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Abstract 

Discrete functions are now commonly represented by  
binary (BDD) and multiple-valued (MDD) decision 
diagrams.  Sifting is an effective heuristic technique 
which applies adjacent variable interchanges to find a 
good variable ordering to reduce the size of a BDD or 
MDD. 

Linear sifting is an extension of BDD sifting where XOR 
operations involving adjacent variable pairs augment 
adjacent variable interchange leading to further 
reduction in the node count.  In this paper, we consider 
the extension of this approach to MDDs.  In particular, 
we show that the XOR operation of linear sifting can be 
extended to a variety of operations.  We term the resulting 
approach augmented sifting. 

Experimental results are presented showing sifting and 
augmented sifting can be quite effective in reducing the 
size of MDDs for certain types of functions. 

1.  Introduction 

BDDs [1][2][3][8][14][17][18] and MDDs [10][11] are 
commonly used in a wide variety of applications.  The 
variable ordering can significantly affect the size of a 
decision diagram and there has thus been considerable 
work on determining good orderings.  Sifting [15] is a 
very effective technique applicable to BDDs and MDDs.* 

The size of a BDD can be further reduced by a technique 
called linear sifting [9].  In this approach, certain variables 
are replaced by the XOR of variables so that the 
realization of a system of functions F consists of a linear 
prefilter made up of XORs that permutes the input space 
to a BDD representing a system of functions G which 
together realize the given system F at lower overall cost.  
This is in fact the linearization scheme discussed by 
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Karpovsky [7] who gave an analytical solution applicable 
to a system with a small number of inputs.  Linear sifting 
is a heuristic application of linearization applicable to 
large problems. 

The purpose of this paper is to examine the extension of 
linear sifting to the MDD case.  We consider mod-p sum 
sifting which is based on replacing XOR by summation 
mod-p and also augmented sifting where a variety of 
extensions to XOR are considered. 

2.  Preliminaries 

We consider 1 2( , ,..., ),1 ,i nf x x x i m≤ ≤  a system of 

totally-specified p-valued functions where the ix are also 

p-valued.    The functions are totally-specified so each ix  
takes on all values 0…p-1.  A particular function may take 
on a subset of the values 0…p-1.  In particular, we shall 
consider the case of multiple-valued input, binary output 
functions.  We denote the mod-p sum as x y⊕  and use 

( ) mod ,1 1,kx x k p k p= + ≤ ≤ − to denote the k possible 
cyclic negations. 

The type of function considered can be represented by a 
multiple-valued decision diagram (MDD) which is a 
directed acyclic graph (DAG) with up to p terminal nodes 
each labelled by a distinct value 0,1,…,p-1.  Every non-
terminal node is labelled by an input variable and has p 
outgoing edges; one corresponding to each logic value.  
These are termed the 0-edge, 1-edge, etc.   

An MDD is ordered if the variables adhere to a single 
ordering on every path in the graph, and no variable 
appears more than once on any path from the root to a 
terminal node.  Finding a variable ordering to minimize 
the number of nodes in an MDD is a critical issue. 

A reduced MDD has no node where all p outgoing edges 
point to the same node and no isomorphic subgraphs.  
Clearly, no isomorphic subgraphs exist if, and only if, no 
two non-terminal nodes labelled by the same variable, 
have the same direct descendants. Throughout this paper 
we assume all MDDs are reduced and ordered. 



For a system of function (multiple-output problem), we 
represent the functions by a single DAG with multiple top 
nodes, a structure called a shared MDD. When p = 2, the 
MDD structure becomes the well-known BDD. 

We use cyclic negation as an edge attribute in our MDDs 
as developed in [10][11] as a generalization of edge 
negations in BDDs [1][13].  Every edge in an MDD 
points to a function.  When an edge has an associated 
cyclic negation, it means that edge points to the cyclic 
negation of the function rather than the function itself.  
The representation is normalized so that there is no cyclic 
negation on any 0-edge.  Our MDDs always have a single 
terminal node with value 0.  Note that a cyclic negation 
may be required for realizing a desired output function. 

We note that the normalization process used in our MDDs 
differs from that often used in BDDs [16].  We have 
chosen the normalization rules for our package to best 
accommodate different values of p and to allow for easier 
extension to mixed-radix MDDs.. 

