑥1

𝑓

Figure 3: Example of a KFDD Circuit resulting from Figure 1

2.2 KFDD Circuits
To synthesize Boolean functions, their decision diagrams can be

leveraged. BDD circuits are created by replacing the nodes in the

BDD with multiplexers [2]. Figure 2(a) shows a multiplexer circuit,

consisting of a NOT gate, two AND gates and an OR gate. How-

ever, as BDDs can be exponentially larger than KFDDs for some

functions [3], KFDD circuits can drastically reduce the area. Here,

every node that is decomposed using the Shannon decomposition

is replaced by a multiplexer, whereas each positive Davio node is

replaced by an XOR gate and an AND gate, as shown in Figure 2(b).

For the negative Davio nodes, an additional NOT gate is required,

as is illustrated in Figure 2(c) [17]. Figure 3 shows the KFDD circuit

corresponding to the KFDD in Figure 1, where the Shannon nodes

are replaced by multiplexers and the Davio nodes are realized using

NOT, AND and XOR gates.
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2.3 Symbolic Simulation
To formally verify a circuit using KFDDs, its KFDD can be computed

according to the circuit design using symbolic simulation. First, the

KFDDs for the input variables are created, which consist of two or

three nodes in total, depending on the decomposition type. Then,

the KFDDs for the outputs of the following gates are computed

by applying the corresponding operations to the input KFDDs

of the respective gates. This process is repeated until the output

KFDD of the final gate(s) is created [7]. The resulting KFDD can

then be compared to the KFDD of the specification. As KFDDs

are canonical given a variable ordering and a DTL [12], the circuit

correctly implements the specification if and only if the computed

KFDD for the circuit is equal to the KFDD of the specification.

3 RELATEDWORK
The verification complexity of several circuit classes has already

been researched. Here, many approaches leverage BDDs, which can

be used to polynomially verify multiple adder architectures, such

as the ripple carry adder, the conditional sum adder and the carry

look ahead adder [9]. The authors of [23] furthermore analyse the

polynomial formal verification of several prefix adders.

In [10], it has been shown that circuits derived from BDDs can

be verified in polynomial time and space regarding the circuit size.

Here, it has also been proven that tree-like circuits can be efficiently

verified using BDDs as well, where the gates of the tree-like cir-

cuits are limited to basic gates. In [22], this result was extended to

include other gates such as XOR gates, where BDDs and KFDDs

are used for the verification. Other decision diagrams can also be

employed for verification, such as *BMDs, which can be used for the

polynomial formal verification of Wallace-tree like multipliers [19].

Additionally, it has been proven that integer arithmetic circuits can

be verified in linear space and quadratic time regarding the circuit

size using BMDs and SCA [1].

Thus, the verification complexity of several circuits is already

known, however, the verification complexity of circuits derived

from KFDDs has not been investigated yet.

4 POLYNOMIAL VERIFICATION
To prove the polynomial verifiability of KFDD circuits, we first

prove in Section 4.1 that the KFDDs resulting from each step of the

symbolic simulation are at most as large as the KFDD of the final

function. For the verification, the variable ordering and the DTL

are chosen according to the KFDD circuit. In Section 4.2, we then

prove that each step of the symbolic simulation can be carried out

in constant time, leading to an overall linear time complexity. The

linear space complexity of the verification process directly results

from the linear time complexity.

4.1 Maximum KFDD Size
In the following, the upper bound for the KFDD size during the

verification process of the KFDD circuit for a function 𝑓 is proven

to be |𝐹 |, if |𝐹 | ≥ 3, where all intermediate KFDDs are considered.

If |𝐹 | < 3, all intermediate results trivially have a constant size.

Theorem 1. Let |𝐹 | ≥ 3 be the size of the KFDD for a function 𝑓 ,
where the variable ordering and the DTL are chosen as given by the
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Figure 4: Example of the five cases for a KFDD Circuit

KFDD circuit. Furthermore, let |𝐹 ′ | be the size of an intermediate
KFDD during the verification process. Then, it holds that |𝐹 ′ | ≤ |𝐹 |.

Proof. For the proof, we differentiate between all types of gates,

meaning all gates in the multiplexers replacing the Shannon nodes,

as well as the NOT, AND and XOR gates realizing Davio nodes.

Here, five different cases for 𝐹 ′ are examined, which are marked in

Figure 4 for an exemplary KFDD circuit, where each gate output

is marked with the respective case. Furthermore, the intermediate

results 𝑓𝑝𝐷 , 𝑓𝑛𝐷 and 𝑓𝑆 for the decomposition types pD, nD and S are

marked. Exemplary KFDDs for the five cases during the verification

process of the KFDD circuit displayed in Figure 4 are shown in

Figure 5.

