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Abstract. Quantum computing offers substantial speedup over con-
ventional computing in solving certain computationally hard problems.
The emergence of quantum computers in recent years has motivated re-
searchers to develop design automation tools to map quantum circuits
to such platforms. One major challenge is to limit the noise or computa-
tional error during gate operations; in particular, errors are higher when
gates operate on non-neighbor qubits. A common approach to tackle
this problem is to make the circuits Nearest-Neighbor (NN) compliant
by inserting either Swap gates or CNOT templates. Reduction of gate
overhead also becomes important as it serves to limit the overall noise
and error. In some recent works, mapping of quantum circuits to hexago-
nal qubit architecture have been investigated. Hexagonal layout of qubits
offers extended neighborhood that helps to reduce the number of Swap or
additional CNOT gates required for NN-compliance. Existing approaches
incur high gate overheads that can be reduced by improved gate mapping
strategies with better cost metrics. The present work proposes one such
approach using a priority-based cost metric. The proposed cost-metric is
general and can be applied to any architectures; however, in this work we
show its benefit for hexagonal architecture. Experiments on benchmark
circuits confirm that the proposed method reduces gate overhead by 29%
over a very recent work based on greedy mapping.

Keywords: Quantum circuits · Architecture-aware decomposition · Qubit
mapping · Clean and dirty ancilla.

1 Introduction

Quantum computing has been projected to solve some computationally hard
problems in appreciably less time as compared to classical computing. Some of
the well-known quantum algorithms include Shor’s factorization [18], Grover’s
database search [9], quantum simulation and annealing [14], etc. Recent devel-
opments have allowed industry giants like IBM, Google, Microsoft, etc. to come
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up with demonstrable quantum computers. Various technologies are used for
implementation, like superconducting [8], trapped ion [10], photonic [16], etc.;
however, all of them suffer from problems like limited coherence period and noisy
gate operations [1].

The architecture of quantum computers can be classified as per the physical
layout of the qubits, and also the way they interact among themselves. These gen-
erally include regular arrangement of qubits in a wo-dimensional (2-D) plane, on
which 1- and 2-qubit gate operations are carried out. One of the major challenges
is the noise generated during computation, which often restricts gate operations
to neighboring or coupled qubits only. To operate on non-coupled qubits, two
broad approaches are followed. In one approach, the states of neighboring qubits
are exchanged using Swap gates, thereby bringing the states of a pair of interact-
ing qubits to adjacent locations. As an alternative, a sequence of controlled-NOT
(CNOT) gates are used to implement the gate operation on non-neighbor qubits,
referred to as CNOT templates [17]. Both the approaches require the insertion
of additional gates in the netlist, which again result in further accumulation of
noise. Clearly, we need clever qubit mapping strategies to minimize the number
of additional gates required to make a given quantum circuit NN-compliant.

In recent implementations, qubits are arranged in a sparse 2-D grid, with
limited coupling between them. In addition, there can be directional constraints
between certain pairs of qubits. Recently, the 2-D hexagonal qubit architec-
ture has been explored [12, 19], which offers promise due to the extended qubit
neighborhood that it supports. However, not much work has been done on the
mapping of quantum circuits to such architectures. In a recent work [4], a greedy
approach has been proposed for the mapping of qubits to hexagonal architecture
based on an axial coordinate system using well-known heuristics like global and
local ordering. In another work [7], an evolutionary algorithm is used to generate
placement of qubits in hexagonal architecture. The gate overhead in these meth-
ods is less as compared to existing methods based on 2-D qubit architectures;
however, there are further scopes for improvement.

In this paper, we propose an efficient NN-compliant quantum circuit mapping
approach on the hexagonal qubit architecture. The main contributions of the
paper are:

a) A new cost estimate has been formulated based on the notion of priority
of a gate in the quantum circuit, which correlates well with the actual gate
overhead for NN-compliant mapping.

b) A gate lookahead approach has been used for optimal insertion of Swap gates
in the netlist for NN-compliance.

Though we focus on the hexagonal architecture in this paper, the proposed
method is general and can be used for other architectures as well. A wide range
of benchmarks of various sizes have been used for experimentation, which shows
an average improvement of 29% in terms of gate overhead over [4].