Figure 1 shows an MDD representing the sum (F1) and 
carry (F2) for the addition of two 3-valued inputs.  The 
three edges from each non-terminal node are drawn solid 
for the 0-edge, dashed for the 1-edge, and dotted for the 2-
edge. A number immediately to the right of an edge 
indicates a cyclic negation associated with that edge.     

 
Figure 1 MDD representing sum (F1) and carry (F2). 

3.  Sifting of BDDs and MDDs 

Sifting is a very effective heuristic variable ordering 
technique developed by Rudell [15] which is now 
available in commonly used packages such as CUDD 
[16]. 

3.1  Sifting of BDDs 

The principal step in sifting is the interchange of a pair of 
adjacent variables in the current variable ordering.  The 
key to the efficiency of sifting is that such a variable 
interchange can be done as a local operation affecting 
only nodes labelled by the two variables in question and 
no others.  Use of a unique table [3][16] makes these 
nodes directly accessible. 

 

 

In general terms, sifting proceeds as follows: 

Sifting Procedure 

i)  select a variable y – a simple heuristic is to choose 
the variable that labels the most nodes in the BDD, 

ii)  sift y to the bottom of the BDD by a sequence of 
adjacent variable interchanges, 

iii) sift y to the top of the BDD by a sequence of 
adjacent variable interchanges, 

iv) during steps (ii) and (iii) a record is kept of the 
position of y that yields the smallest node count in 
the BDD, so now sift y back down to that position, 

v)  repeat steps (i) to (iv) until each variable has been 
sifted into the best position noting that once a 
variable is selected for sifting, it is not selected a 
second time. 

There are !n  orderings of n variables.  Sifting examines 
on the order of 2n  orderings, yet does extremely well at 
identifying good variable orderings. 

In the above procedure, each variable is shifted to its 'best' 
position.  The whole process can be iterated until there is 
no further improvement which is termed sifting to 
convergence [16].  All sifting in this work is sifting to 
convergence. 

3.2  Sifting of MDDs 

Sifting an MDD requires an efficient means of performing 
adjacent variable interchange.  Such a method was given 
by the present authors in [11].  We here briefly outline 
this method as it will be used in modified form to 
implement mod-p sum and augmented sifting.  Full detail 
can be found in [11]. 

We consider the interchange of xi and xj where the former 
immediately precedes the latter in the variable ordering 
and assume for simplicity that all non-terminal nodes have 
p descendants.  For each node η labelled xi, matrix T is 
constructed with Tqr set to 

(a) the r-th descendant of the q-th descendant of η if 
the q-th descendant points to a node labelled xj, 

(b) the q-th descendant of η, otherwise. 

Given T formed as described above, the new nodes 
labelled xi are constructed using the columns of T to 
determine the descendants and then using the nodes so 
constructed as the descendants of the new node labelled xj.  
In simplest terms, the required rearrangement is 
accomplished by filling T by rows and then applying it by 
columns.  There are a number of implementation issues to 
consider which are given in detail in [11]. 

Given this method for adjacent variable interchange, 
sifting of MDDs is readily implemented using the same 
overall approach as for the BDD case. 



4.  Linear Sifting of BDDs 

Linear sifting was introduced by Meinel, Somenzi and 
Theobold [9] and further discussed by Günther and 
Drechsler [4][5][6].  In this extension to sifting, the 
simple interchange of two adjacent variables ix and jx  in 

steps (ii) and (iii) of the procedure outlined above is 
replaced by the following: 

(a) Variables ix and jx are interchanged.  Let 1k be the 

number of nodes in the BDD after this interchange. 

(b) Apply the linear transformation j i jx x x← ⊕ .  Let 

2k be the resulting number of nodes in the BDD. 

(c) If 1 2k k≤ then the transformation is undone. 

Undoing the transformation is accomplished by simply 
reapplying it since it is its own inverse.  Note that the 
above is described in terms of XOR due to the 
normalization rules we use for decision diagrams.  The 
original description in [9] is in terms of equivalence due 
to different normalization rules.  The concept is the same. 

