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Abstract—Resistive Random Access Memory (ReRAM) technolo-
gies enable the development of innovative architectures for in-
memory computing. Many logic design styles, like Imply, Magic
or Majority, have been explored for mapping Boolean functions to
ReRAM crossbars. However, little attention has been given to the
verification of the mapping process. Simulation based approaches
can be used to check the functional correctness of smaller designs,
but only formal verification techniques can ensure completeness
for larger designs. Some initial works in this area have been
proposed, which specifically focus on the verification of micro-
operations using majority-based logic design. However, these
techniques cannot be directly applied to other logic design
styles, like Imply or Magic. This necessitates the design and
exploration of more general verification techniques for logic-in-
memory using ReRAM crossbars, and opens up the scope for
further investigation. In this paper, we provide an overview of
existing verification techniques for logic-in-memory designs, and
also discuss directions for future work.

I. INTRODUCTION

Various technologies for logic design have evolved over the
years. Also, various innovations have been proposed to tackle
technological challenges, e.g. processor-memory bottleneck in
computing. Architectures for in-memory computing have been
discussed in recent years to address this specific problem.
Among the various alternatives, architectures based on Re-
sistive Random Access Memory (ReRAM) hold much promise
due to their compact form factor, low power consumption and
compatibility with existing fabrication technology [14].

Many in-memory logic designs are explored using ReRAM
crossbars, viz. Imply, Magic and Majority [4], [10], [12],
[13], [15]–[17]. These methods rely on some representation of
Boolean functions for the purpose of crossbar mapping. Many
works have focused on synthesis and mapping of functions to
ReRAM crossbars, but much less emphasis has been given to
the process of verification.

Here we consider the problem of verification of the
micro-operations generated during synthesis and mapping
against the golden functional specification. We traditionally
use simulation-based methods to verify the functional cor-
rectness of the designs. However, only formal verification
techniques can ensure completeness for larger designs. Some
initial works have been carried out to formally verify the
in-memory programs [6]. In [5], the authors propose an
automated equivalence checking technique to verify the micro-
operations generated using Majority-based logic. However,

this is targeted to Majority-based designs, and as such cannot
be directly applied to other logic design styles. This opens up
room for further research in this area. In this paper, we provide
an overview of in-memory design verification using ReRAM
crossbar. We provide the overall verification methodology and
in particular discuss the method based on Majority-based logic.
Experimental results are reported for various benchmarks.
Finally, we discuss about the open question and challenges.

II. BACKGROUND AND RELATED WORK

A. Logic Design Styles

ReRAM devices can execute several universal logic prim-
itives, including Material Implication (IMPLY) (Fig. 1),
Memristor-Aided LoGIC (MAGIC) (Fig. 2), and Resistive
Majority Operation (MAJ) (Fig. 3). IMPLY [3] was the first
logic operation that was shown to be executable in resistive
switches. An IMPLY gate employs two ReRAM devices that
are connected to a load resistor through a nanowire. This pro-
vides a stateful logic structure so that the result of the operation
is stored as resistance values in the output ReRAM device
[3]. In [9], MAGIC was presented, which allows to compute
a NOR operation within ReRAM crossbar. The execution of
a MAGIC gate consists of two stages. It employs previously
initialized input devices and implements NOR within an output
device initially storing a known logic value. In [7], it was
shown that the MAJ operation with a negated input can be
performed in ReRAM devices. According to this operation,
the resistive state of an ReRAM device is switched from its
current value r to r′ = pq̄+ pr+ q̄r, where p and q̄ represent
the values applied to its top and bottom terminals, respectively.

B. Related Works

Efficient synthesis and mapping of Boolean function on
ReRAM crossbar are promising alternatives to address the
processor-memory speed gap problem. However, the verifi-
cation of the crossbar mapping is an important issue, because
manual inspection and simulation techniques are not practical
when a complex design with many inputs is required. In
this regard, SAT-based equivalence checking methods for
ReRAM crossbars were introduced in [5], [6]. In [5], an
automated equivalence checking methodology for Majority-
based in-memory designs on ReRAM crossbar is proposed, in



Fig. 1: IMPLY gate [3] Fig. 2: MAGIC nor gate [9] Fig. 3: Majority operations [7]

which a Boolean SAT formula is developed for checking the
microoperations on the crossbar against the golden functional
specification, e.g. Majority Inverter Graphs (MIG) [2]. In [6],
the authors propose a method for verifying the functional
equivalence between MIGs and a novel HDL-program sup-
porting ReRAM operations.