The rest of the paper is organized as follows. Section 2 discusses the general
background of the work. Section 3 presents the hexagonal qubit architecture and
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the coordinate system, and the proposed mapping strategy. Section 4 presents
the experimental results, and finally section 5 concludes the paper.

2 Background

In this section, we present a brief introduction to quantum circuits and gates,
followed by a brief discussion on emerging quantum computing architectures.
Finally, the issue of logical to physical qubit mapping subject to architectural
constraints is discussed.

2.1 Quantum Circuits and Gates

In quantum computing, the basic unit of information is the quantum bit or
qubit. A qubit can exist in one of the basis states, typically denoted as |0⟩ and
|1⟩, or in a state of superposition denoted as ψ = α|0⟩ + β|1⟩, where α and β
are complex numbers such that |α|2 + |β|2 = 1. Another important concept in
quantum computing is entanglement, whereby two or more qubits can exist in
entangled states and no such qubit can be measured independently of the others.

A quantum circuit consists of a set of qubits on which a set of 1- and 2-
qubit gate operations are carried out in sequence, as shown in Fig. 1. Some of
the quantum gate libraries that have been used by researchers include the NCV
library [3], Clifford+T library [13], etc. The native gate library that is supported
by any quantum computing hardware mainly depends on the technology used
to implement and control the qubits. To execute a quantum circuit on a target
platform, one of the important steps is to map the circuit qubits (viz., logical
qubits) to a set of physical qubits as supported by the target architecture subject
to architectural constraints.

Fig. 1: An example quantum circuit.

2.2 Quantum Computing Architectures

The power and capability of a quantum computer depends on the number of
qubits and the coupling constraints between them, which specifies the way the
qubits are interconnected. Several initial works have been reported that assume
regular arrangement of qubits on 1-, 2- or 3-D grid structures. In recent years,
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several practical realizations of quantum computers have been reported by IBM,
Google, Microsoft, and many others [5]. For instance, the IBM-QX series of
quantum computers use a 2-D grid-like structure, with degree of coupling of
each qubit as 2 or 3.

To increase the degree of coupling, alternate 2-D structures like the hexagonal
architecture has been explored [4, 6, 7]. Such layout with width w and height h
contains w×h qubits. This allows a maximum qubit coupling of 6, as compared
to 4 in standard Cartesian 2-D architecture. This increase in qubit coupling
allows added flexibility in performing 2-qubit gate operations. Fig. 2 shows an
example hexagonal layout of 24 (6× 4) qubits.

Fig. 2: A 6× 4 hexagonal qubit architecture.

In this work, we consider the hexagonal qubit layout for nearest-neighbor
mapping of quantum circuits to compare with the other recently introduced
works that are discussed next.

2.3 Nearest-Neighbor Mapping of Qubits

When a 2-qubit gate operation is executed, a typical constraint imposed by the
target architecture is that the interacting qubits must be neighbors (i.e. coupled).
This is referred to as the nearest-neighbor (NN) constraint.

Consider a quantum circuit with five 2-qubit gates as shown in Fig. 3(a),
with the target architecture shown in Fig. 3(b). In general, the logical qubits
are mapped to physical qubits using global (initial) ordering or local ordering of
qubits, or a combination of both. For the logical to physical mapping of qubits
(q0, q1, q2, q3)

π−→ (Q0, Q1, Q2, Q3), some of the gate operations (viz., G2 and G5)
violate NN-constraints. We typically insert Swap gates4 as shown in Fig. 3(c) or
Remote CNOT (RCNOT) [17] templates to address such violations.

In practical realizations, quantum gate operations are non-ideal, and results
in accumulation of errors. It is important to minimize the number of additional
gates required for NN-compliance. Since the mapping problem is NP-hard, pre-
vious works generally consider heuristics for finding solutions to this problem,

4 A Swap gate can be realized using three back-to-back CNOT gates.
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(a) (b) (c)

Fig. 3: (a) A quantum circuit, (b) Linear arrangement of physical qubits, (c)
Swap gate insertion for NN-compliance.

e.g. [2, 11, 15, 21, 22]. The quality of the obtained solutions directly depends on
the effectiveness of the adopted heuristic cost function. The main motivation
of the present work is to propose a heuristic cost function that provides better
NN-mapping, which leads to reduced gate overhead.