Figure 2 illustrates the two basic operations used in linear 
sifting.  (a) shows a BDD structure before transformation.  
0-edges are solid and 1-edges are dashed.  The nodes 
labelled f00 through f11 are the top nodes of sub-DAGs 
representing subfunctions (not shown).  (b) shows the 
effect of interchanging ix and jx which is to interchange 

the subfunctions 01f and 10f .  (c) shows the effect of 

subsequently applying j i jx x x← ⊕ which is to 

interchange the subfunctions  10f  and 11f in (b). 

The function represented by each of the diagrams in 
Figure 2 is the same and the representations of the 
subfunctions 00f  through 11f  are not affected by the 
transformations.  Hence both the interchange of variables 
and the linear transformation are local operations affecting 
only two adjacent levels in the BDD.  Using cyclic 
negations does not change this locality property. 

Symmetry would suggest application of the transformation 

i i jx x x← ⊕ should be considered.  In fact, it is since 

sifting will encounter the variables in the two possible 
orderings.  Trying both j i jx x x← ⊕ and i i jx x x← ⊕ for 

each orientation duplicates effort. 

5.  Mod-p Sum and Augmented Sifting of MDDs 

We next consider the extension of linear sifting to MDDs.  
We first address the case of replacing XOR by the mod-p 
sum which results in an approach we term mod-p sum 
sifting.  Based on that, we then consider other operations 
as extensions to XOR.  The full method, which we term 
augmented sifting, allows for the consideration of multiple 
operations during a single sifting process. 

 

 
(a) initial structure 

 
(b) after interchange of ix and jx  

 
(c) after subsequent transformation j i jx x x← ⊕  

Figure 2 Linear sifting transformations. 

5.1  Mod-p Sum Sifting of MDDs 

As the first step in extending the idea of linear sifting to 
MDDs, we consider the replacement of XOR in 

j i jx x x← ⊕ with the mod-p sum.  A critical difference to 

note is that while XOR is its own inverse, mod-p 
summation is not its own inverse and to undo a mod-p 
sum transformation we must apply mod-p subtraction.  
Fortunately, both transformations can be implemented 
using essentially identical matrix procedures. 

In general, the interchange of the two variables ix and 

jx results in the subfunction interchanges 

 , ,0 , 1st tsf f s t s t p↔ ≠ ≤ ≤ −  

Similarly, application of the transform 

j i jx x x← ⊕ results in the subfunction substitutions 

 , ,0 , 1st s s tf f s t p⊕← ≤ ≤ −  

The interchange of two variables  and the transformation 

j i jx x x← ⊕ is implemented using the matrix based 

procedure described above in Section 3.2.   

The method proceeds as illustrated in Figure 3.  In 
general, consider a node γ labelled jx .  We construct a 

matrix T with p rows and p columns.  For i=0,1,…, p-1,  



(a) If the s-edge from γ leads to a node δ labelled ix , 

then for t=0,1,…,p-1, ,s t t⊕T is set to point to the 

node pointed to by the t-edge of δ with the edge 
cycles being the composition of the edge cycles on 
the s edge from γ and the t edge from δ. 

(b) If the s-edge from γ leads to a node δ not labelled 

ix , then ,s t t⊕T  is set to the s-edge from γ for 

t=0,1,…,p-1. 

 
(a) initial structure 

 
(b) after interchange of ix and jx  

 
(c) after transformation j i jx x x← ⊕  

Figure 3  Mod-p sifting transformations. 

Once T is constructed as above, the transformation is 
made by setting each s-edge from γ, s=0,1,…,q-1 to point 
to a node labelled ix  whose t-edge, t=0,1,…,p-1, points to 

the node pointed to by ,s t t⊕T . During this construction, the 

edge cycle operations are normalised to ensure there is no 
cycle operation on any 0-edge.   

The complete transformation is accomplished by 
performing the above for all nodes originally labelled .jx   

In the same fashion as discussed above for variable 
interchange, it is clear that this is a local transformation of 
the MDD affecting only the ix and jx levels. 

The same procedure is used for the reverse 
transformation, i.e. to undo a transformation when it does 
not improve the MDD node count.  The difference is that 
reference is made to ,s t tT e where the mod-p difference  is 

( )mods t s t p p= − +e . 