(1) Let 𝐹 ′ be the KFDD of a multiplexer output, meaning the

output of its OR gate. Then, 𝐹 ′ is a subgraph of 𝐹 , as the

function 𝑓 ′ corresponding to the KFDD 𝐹 ′ is the input of a
node in the final KFDD. Thus, |𝐹 ′ | ≤ |𝐹 |. An example can be

seen in Figure 5(a), where the KFDD for 𝑓𝑆 is shown, which

is also the final KFDD for the function 𝑓 .

(2) Let 𝐹 ′ be the KFDD for the output of an XOR gate for the

negative or positive Davio decomposition. The KFDD for the

output of the XOR gate of a negative Davio node is displayed

in Figure 5(b). Again, 𝐹 ′ is a subgraph of 𝐹 and thus, it holds

that |𝐹 ′ | ≤ |𝐹 |.
(3) Now let 𝐹 ′ be the KFDD of a NOT gate from the realization

of Shannon or negative Davio nodes. The KFDD of the NOT

gate is trivially constant, as a single variable 𝑥𝑖 is negated,

resulting in a KFDD of size |𝐹 ′ | ≤ 3, which is shown in

Figure 5(c). Thus, |𝐹 ′ | ≤ |𝐹 |, as |𝐹 | ≥ 3.
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𝑥1, 𝑆
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(a) Case 1: KFDD for 𝑓𝑆 = 𝑓

1 0

𝑥2, 𝑛𝐷

𝑥3, 𝑝𝐷

(b) Case 2: KFDD for 𝑓𝑛𝐷

1 0

𝑥1, 𝑆

(c) Case 3: KFDD for 𝑥1

1 0

𝑥1, 𝑆

𝑥2, 𝑛𝐷

𝑥3, 𝑝𝐷

(d) Case 4: KFDD for 𝑥1 · 𝑓𝑛𝐷

1 0

𝑥2, 𝑛𝐷

𝑥3, 𝑝𝐷

(e) Case 5: KFDD for 𝑥2 · 𝑓𝑝𝐷

Figure 5: Illustration of the KFDDs for the five cases

(4) Let 𝐹 ′ be the KFDD for the output of one of the AND gates

in the multiplexer computing either 𝑥𝑖 · 𝑔1𝑖 or 𝑥𝑖 · 𝑔0𝑖 , where
the KFDDs for 𝑔1

𝑖
and 𝑔0

𝑖
were examined in either Case 1 or

Case 2. The AND operation merely adds one node to the

KFDD of 𝑔1
𝑖
or 𝑔0

𝑖
, as 𝑥𝑖 is the topmost variable due to the

bottom-up approach of the KFDD circuit. As the KFDDs

of 𝑔1
𝑖
and 𝑔0

𝑖
are subgraphs of 𝐹 , but are not equal to the

final KFDD 𝐹 , it holds that |𝐺1

𝑖
| < |𝐹 | and |𝐺0

𝑖
| < |𝐹 | and

therefore |𝐹 ′ | = |𝐺1

𝑖
| + 1 ≤ |𝐹 | and |𝐹 ′ | = |𝐺0

𝑖
| + 1 ≤ |𝐹 |.

An example for the KFDD after the AND operation is shown

in Figure 5(d).

(5) Finally, let 𝐹 ′ be the KFDD for the output of the AND gate

used for the positive or negative Davio decomposition. The

AND gate computes either 𝑥𝑖 · 𝑔2𝑖 for the positive Davio de-

composition or 𝑥𝑖 ·𝑔2𝑖 for the negative Davio decomposition,

where an example for 𝑥𝑖 · 𝑔2𝑖 is displayed in Figure 5(e). The

KFDD of 𝑔2
𝑖
is again examined in either Case 1 or Case 2 and

is therefore a subgraph of 𝐹 , but not equal to 𝐹 . As 𝑥𝑖 is the

topmost variable, only a single node is added to the KFDD

and similar to Case 4, it holds that |𝐹 ′ | = |𝐺2

𝑖
| + 1 ≤ |𝐹 |.

□

Thus, we have shown that the outputs of all gates can be rep-

resented by a KFDD which is smaller than or equal to the final

KFDD.

4.2 Time Complexity
For the calculation of the time complexity, we first prove that each

step of the symbolic simulation requires constant time, despite the

general exponential time complexity of the OR and AND operations

and the quadratic time complexity of the XOR and NOT operations.

Theorem 2. Every operation of the symbolic simulation can be
carried out in constant time.