3 Proposed Mapping Method

In this work we propose an efficient scheme for mapping qubits to a hexagonal
architecture, and use a priority-based cost function for NN-compliance with Swap
and RCNOT gate insertion using a gate lookahead approach.

3.1 Heuristic Cost Function for NN-Mapping

The heuristic cost metric used for logical to physical qubit mapping and subse-
quent Swap and RCNOT insertion for NN-compliance has a direct impact on gate
overhead. There are n! ways (say, π0, π1, π2, . . . , πn!−1) to map n logical qubits
{q0, q1, . . . , qn−1} to equal number of selected physical qubits {Q0, Q1, . . . , Qn−1}.
A poorly selected mapping (πi) may increase the additional gate overhead.

The cost metric used to evaluate the quality of mapping takes as input: (i) a
quantum circuit in the form of a Qubit Interaction Graph (QIG), (ii) a Coupling
Graph (CG) of physical qubits, and (iii) a logical to physical qubit mapping πk.
The cost metric can be expressed as:

cost = C
∑

qi,qj∈QIG
πk(qi),πk(qj)∈CG

D (πk(qi), πk(qj))W (qi, qj) (1)

where C is a constant, mapping of a logical qubit ql to a physical qubit Qp is
denoted as πk(ql) = Qp, the function D() denotes the distance between nodes in
CG, and W (qi, qj) indicates the edge weight between qubits qi and qj in QIG.
The value of the constant C gives an overhead estimate in terms of RCNOT
templates or Swap gates. We have taken C = 1 in our experiments.



6 Datta et al.

For a 2-D arrangement of physical qubits, the CG can be regular or irreg-
ular. In case of irregular layout, the distance between each physical qubit pair,
D(Qi, Qj), can be obtained using Floyd-Warshall algorithm. Since the algorithm
is computationally expensive (i.e. O(n3) for a graph with n vertices), we run it
once for each irregular layout to compute a database of the distances for use in
future mapping. On the other hand, for regular layout such distance D(Qi, Qj)
can be computed directly by imposing a co-ordinate system on the layout. On
the hexagonal layout, we use the Cartesian co-ordinates of qubits as introduced
in [6]. Considering a similar 2-D arrangement of w × h as shown in Fig. 2, the
co-ordinates of a qubit Qi can be computed as:

xi = (1− (yi mod 2)) + 2(i mod w), yi = i/w. (2)

With this co-ordinate system, the distance between a pair of qubits (Qi, Qj)
can be estimated as:

D(Qi, Qj) = max

(
|yi − yj |,

MD(Qi, Qj)

2

)
− 1 (3)

where MD(Qi, Qj) denotes the Manhattan Distance between qubits Qi and Qj

located at (xi, yi) and (xj , yj) respectively, i.e.

MD(Qi, Qj) = |xi − xj |+ |yi − yj |. (4)

The edge weight W () of qubit pairs in QIG plays an important role in dis-
criminating the mapping of qubits using the cost metric defined in Eqn. (1). We
now explain how the QIG can be exploited to obtain a good qubit mapping.

3.2 Qubit Interaction Graph (QIG)

The qubit interaction graph (QIG) captures the degree of interaction among
qubit pairs in a given quantum circuit. The vertices of QIG represent logical
qubits and edges represent number of 2-qubit gates between qubit pairs.

Consider a quantum circuit with m logical qubits {q0, q1, . . . , qm−1} and d
gates {G1, G2, . . . , Gd}. In a previous work [6], the weight of an edge (qi, qj) in
the QIG has been defined as the number of gate operations between qi and qj
in the circuit. In other words,

W (qi, qj) =
∑

1≤k≤d

GO(qi, qj , k) (5)

where GO(qi, qj , k) = 1, if Gk operates on qi and qj

= 0, otherwise.

The main drawback of this measure is that equal weightage is given to all the
gates irrespective of their position in the netlist. Intuitively, less weight should be
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given to gates that are further away from the current position. We propose that
all the 2-qubit gates are initially prioritized based on their level in the circuit
netlist, such that for a given circuit of depth d, the priority pi of the gate at level
i must satisfy the following criteria:

pi > pi+1 + pi+2 + · · ·+ pd (6)

We have chosen the priority assignment pi =Md−i, for some real numberM ≥ 2,
which satisfies Eqn.(6). For our evaluation, we have chosen M = 2.