As of date, very few methods have been proposed to verify
crossbar mapping of functional specifications, this also holds
for Majority-based designs. However, no such works have been
reported so far that encompass the other logic design styles.

III. VERIFICATION OF IN-MEMORY LOGIC DESIGN

Any implementation of logic synthesis is prone to errors
either due to imperfections in the algorithms or in the method-
ology for implementation. It is therefore important to verify
a design before it is deployed for field use. Broadly there
are two approaches to verification, using simulation or using
formal verification. The latter approach is more comprehensive
and is also the focus of the present work.

Various algorithms have been proposed for synthesis and
crossbar mapping of functions for in-memory computing. A
number of different logic design approaches like Imply, Magic,
Majority, etc. have been explored in this regard. Each of
these approaches requires distinctly different crossbar mapping
and evaluation technique, which necessitates a method-specific
micro-operation format for crossbar mapping. As such no
general micro-operation format is available to date that can
encompass all the different approaches.

The general flow for the verification of in-memory syn-
thesis and mapping techniques is shown in Fig. 4. Given a
functional specification, it is first transformed into a method-
specific intermediate representation, which is then converted
into equivalent crossbar micro-operation. The intermediate
representation can be a NOR-gate netlist, Imply-gate netlist
or Majority-gate netlist.

A. General Crossbar File Format

When a function is synthesized into a technology-mapped
netlist (e.g. MAJ-NOT netlist for Majority-based synthesis),
the next step is to map the corresponding operations to a
ReRAM crossbar for evaluation. It is necessary to express

Fig. 4: General flow of the verification process

these operations in a standard format, so that the design au-
tomation tools become inter-operable with a standard interface.

For instance, a 3-variable Majority operation denoted as
MAJ(p, q, r) = p.q+q.r+p.r can be evaluated on a ReRAM
device in row i and column j by initializing the device with a
resistive state corresponding to r, and applying p and q̄ on row
i and column j respectively. Following the convention of [5],
this can be formally denoted as:

i ⟨val_p⟩ j ⟨val_qbar⟩
Similarly, if we want to carry out multiple MAJ operations

on row i of the crossbar on cells in columns j1, j2, . . . , jn,
where the first operand p is common for all the operations,
we apply p on row i, and the corresponding second operands
q1, q2, . . . , qn on the columns j1, j2, . . . , jn; respectively. It
is assumed that the third operands r1, r2, . . . , rn are loaded
as resistive states in the corresponding devices prior to the
operation. This can be formally denoted as [5]:

i ⟨val_p⟩ j1 ⟨val_qbar1⟩ ... jn ⟨val_qbarn⟩
An example MAJ-NOT netlist for a 3-variable function is

shown in Fig. 5(a), and the corresponding crossbar mapping of
the variables and operations in Fig. 5(b). The complete micro-
operation sequence for the function is shown in Fig. 5(c),
as per the convention of [5]. The micro-operation format as
proposed in [5] only permits digitally encoded voltage values
to be applied in the rows and columns during the evaluation
process. Thus a value of 0 may indicate ground level, while
a value of 1 may indicate a positive voltage (e.g. 1.0V). One
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Fig. 5: (a) A MAJ-NOT netlist, (b) Crossbar mapping, (c) Complete sequence of micro-operations, (d) ReSG for the function

drawback of this format is that it does not allow a user to
specify parallel MAJ operations in more than one row or
column of the crossbar.

Also, the same file format cannot be directly used for other
logic design approaches due to the following:

a) In the Imply logic style, multiple voltage levels like Vcond

and Vset need to be applied on the columns, and the row
has to be electrically isolated (i.e. floating).

b) In the Magic design style, a different voltage level Vo

need to be applied to some of the columns, while the
row has to be electrically isolated.

c) Parallel evaluations on multiple rows is not supported
in [5]. Also, there is no provision for applying an isolation
voltage Viso along rows and columns.

B. Verification Methodology

The overall verification flow is as shown in Fig. 4. The
actual process of verification is carried out by SAT solver or
SMT solver, and hence the problem must be transformed into
a form that can be directly processed by the tool.