Once the variable currently being considered has been 
sifted to the bottom and then to the top it must be 
positioned to yield the smallest decision diagram.  As 
noted in step (iv) of the sifting procedure presented in 
Section 3.1, for sifting, only a sequence of downward 
variable interchanges is required. 

For linear or mod-p sum sifting, an ordered record must 
be kept of the j i jx x x← ⊕ transformations.  Putting the 

variable under consideration into the correct position, 
requires the j i jx x x← ⊕ and variable interchanges be 

undone in reverse order back to but not undoing the 
interchanges and transformations that put the variable into 
the best position during the sifting process.  The 
bookkeeping required is straightforward but the 
computation in undoing the operations back to the best 
position can be  substantial and in general can be equal to 
the computation required in the sifting down and up of the 
variable.  The latter is certainly the case when the original 
position is optimal for the variable. 

5.2  Other Operations 

We confine our attention to p = 2, 3, 4.  The extension to 
higher values of p should be clear.  Table 1 shows the sum 
and difference operations modulo-p.  The critical 
properties for the work here are 

(a) The operations are reversible so that a 
transformation that does not reduce the size of a 
decision diagram can be undone. 

(b) The (0,0) entry is 0 which means the subfunction on 
the 0-0 path does not move so the transformation of 
the decision diagram is a local operation.  Replacing 
this subfunction with another could require a 
normalization requiring edge operation changes 
higher in the diagram thereby destroying the locality 
of the transformation.   

Given (a) and (b), XOR is the only choice when p = 2.  If 
we require just (a) and (b), there are a number of 
alternatives to mod-p sum when p > 2.  For example, for p 
= 3, one alternative pair is shown in Table 2. 

To limit the number of choices to a reasonable number 
both in terms of the computation and the bookkeeping 
required, we add a third constraint that the generalizations 
of ⊕ must satisfy 

(c) The first row and the first column of the table 
defining ⊕ should contain 0, 1, …, p-1 in order. 

Mod-p sum is then the only generalization of ⊕ for p = 3.  
For p = 4, mod-4 sum is a proper generalization as are the 
operations 1 2 3, ,⊕ ⊕ ⊕  listed in Table 3. 



p=2 

0 1

0 0 1

1 1 0

y
x y

x

⊕

 

0 1

0 0 1

1 1 0

y
x y

x

e

 

p=3 

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

y
x y

x

⊕

 

0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

y
x y

x

e

 

p=4 

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

y
x y

x

⊕

 

0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

y
x y

x

e

 

Table 1   Sun and difference mo-p for p=2, 3, 4. 

 

0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

y
x y

x

⊕
)

     and    

0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

y
x y

x

)e

 

Table 2 Alternative generalization for p = 3. 

5.3  Augmented Sifting  
Our augmented sifting method follows the same 
computational procedure as linear sifting.  The difference 
is that while linear sifting for p = 2 need only consider 
XOR operations between a pair of variables, for p = 3 or 4 
our method tries each of the appropriate generalizations of 
⊕ , and when they are different the corresponding 
generalizations of e .  Hence, for every adjacent variable 
interchange while a variable is sifted to the bottom of the 
MDD and then to the top, the augmented sifting method 
tries transformations based on the operations: 

p = 2:  XOR; 

p = 3:  mod-3 sum, mod-3 difference; 

p = 4: mod-4 sum, mod-4 difference, the 5 distinct 
functions in Table 3. 

At each step, the augmented sifting method chooses the 
transformation (if any) from amongst those tried that 
yields the greatest reduction in the MDD node count.  The 
implementation of all these transformations is as 
described for mod-p sum in Section 5.1. 

1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

y
x y

x

⊕

 

1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

y
x y

x

e

 

2 0 1 2 3

0 0 1 2 3

1 1 0 3 3

2 2 3 1 0

3 3 2 0 1

y
x y

x

⊕

 

2 0 1 2 3

0 0 1 3 2

1 1 0 2 3

2 2 3 0 1

3 3 2 1 0

y
x y

x

e

 

3 0 1 2 3

0 0 1 2 3

1 1 3 0 2

2 2 0 3 1

3 3 2 1 0

y
x y

x

⊕

 

3 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

y
x y

x

e

 

Table 3  Alternative operations for p=4. 