In this paper, we propose a priority-based approach to estimate the edge
weights in the QIG that specifically addresses this issue. We present the following
alternate weight measure based on the above argument:

W (qi, qj) =
∑

1≤k≤d

2d−k GO(qi, qj , k) (7)

where GO(qi, qj , k) = 1, if Gk operates on qi and qj

= 0, otherwise.

Here, the gates that are closer to the point of reference are given higher priority
in the weight calculation as compared to those that are further away. We shall
refer to the two approaches of weight calculation shown in Eqn.(5) and Eqn.(7)
as Normal and Priority-based respectively. Once we have the QIG with the
weights defined using one of the approaches, the mapping cost is obtained using
Eqn. (1). The effectiveness of the two cost metrics are analyzed in the following
subsection.

3.3 Analysis of Priority-based Cost Metric

Consider the quantum circuit shown in Fig. 4(a) comprising of four 2-qubit gates,
G1, G2, G3, and G4, operating at level 1, 2, 3, and 4 respectively. Fig. 4(b) shows

(a) (b) (c) (d)

Fig. 4: (a) A quantum circuit of depth d = 4, (b) QIG based on Normal approach,
(c) QIG based on Priority-based approach, (d) A 3-qubit physical architecture.

the QIG in which the edge weights are computed using Normal approach. Since
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the 2-qubit gates G1 and G4 operate on qubits a and b, the weight of the edge
(a, b) is 2. Similarly, the weights of other two edges (a, c) and (b, c) are 1 due to
gates G2 and G3 respectively.

Fig. 4(c) shows the QIG, where the edge weights are calculated using Priority-
based approach. The calculation of the edge weights is illustrated below:

W (a, b) = p1 + p4 = 24−1 + 24−4 = 8 + 1 = 9

W (b, c) = p3 = 24−3 = 2

W (c, a) = p2 = 24−2 = 4

This follows from the fact that between a and b there are two gates at levels 1
and 4, between b and c there is one gate at level 3, and between c and a there is
one gate at level 2.

To demonstrate the benefit of the priority-based approach, we consider the
mapping of the quantum circuit of Fig. 4(a) to the physical layout shown in
Fig. 4(d). We consider two alternate mappings as discussed below.

a) M1 : We use the mapping (a, b, c) → (Q0, Q1, Q2). The total cost using the
normal and priority-based methods will be:

CN
1 = 0× 2 + 0× 1 + 1× 1 = 1 (8)

CP
1 = 0× 9 + 0× 2 + 1× 4 = 4 (9)

b) M2 : We use the mapping (a, b, c) → (Q1, Q0, Q2). The total cost using the
normal and priority-based methods will be:

CN
2 = 0× 2 + 1× 1 + 0× 1 = 1 (10)

CP
2 = 0× 9 + 1× 2 + 0× 4 = 2 (11)

The mapping M1 requires 2 Swap operations for NN-compliance irrespective
of the ways swapping is conducted as shown in Fig. 5(a) and 5(b). On the
other hand, M2 requires only 1 Swap operation for NN-compliance as shown in
Fig. 5(c). This indicates that M2 is better than M1 in reducing gate overhead.
However, the Normal approach is unable to discriminate this, as it gives the cost
measure of 1 in both the cases as shown in Eqn. (8) and Eqn. (10). On the other
hand, the Priority-based approach can distinguish the better mapping between
M1 and M2 with costs of 4 and 2 respectively, as shown in Eqn. (9) and Eqn.
(11).

3.4 Nearest-neighbor mapping

We consider the problem of nearest-neighbor mapping of a given quantum circuit
with m logical qubits on a hexagonal qubit architecture with n physical qubits.
We assume that the physical qubits are laid out on a n = w × h 2-D hexagonal
structure. The mapping problem is addressed as per the following steps:
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(a) (b) (c)

Fig. 5: (a) Swap insertion for qubit mapping M1, (b) Alternate Swap insertion
for the same mapping, (c) Swap insertion for qubit mapping M2.

a) In order to map a m-qubit quantum circuit in a n-qubit layout, the physical
qubits can be selected in