Proof. The same five cases described in Section 4.1 are consid-

ered, where we examine the complexity of the KFDD computation

for each gate, meaning each step of the symbolic simulation. For

all cases, let 𝑣 be the topmost node of the KFDD resulting from the

respective operation, where we calculate the complexity of com-

puting 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣). We show that the computation of each

operation reaches a terminal case in a constant amount of steps.

(1) The KFDD corresponding to the OR gate in the multiplexer

computing the function 𝑓 ′ = 𝑥𝑖 · 𝑔0𝑖 + 𝑥𝑖 · 𝑔1𝑖 is computed

using the OR operation. Generally, the computation of the

OR operation requires exponential time and space on KFDDs.

However, in this case, a terminal case is reached in constant

time for the computation of both 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣):

𝑙𝑜𝑤 (𝑣) = (𝑥𝑖 · 𝑔0𝑖 )
0

𝑖 + (𝑥𝑖 · 𝑔1𝑖 )
0

𝑖

= 1 · 𝑔0𝑖 + 0 · 𝑔1𝑖
= 𝑔0𝑖 + 0 = 𝑔0𝑖

ℎ𝑖𝑔ℎ(𝑣) = (𝑥𝑖 · 𝑔0𝑖 )
1

𝑖 + (𝑥𝑖 · 𝑔1𝑖 )
1

𝑖

= 0 · 𝑔0𝑖 + 1 · 𝑔1𝑖
= 0 + 𝑔1𝑖 = 𝑔1𝑖

(9)

Here, the inputs of the OR operation are inserted into the

equation for the computation of 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣). Note
that (𝑥𝑖 · 𝑔0𝑖 )

0

𝑖
= 1 · 𝑔0

𝑖
, as the value of 𝑥𝑖 is already set

to 0 in 𝑔0
𝑖
and therefore, 𝑔0

𝑖
doesn’t depend on 𝑥𝑖 . Analo-

gously, (𝑥𝑖 · 𝑔1𝑖 )
0

𝑖
= 0 · 𝑔1

𝑖
. Thus, the OR operations that com-

pute 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣) reach a terminal case in constant
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time and therefore, also the KFDD for 𝑓 ′ can be computed

in constant time O(1).
(2) The XOR gate 𝑓 ′ = 𝑔0

𝑖
⊕ 𝑥𝑖 ·𝑔2𝑖 for a positive Davio node can

be calculated using the XOR operation.

𝑙𝑜𝑤 (𝑣) = (𝑔0𝑖 )
0

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
0

𝑖

= 𝑔0𝑖 ⊕ 0 · 𝑔2𝑖
= 𝑔0𝑖 ⊕ 0 = 𝑔0𝑖

ℎ𝑖𝑔ℎ(𝑣) = (𝑔0𝑖 )
2

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
2

𝑖

= (𝑔0𝑖 ⊕ 𝑔0𝑖 ) ⊕ ((𝑥𝑖 · 𝑔2𝑖 )
0

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
1

𝑖 )
= 0 ⊕ (0 · 𝑔2𝑖 ⊕ 1 · 𝑔2𝑖 )
= 0 ⊕ 0 ⊕ 𝑔2𝑖 = 𝑔2𝑖

(10)

Here, (𝑔0
𝑖
)2
𝑖
= (𝑔0

𝑖
⊕ 𝑔0

𝑖
), as 𝑓 2

𝑖
is defined as 𝑓 2

𝑖
= 𝑓 0

𝑖
⊕ 𝑓 1

𝑖

and the value of 𝑥1 is already set to 0 in 𝑔0
𝑖
and therefore, it

holds that (𝑔0
𝑖
)0
𝑖
= (𝑔0

𝑖
)1
𝑖
= 𝑔0

𝑖
. For a negative Davio node,

the XOR gate 𝑓 ′ = 𝑔1
𝑖
⊕ 𝑥𝑖 · 𝑔2𝑖 is computed:

𝑙𝑜𝑤 (𝑣) = (𝑔1𝑖 )
1

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
1

𝑖

= 𝑔1𝑖 ⊕ 0 · 𝑔2𝑖
= 𝑔1𝑖 ⊕ 0 = 𝑔1𝑖

ℎ𝑖𝑔ℎ(𝑣) = (𝑔1𝑖 )
2

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
2

𝑖

= (𝑔1𝑖 ⊕ 𝑔1𝑖 ) ⊕ ((𝑥𝑖 · 𝑔2𝑖 )
0

𝑖 ⊕ (𝑥𝑖 · 𝑔2𝑖 )
1

𝑖 )
= 0 ⊕ (1 · 𝑔2𝑖 ⊕ 0 · 𝑔2𝑖 )
= 0 ⊕ 𝑔2𝑖 ⊕ 0 = 𝑔2𝑖

(11)