6.  Experimental Results 

Augmented sifting has been implemented in the MDD 
package discussed by the present authors in [11] and [12].  
As noted above, cyclic negations are used.  The MDDs 
are build using recursive implementations of MIN and 
MAX and unique and compute tables as discussed in [12] 

We here present the results of applying the procedure to a 
variety of functions using our MDD package on a Sun 
Blade 1000 with one 750 MHz. UltraSPARC III CPU 
with 512 Mb RAM. The binary examples presented for 
comparison were also done with our MDD package with p 
= 2 in which case augmented sifting is linear sifting.   

p in out initial 
size 

sifted 
size 

mod-p 
sifted 
size 

# 
transfor-
mations 

2 4 3 13 11 10 1 
 6 4 32 21 17 1 
 8 5 71 34 24 2 
 10 6 150 50 31 3 
 12 7 309 69 38 4 
 14 8 628 91 45 5 
 16 9 1267 116 52 6 

3 4 3 22 15 9 2 
 6 4 71 28 13 3 
 8 5 219 45 17 4 
 10 6 664 66 21 5 

4 4 3 32 18 11 2 
 6 4 133 34 16 3 
 8 5 538 55 21 4 

Table 4 Sifting and mod-p sifting of adder function. 



Table 4 shows the results for p-valued addition of two n-
bit numbers where each example has 2n p-valued inputs 
and n+1 p-valued outputs.  The column labelled ‘initial 
size’ is the number of MDD nodes for the input ordering 

1 1 1 1, ,..., , , ,...,n n n na a a b b b− − that is the inputs of the two 
numbers being added one following the other.  The 
column ‘sifted size’ is the number of MDD nodes after 
sifting is applied.  The variable ordering found by sifting 
is , 1 1 1 1, , , ,..., ,n n n na b a b a b− − . 

The column ‘mod-p sifted size’ is the node count after 
mod-p sifting is applied.  The node count is substantially 
reduced by mod-p sifting with just a few transformations. 

Sifting and mod-p sifting are clearly very effective for 
adders since they are both symmetric in corresponding 
positions for the numbers being added and also highly 
dependent on the ⊕ operation.  Augmented sifting gives 
no further improvement for adders. 

Multiplication is a difficult case for decision diagram 
representation, and mod-p and augmented sifting do not 
help.  For example, multiplication of two 6-bit binary 
numbers, a problem with 12 inputs and 12 outputs, has 
1,158 nodes in the simple one number after the other 
variable order, and 1,098 nodes after applying sifting.  
Applying mod-p or augmented sifting yields the same 
result as sifting with no transformations selected. 

p n initial size mod-p 
sifted 
size 

#  
transfor-
mations 

2 5 17 12 3 
 6 24 16 6 
 7 31 22 6 
 8 38 29 8 
 9 53 40 10 
 10 64 48 11 
 11 75 57 12 
 12 90 66 16 
 13 105 78 16 
 14 120 94 19 
 15 135 110 16 
 16 150 121 22 

3 2 6 5 1 
 3 10 7 3 
 4 14 11 3 
 5 24 19 4 
 6 36 29 5 
 7 49 41 6 
 8 62 53 7 
 9 75 65 8 
 10 88 77 9 

4 2 7 6 1 
 3 12 9 2 
 4 17 13 3 
 5 22 17 4 
 6 39 33 5 
 7 59 51 6 
 8 80 71 7 

Table 5  Mod-p sifting of summation functions. 

p in out initia
l size 

sifted 
size 

augmented 
sifted size 

# transfor-
mations 

2 4 3 13 11 10 1 
4 2+ 3 12 12 6 2 
4 2* 3 8 6 6 0 
2 6 4 32 21 17 1 
4 3+ 4 25 23 23 0 
4 3* 4 15 9 9 0 
2 8 5 71 34 24 2 
4 4+ 5 65 35 15 2 
4 4* 5 24 12 12 0  
2 10 6 150 50 31 3 
4 5+ 6 115 53 53 0 
4 5* 6 35 15 15 0 
2 12 7 309 69 38 4 
4 6+ 7 264 68 23 3 
4 6* 7 48 18 18 0 
2 14 8 628 91 45 5 
4 7+ 8 477 123 123 0 
4 7* 8 63 21 21 0 
(+ unsifted order conversion; * sifted order conversion) 

Table 6 Binary and quaternary coded adders. 