Given the specification of a function in some format, the
function can be transformed into a suitable intermediate form
for further processing. This intermediate form is typically
expressed in the form of a Conjunctive Normal Form (CNF)
that can be directly accepted by the verification tool. For
instance, in Majority-based verification discussed in [5], the
intermediate form used is the MAJ/NOT netlist of the function.

For mapping the specification for evaluation, suitable micro-
operations for crossbar operation have to be generated. For
instance, in [5], the ReRAM micro-operations is converted
into an intermediate form, viz. the ReRAM Sequence Graph
(ReSG). The ReSG representation for the MAJ/NOT netlist of
Fig. 5(a) is shown in Fig. 5(d). The ReSG representation is
then converted into a form compatible with the verification
tool. Finally, a SAT solver verifies whether the two represen-
tations (viz. the clauses corresponding to the function netlist,
and those generated from the ReSG) are equivalent. It may be
noted that for other logic design styles (like Imply or Magic),
some representation different from ReSG may be required for
storing the information.

IV. EXPERIMENTAL EVALUATION

We have conducted our experiments on some of the well-
known benchmarks that are taken from ISCAS [8] and

IWLS [1]. All the implementations including our proposed
scheme of constructing the ReSG, checking equivalence (i.e.
miter structure) and generating clauses are performed in
Python 3.6. We have used the Z3 solver [11] for checking
equivalence between the SAT clauses generated from the
golden (i.e. MIG) and the reference (i.e. ReSG) representa-
tions. All the experiments are run on a 2.8 GHz machine with
a dual core processor with 8GB RAM.

Table I summarizes the obtained results. The first three
columns provide the details of the benchmark, i.e. name of
the benchmark and the number of Primary Inputs (PI) as
well as primary outputs (PO). The next three columns report
the number of nodes (#Nodes) in the MIG representation of
the respective benchmark, the number of resulting clauses
(#Clauses) and the time taken to obtain the clauses (t1).
The next four columns provide the total number of micro-
operations (#Ops), the number of nodes in the ReSG (#Nodes),
the number of resulting clauses (#Clauses) and their generation
time (t2). The final column shows the time to check the
equivalence between MIG and ReSG. All the times are shown
in CPU seconds.

The table has two parts: equivalent and the non-equivalent.
The benchmarks are divided into small (where PI+PO ≤ 20)
and large (where PI + PO > 20). The upper part of
Table I reports the cases where MIG representations and the
corresponding micro-operations (or ReSG) are functionally
equivalent. The results demonstrate that our proposed scheme
requires very few CPU seconds to complete the entire process
that includes clause generation from MIGs and ReSGs, and
obtaining solutions – equivalent (UNSAT) or non-equivalent
(SAT) from resulting clauses. To generate the erroneous cases,
we have modified the micro-operations by randomly insert-
ing or deleting operations in the crossbar micro-operation
sequence, while keeping the given MIG representation un-
changed. As expected, the SAT-solver indicates that the
MIG and the modified micro-operations are functionally non-
equivalent. The lower part of Table I shows the results for
non-equivalent cases, where all the columns remain same as
that of equivalent cases except the third column (ReSG) (due
to the insertion or deletion of some micro-operations). Overall,
the proposed approach can correctly identify the equivalence
or non-equivalence between the MIG and its corresponding
crossbar micro-operations.



TABLE I: Experimental results

Equivalent cases
Benchmark MIG ReSG

Name PI PO #Nodes #Clauses t1 (s) #Ops #Nodes #Clauses t2 (s) SAT solve time (s)

small



rd32 3 2 3 11 0.002 10 6 20 0.003 0.041
xor5 5 1 12 25 0.002 22 19 58 0.004 0.033
rd53 5 3 20 59 0.006 39 34 105 0.012 0.141
con1 7 1 8 18 0.002 15 12 37 0.004 0.053
con2 7 1 9 19 0.002 16 13 40 0.004 0.053
rd73 7 3 34 99 0.006 63 58 177 0.016 0.179

newtag 8 1 9 19 0.002 16 13 40 0.004 0.042
newill 8 1 20 43 0.002 31 28 85 0.007 0.089
rd84 8 4 43 127 0.009 79 73 223 0.021 0.258
9sym 9 1 60 131 0.003 91 88 265 0.006 0.059