(
n
m

)
ways. In doing this, a greedy algorithm is

used, that starts with selecting a qubit located at the center of the layout
i.e., Qc = center(w × h) and the rest of m − 1 qubits are then picked up
from the layout by searching the nearmost un-mapped neighbors of Qc.

b) There are m! ways in which the m logical qubits can be mapped (π) to
selected m physical qubits. We start with a set of k random mappings,
{π0, π1, . . . , πk−1}, and apply an evolutionary approach (i.e. Genetic algo-
rithm) over a maximum of N generations. In populating the next generation,
13% best members from the current population are directly copied, while the
remaining ones are generated using crossover and mutation operations with
probability values of 70% and 10% respectively. The fitness of each member
in a population is measured using the cost metric defined in Eqn. (1). The
best mapping πi from theN th generation is considered for further processing.

c) The mapping πi selected in previous step may not satisfy the NN-constraint
for all the 2-qubit gates present in the circuit. The circuit is traversed from
left to right, and all such violations identified. For each violation, we in-
sert Swap gates or replace with RCNOT template or use a combination of
both that minimizes the NN-violations of subsequent gates in the circuit by
looking ahead a further L gates from the current gate position. When Swap
gates are inserted, the current mapping πi is updated accordingly to π′

i and
subsequent gates are mapped considering the updated mapping π′

i.

For the present experiment, the parameters are set as follows: population size
K = 30, number of generations N = 500, and lookahead factor L = 20.

4 Experimental Evaluation

The proposed approach has been implemented in C++ and run on a computing
system with an AMD Ryzen 7 PRO 5850U processor with Radeon Graphics
running at 1.90GHz, 48GB RAM, 1TB SSD and Windows 10 Pro operating
system. A comprehensive set of benchmark functions available in RevLib [20]
is used for the experimentation. The benchmarks are categorized as tiny, small,
medium and large [4]. In this work we have implemented two approaches for NN-
compliant mapping, using RCNOT and priority-based cost function respectively.
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Fig. 6 shows the gate overheads in terms of CNOT gates for method [4], RCNOT,
and priority-based methods for various benchmarks. It can be seen that the
proposed approaches give significant improvements as compared to [4]. Moreover,
the priority-based method gives better results as compared to RCNOT-based
approach for most of the benchmarks.

The results for large benchmarks are summarized in Table 1. In the table,
the first four columns respectively denote the name of the benchmarks, number
of qubits, number of 2-qubit CNOT gates in the original gate netlist, and the
chosen size of the hexagonal array for mapping. The next two columns show
the number of additional CNOT gates required and the run time in seconds
respectively for the method in [4]. The next four columns shows the number of
additional CNOT gates required and the run time in seconds respectively for
the RCNOT and priority-based methods. The last three columns shows the %
improvements in terms of CNOT gates. R T is the % improvement of RCNOT
method over [4], P T is the % improvement of priority-based method over [4], and
P R is the % improvement of priority based method over RCNOT based method.
Out of total 66 large benchmarks, 11 benchmarks gives better results using [4]
and the remaining benchmarks provide better results using RCNOT method.
Similarly, out of total 66 large benchmarks, 8 benchmarks gives better results
using [4] and the remaining benchmarks provide better results using RCNOT
method. An average improvement of 23% and 29% are observed for RCNOT
and priority-based methods over [4]. This clearly shows the effectiveness of the
proposed priority-based cost metric.

Fig. 6: Gate overhead comparison for the three methods.
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Table 1: Analysis of SWAP, RCNOT and Priority cost metrics

As per [4] Proposed Approach

SWAP (T) RCNOT (R) Priority (P) Improvement (%)