Table 5 shows the results for the summation of n p-valued 
inputs.  The number of outputs in each case is 

log ( )p n p ×  and is the p-valued representation of the 

arithmetic sum of the inputs. 

Table 6 is a comparison of the BDD size of binary adders 
and the size of two distinct MDDs derived from each.   
Each case has three rows.  The first gives the results for 
the binary adders which are those from Table 4.  The 
second row is for the MDD where each quaternary input is 
derived from a pair of binary inputs from left to right 
where the binary inputs are in the order 

1 1 1 1, ,..., , , ,...,n n n na a a b b b− − , i.e. the digits of the first 
number followed by the second which we call unsifted 
order. The natural binary to quaternary conversion is used, 
i.e. (00 0;01 1;10 2;11 3)→ → → →  

The outputs are left as binary so the derived functions are 
quaternary-input binary-output and do not represent the 
quaternary-input, quaternary-output adder in Table 4. 

The third row of the table is for the MDD constructed in 
the same fashion but using the sifted variable order found 
in the binary case which as noted above is 

, 1 1 1 1, , , ,..., ,n n n na b a b a b− − . 

A number of observations can be made.  First it is clear 
that basing the conversion of binary inputs to quaternary 
inputs on the binary sifted order is better than using the 
unsifted order.  In particular, we conjecture the MDD 
constructed from the sifted binary order has 3n nodes 
whereas the corresponding linear sifted BDD has 
7 4n − nodes where n is the number of bits in each of the 
binary numbers being added.. 

We also note that augmented sifting is beneficial for the 
BDDs (in fact linear sifting) and also for the MDDs 



derived from the unsifted binary inputs when n is even.  
Augmented sifting does not help the MDDs when n is odd 
because the quaternary encoding combines the least 
significant bit of a with the most significant bit of b which 
precludes the transformations found in the even case 
where this is not the situation. 

It is also interesting to note that for the MDDs constructed 
from the sifted binary order, augmented sifting of the 
MDD itself is of no benefit.  This is the situation because 
the binary variable pairing used to construct the 
quaternary inputs captures the linearity. 

Table 7 (at the end of the paper) shows the results for a 
number of commonly used benchmark problems.  Three 
representations are presented for each problem: the BDD 
for the original binary problem, the 4-valued input, 
binary-output MDD for the given variable order, and the 
4-valued input, binary-output MDD for the variable order 
found by sifting for the BDD. 

Three scenarios are presented: (A) sifting followed by 
augmented sifting, (B) sifting followed by mod-p sum 
sifting (we show only the case where the result can differ 
from scenario A, and (C) mod-p sum sifting not preceded 
by regular sifting. 

We note that in this paper we are not concerned with the 
best way to transform a binary problem to a quaternary 
one.  They are here only used as a source of examples.  
However, we do note that in general smaller MDDs arise 
when the BDD sifted variable ordering is used.  The 
exceptions to this arise when this approach pairs variables 
that are not in the support set of the majority of output 
functions.  For example, this results  in the MDDs derived 
for example e64 being larger than the BDD.  The 
quaternary pairing has in fact introduced variable 
dependency not present in the original problem.  That 
situation must be avoided in the case where the objective 
is to find a good conversion of a binary problem to 
quaternary.  Nevertheless, the BDD sifting order is a good 
starting point. 

7.  Concluding Remarks 

This paper has considered the augmented and mod-p sum 
sifting of MDDs.  The experimental results presented 
indicate these approaches work well for certain classes of 
functions such as adders and weight functions.  We expect 
they will work well for many 'arithmetic' types of 
functions with the notable exception of multipliers. 

In general, our results indicate mod-p sum sifting is as 
effective as the more general augmented sifting while 
requiring considerably less computation.  The results also 
indicate that as found in [5] for linear sifting of BDDs, it 
is best to apply regular sifting followed by mod-p sum or 
augmented sifting.  The regular sifting determines a good 
threshold by variable swapping after which 
transformations are applied only when they further reduce 
the node count. 