max46 9 1 132 302 0.004 181 178 535 0.009 0.152
sym10 10 1 79 80 0.003 117 114 343 0.007 0.062
sao2 10 4 141 297 0.008 220 214 646 0.025 0.258
parity 16 1 24 73 0.003 75 72 217 0.02 0.077
t481 16 1 25 51 0.002 39 36 109 0.005 0.063

large



c6288 32 32 1867 1899 0.025 2381 2347 7073 0.095 4.031
c1908 33 25 296 738 0.006 415 388 1189 0.018 0.399
c432 36 7 95 233 0.003 133 124 379 0.009 0.140
c499 41 32 292 762 0.006 390 356 1100 0.017 0.376

c3540 50 22 824 1989 0.013 1183 1159 3499 0.075 1.099
c880 60 26 347 803 0.006 409 469 1169 0.017 0.266

c5315 178 123 1376 3342 0.02 1548 1728 4398 0.059 1.621
c7552 207 108 1384 3309 0.026 1687 1824 4629 0.06 2.684
c2670 233 140 812 1451 0.009 751 986 1973 0.035 0.644
Non-equivalent cases

Benchmark MIG ReSG
Name PI PO #Nodes #Clauses t1 (s) #Ops #Nodes #Clauses t2 (s) SAT solve time (s)

small



rd32 3 2 3 11 0.002 9 5 17 0.003 0.041
xor5 5 1 12 25 0.002 21 18 55 0.004 0.033
rd53 5 3 20 59 0.006 40 35 108 0.012 0.141
con1 7 1 8 18 0.002 14 11 34 0.004 0.053
con2 7 1 9 19 0.002 17 14 43 0.004 0.053
rd73 7 3 34 99 0.006 64 59 180 0.016 0.179

newtag 8 1 9 19 0.002 15 12 37 0.004 0.042
newill 8 1 20 43 0.002 30 27 82 0.007 0.089
rd84 8 4 43 127 0.009 80 74 226 0.021 0.258
9sym 9 1 60 131 0.003 92 89 268 0.006 0.059

max46 9 1 132 302 0.004 182 179 538 0.009 0.152
sym10 10 1 79 80 0.003 118 115 346 0.007 0.062
sao2 10 4 141 297 0.008 222 216 652 0.026 0.258
parity 16 1 24 73 0.003 74 71 214 0.02 0.071
t481 16 1 25 51 0.002 40 37 112 0.006 0.063

large



c6288 32 32 1867 1899 0.025 2413 2379 7169 0.11 5.124
c1908 33 25 296 738 0.006 412 385 1180 0.018 0.367
c432 36 7 95 233 0.003 140 131 400 0.009 0.134
c499 41 32 292 762 0.006 422 388 1196 0.021 0.367

c3540 50 22 824 1989 0.013 1175 1151 3475 0.073 1.078
c880 60 26 347 803 0.006 408 468 1166 0.017 0.265

c5315 178 123 1376 3342 0.02 1547 1727 4396 0.057 1.618
c7552 207 108 1384 3309 0.026 1686 1823 4626 0.06 2.67
c2670 233 140 812 1451 0.009 750 985 1970 0.031 0.64

V. CONCLUSIONS AND OPEN QUESTIONS

In this paper we provide an overview of the verification
of ReRAM crossbar mapping for in-memory computing. It
has been recognized that formal verification methodology for
this problem is important because it provides completeness
as compared to simulation based methods. A general SAT
based verification methodology is suggested to cover the
various logic design styles used for in-memory computing
using ReRAM. The importance of having a generalized micro-
operation format for crossbar operations is also discussed and
some of the requirements are identified. The existing file
format is very specific to one particular logic design style
and cannot be used for other logic design styles. The issue

of intermediate representations is also discussed. Although
formal verification methods are complete, they are time con-
suming and do not scale well for large functions. To this end
more scalable verification strategies may need to be developed.
Exploiting the inherent MAC realizations of the memristive
crossbars in developing an in-memory SAT solver can be
explored as a future work. In literature only Majority-based
verification methodology exists, and we aim to cover other
logic design styles like Imply and Magic as well in future.
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