Thus, for both the positive and negative Davio decomposi-

tion, the XOR operation reaches a terminal case in constant

time O(1).
(3) A NOT gate 𝑓 ′ = 𝑥𝑖 is computed using the XOR opera-

tion 1 ⊕ 𝑥𝑖 , where the KFDD for the Shannon decomposition

is computed as

𝑙𝑜𝑤 (𝑣) = 1 ⊕ 𝑥0𝑖

= 1 ⊕ 0 = 1

ℎ𝑖𝑔ℎ(𝑣) = 1 ⊕ 𝑥1𝑖

= 1 ⊕ 1 = 0

(12)

For the negative Davio decomposition, the NOT gates are

computed analogously according to Equations (5) and (6).

Thus, the computation of the NOT gates has a constant time

complexity O(1).
(4) Themultiplexers contain two different ANDgates. The KFDD

for the AND gate 𝑓 ′ = 𝑥𝑖 · 𝑔1𝑖 located in the multiplexer can

be computed as follows:

𝑙𝑜𝑤 (𝑣) = 𝑥0𝑖 · (𝑔1𝑖 )
0

𝑖

= 0 · 𝑔1𝑖 = 0

ℎ𝑖𝑔ℎ(𝑣) = 𝑥1𝑖 · (𝑔1𝑖 )
1

𝑖

= 1 · 𝑔1𝑖 = 𝑔1𝑖

(13)

In general, the computation of the AND operation on KFDDs

has an exponential time and space complexity. However, in

this case, 𝑙𝑜𝑤 (𝑣) is constant andℎ𝑖𝑔ℎ(𝑣) is set to𝑔1
𝑖
, meaning

a terminal case is reached in constant time O(1). Similarly,

the AND operation for 𝑓 ′ = 𝑥𝑖 · 𝑔0𝑖 is computed as:

𝑙𝑜𝑤 (𝑣) = 𝑥0𝑖 · (𝑔
0

𝑖 )
0

𝑖

= 1 · 𝑔0𝑖 = 𝑔0𝑖

ℎ𝑖𝑔ℎ(𝑣) = 𝑥1𝑖 · (𝑔
0

𝑖 )
1

𝑖

= 0 · 𝑔0𝑖 = 0

(14)

Again, the computation terminates in constant time O(1).
(5) For the AND gate of the realization of positive and negative

Davio nodes, Equations (13) and (14) do not hold, as the

Davio decomposition is used for the calculation of the AND

operation. For the positive Davio decomposition, the AND

operation 𝑓 ′ = 𝑥𝑖 · 𝑔2𝑖 is computed as follows:

𝑙𝑜𝑤 (𝑣) = 𝑥0𝑖 · (𝑔2𝑖 )
0

𝑖

= 0 · 𝑔2𝑖 = 0

ℎ𝑖𝑔ℎ(𝑣) = (𝑥2𝑖 · (𝑔2𝑖 )
2

𝑖 ) ⊕ (𝑥0𝑖 · (𝑔2𝑖 )
2

𝑖 ) ⊕ (𝑥2𝑖 · (𝑔2𝑖 )
0

𝑖 )
= (1 · 0) ⊕ (0 · 0) ⊕ (1 · 𝑔2𝑖 )
= 0 ⊕ 0 ⊕ 𝑔2𝑖 = 𝑔2𝑖

(15)

Here, it holds that 𝑥2
𝑖
= (𝑥0

𝑖
⊕𝑥1

𝑖
) = 0⊕1 = 1, whereas (𝑔2

𝑖
)2
𝑖
=

(𝑔2
𝑖
)0
𝑖
⊕ (𝑔2

𝑖
)1
𝑖
= 𝑔2

𝑖
⊕ 𝑔2

𝑖
= 0. Thus, a terminal case is again

reached in constant size O(1). Similarly, for the negative

Davio decomposition and the computation of 𝑓 ′ = 𝑥𝑖 · 𝑔2𝑖 :

𝑙𝑜𝑤 (𝑣) = 𝑥1𝑖 · (𝑔
2

𝑖 )
1

𝑖

= 0 · 𝑔2𝑖 = 0

ℎ𝑖𝑔ℎ(𝑣) = (𝑥2𝑖 · (𝑔
2

𝑖 )
2

𝑖 ) ⊕ (𝑥1𝑖 · (𝑔
2

𝑖 )
2

𝑖 ) ⊕ (𝑥2𝑖 · (𝑔
2

𝑖 )
1

𝑖 )
= (1 · 0) ⊕ (0 · 0) ⊕ (1 · 𝑔2𝑖 )
= 0 ⊕ 0 ⊕ 𝑔2𝑖 = 𝑔2𝑖

(16)

As for the positive Davio decomposition, the AND operation

for the negative Davio decomposition has a constant time

complexity.