Optimization of our implementations of sifting, mod-p 
sum and augmented sifting is ongoing.  At present, our 
implementations are rather slow, especially in comparison 
to a highly optimised package such as CUDD [17].  For 
example, the problem apex1 (45 inputs and 45 outputs) 
treated as binary requires 1.8 CPU sec. for sifting and 4.8 
sec. for augmented (linear) sifting using our package.  
When apex1 is converted to a quaternary problem, sifting 
takes on the order of 1.7 sec. and mod-p sum sifting takes 
about 2.5 sec.  Augmented sifting for this examples takes 
about 23 sec.  We have found that mod-p sum sifting takes 
on the order of 2 to 5 times longer than sifting whereas 
augmented sifting takes on the order of 7 to 10 times 
longer than mod-p sum sifting. 

In contrast, the time required to read and sift apex1 using 
CUDD is negligible on the same machine.  A major part 
of the difference is that our package treats a BDD as a 
special case of an MDD which leads to a slower 
implementation due to the flexibility required, e.g. a 
variable number of edges from each node, cyclic negation 
as opposed to simple binary negation etc. 

The MDD package used in this work is available at 
www.csr.uvic.ca/~mmiller/MDD. 
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      Scenario A Scenario B Scenario C 
example p in out initial 

size 
sifted 
size 

augmented 
sifted size 

# 
trans. 

mod-p 
sifted 
size 

# 
trans. 

direct mod-
p sifted size 

# 
trans. 

alu2 2 10 8 114 60 60 0   60 0 
 4 5+ 8 90 54 53 1 54 0 54 0 
 4 5* 8 48 48 48 0   48 0 

alu4 2 14 8 1093 570 540 3   430 7 
 4 7+ 8 786 573 573 0   573 0 
 4 7* 8 408 381 381 0   381 0 

apex1 2 45 45 4876 1307 1278 2   1344 21 
 4 23+ 45 3081 874 873 1 873 1 873 3 
 4 23* 45 933 874 874 0   874 2 

apex2 2 39 3 5613 400 400 0   400 5 
 4 20+ 3 3470 646 646 0   646 1 
 4 20* 3 299 274 274 0   274 0 

apex3 2 54 50 1044 904 896 2   895 4 
 4 27+ 50 597 563 563 0   563 0 
 4 27* 50 766 602 594 14 595 4 595 5 

bw 2 5 28 112 99 99 0   99 2 
 4 3+ 28 88 69 69 0   68 1 
 4 3* 28 81 63 63 0   63 2 

seq 2 41 35 2153 1201 1122 12   1156 23 
 4 21+ 35 1300 857 853 3 857 0 880 2 
 4 21* 35 933 857 843 1 843 1 843 1 

e64 2 65 65 1444 129 129 0   129 0 
 4 33+ 65 1019 592 582 3 582 3 593 7 
 4 33* 65 162 162 162 0   162 0 

duke2 2 22 29 769 369 338 4   347 25 
 4 11+ 29 561 339 339 0   356 7 
 4 11* 29 279 278 277 1 277 1 277 1 

misex1 2 8 7 71 36 36 0   36 1 
 4 4+ 7 47 25 25 0   27 1 
 4 4* 7 33 33 33 0   33 0 

misex2 2 25 18 114 82 79 1   80 1 
 4 13+ 18 114 81 79 1 79 1 79 1 
 4 13* 18 78 64 63 1 64 0 64 0 

misex3 2 14 14 652 480 478 1   476 6 
 4 14+ 14 433 321 321 0   321 0 
 4 14* 14 318 317 317 0   317 0 

sao2 2 10 4 126 86 79 3   70 11 
 4 5+ 4 81 64 59 2 61 3 61 2 
 4 5* 4 56 56 50 3 54 2 54 2 

sn74181 2 14 8 626 564 560 1   560 1 
 4 7+ 8 402 390 390 0   390 0 
 4 7* 8 467 458 458 0   458 0 

(+ unsifted order conversion; * sifted order conversion) 

Table 7  Standard benchmark functions. 