□

For every node in 𝐹 , the KFDD circuit contains atmost 4 gates (see

Figure 2). Therefore, the circuit size 𝑐 is linear to |𝐹 |, where 𝑐 ≤ 4· |𝐹 |.
As one operation with a constant time complexity has to be carried

out for every gate, the overall time complexity of the verification

process is O(𝑐).

4.3 Other DD Types
The upper bounds presented in this paper also hold for other types

of decision diagrams.

As BDDs are KFDDs, where only the Shannon decomposition is

used, BDDs are a subclass of KFDDs and thus, the formal verification

of BDDs has a linear time complexityO(𝑐) and the BDD sizes during

the verification process are bounded by |𝐹 |.
The upper bounds for the maximum KFDD size during the veri-

fication process and for the time complexity can also be applied to

the formal verification of circuits derived from read-once KFDDs,

where the variable ordering can be encountered in different or-

ders on different paths in the KFDD [4]. Generally, operations on
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Figure 6: Size of KFDD during the verification process for
|𝐹 | ≤ 50

two KFDDs require the same variable ordering for both KFDDs.

However, all operations during the verification of KFDD circuits

terminate in constant time and only operate on the topmost node 𝑣 ,

whereas 𝑙𝑜𝑤 (𝑣) and ℎ𝑖𝑔ℎ(𝑣) are merely set to 𝑔0
𝑖
, 𝑔1

𝑖
, 𝑔2

𝑖
, 0 or 1 and

therefore don’t require further computation. Thus, the circuit can

be polynomially verified using read-once KFDDs. This also holds

for the verification of circuits derived from Pseudo-KFDDs, where

nodes representing the same variable can have different decompo-

sition types.

5 EXPERIMENTS
To evaluate the upper bounds proven in Section 4, we have imple-

mented KFDDs in the wld package [18], a C++ library for decision

diagrams. The Shannon decomposition, as well as the positive and

negative Davio decomposition are implemented, along with the

required operations AND, OR, XOR and NOT. The KFDD sizes after

each step of the symbolic simulation and the verification time are

evaluated for 10,000 KFDD circuits with up to 100,000 gates. The

circuits are derived from KFDDs for random functions and with

random variable orderings and DTLs.

Figure 6 shows the sizes of the KFDDs during the verification

process for |𝐹 | ≤ 50, meaning the KFDDs from which the circuits

are derived have a size of up to 50 nodes. Every dot represent the

KFDD size after an AND, OR, XOR or NOT operation. Here, the red

line marks the upper bound proven in Section 4.1. As can be seen,

the upper bound is met during the verification of all tested circuits,

but is not surpassed for any example. These results also hold for

all tested KFDD circuits with |𝐹 | > 50. Thus, the results obtained

by the experimental evaluation support the upper bound for the

KFDD sizes presented in Section 4.1.
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Figure 7: KFDD size during the verification steps of a KFDD
circuit with |𝐹 | = 500

The KFDD sizes during the verification process of a KFDD circuit

with |𝐹 | = 500 and a circuit size of 𝑐 = 1414 gates is shown in

Figure 7. Again, the upper bound |𝐹 | = 500 for the KFDD size

is marked in red, which is not surpassed during the verification

process. The KFDD size only meets the upper bound during the

last verification step, which results in the final KFDD of the circuit.

Finally, the verification time in milliseconds for random KFDD

circuits with random variable ordering and DTLs and a circuit

size of 𝑐 ≤ 100, 000 is plotted in Figure 8. As can be seen, the

experimental results support the linear time complexity proven in

Section 4.2.

6 CONCLUSION
In this paper, we have shown that circuits derived from KFDDs can

be formally verified in linear time and space with respect to the

circuit size, despite the general exponential complexity of formally

verifying circuits using BDD-based or KFDD-based techniques. We

have given upper bounds for the size of all intermediate KFDDs dur-

ing the verification process, as well as for the overall time complex-

ity. The theoretical bounds presented in this paper were supported

by an experimental evaluation on 10,000 circuits derived from ran-

dom KFDDs with up to 100,000 gates. The upper bounds presented

in this paper also hold for the formal verification of circuits derived

from BDDs, read-once KFDDs and Pseudo-KFDDs.
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