Benchmark Lines #CNOT Grid Size #CNOT Time #CNOT Time #CNOT Time R T P T P R

9symml 195 10 39296 4 × 3 8916 2.72 7099 1.67 6441 1.27 20.38 27.76 9.27
add6 196 19 24745 5 × 4 10218 2.20 6323 4.27 5514 3.00 38.12 46.04 12.79
alu2 199 16 44982 4 × 4 12354 3.38 9065 3.95 9513 3.40 26.62 23.00 -4.94
alu3 200 18 17787 5 × 4 5394 1.40 3823 2.96 3987 1.97 29.12 26.08 -4.29
alu4 201 22 1858472 5 × 5 439200 150.96 446213 238.70 436102 258.70 -1.60 0.71 2.27
apex4 202 28 1249592 6 × 5 467376 117.73 313290 272.64 300590 271.97 32.97 35.69 4.05
apla 203 22 26336 5 × 5 8496 2.30 6310 5.62 6377 4.81 25.73 24.94 -1.06
clip 206 14 39082 4 × 4 11388 2.85 7700 3.00 8237 2.54 32.38 27.67 -6.97
cm151a 211 28 12788 6 × 5 3336 1.24 3459 5.36 2953 5.34 -3.69 11.48 14.63
cm85a 209 14 9558 4 × 4 3522 0.78 2214 1.99 2003 0.90 37.14 43.13 9.53
cmb 214 20 49136 5 × 4 10410 3.97 11206 6.43 10584 5.56 -7.65 -1.67 5.55
co14 215 15 344008 4 × 4 75294 26.05 107222 29.65 84140 23.49 -42.40 -11.75 21.53
cu 219 25 16396 5 × 5 3972 1.27 3256 4.69 3167 3.25 18.03 20.27 2.73
cycle10 2 110 12 9122 4 × 3 1878 0.63 2386 1.47 1764 0.96 -27.05 6.07 26.07
cycle17 3 112 20 1376037 5 × 4 275616 114.71 440948 191.93 381315 216.62 -59.99 -38.35 13.52
dist 223 13 37510 4 × 4 10698 2.79 7493 2.87 8260 2.84 29.96 22.79 -10.24
dk17 224 21 13154 5 × 5 3990 1.08 3336 3.53 2995 2.53 16.39 24.94 10.22
ex1010 230 20 2165828 5 × 4 596298 174.21 496186 223.53 478578 239.60 16.79 19.74 3.55
example2 231 16 44982 4 × 4 12354 3.36 9145 4.75 8675 4.25 25.98 29.78 5.14
f51m 233 22 1759626 5 × 5 406422 139.57 507495 264.59 439626 264.25 -24.87 -8.17 13.37
hwb7 59 7 8423 3 × 3 3126 0.56 1917 0.63 1566 0.23 38.68 49.90 18.31
hwb8 113 8 29034 3 × 3 11856 2.17 7074 1.70 6012 1.23 40.33 49.29 15.01
hwb8 114 8 26169 3 × 3 9972 1.87 6046 1.18 5377 1.09 39.37 46.08 11.07
hwb8 116 8 12245 3 × 3 5310 0.99 3100 0.88 2811 0.39 41.62 47.06 9.32
hwb9 119 9 95787 3 × 3 38202 7.17 22967 3.87 20356 3.01 39.88 46.71 11.37
hwb9 121 9 95703 3 × 3 38118 7.21 23001 3.54 20123 2.97 39.66 47.21 12.51
hwb9 123 9 49777 3 × 3 19668 3.92 12025 2.21 10694 1.80 38.86 45.63 11.07
in0 235 26 1188570 6 × 5 281478 102.30 330120 253.71 295773 285.77 -17.28 -5.08 10.40
in2 236 29 1042525 6 × 5 247038 90.90 262098 257.42 270997 289.05 -6.10 -9.70 -3.40
life 238 10 19936 4 × 3 5364 1.46 3699 1.32 3093 0.77 31.04 42.34 16.38
max46 240 10 22924 4 × 3 5868 1.51 4230 1.49 4000 1.04 27.91 31.83 5.44
misex3c 244 28 5678530 6 × 5 1382388 500.65 1530202 1392.95 1490720 1474.21 -10.69 -7.84 2.58
mlp4 245 16 16940 4 × 4 5676 1.38 3677 2.91 4018 1.92 35.22 29.21 -9.27
plus127mod8192 162 13 526950 4 × 4 131688 40.66 104848 24.36 101677 23.15 20.38 22.79 3.02

continued . . .
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. . . continued

As per [4] Proposed Approach

SWAP (T) RCNOT (R) Priority (P) Improvement (%)

Benchmark Lines #CNOT Grid Size #CNOT Time #CNOT Time #CNOT Time R T P T P R

plus63mod4096 163 12 163663 4 × 3 43878 11.81 35368 7.77 32795 6.99 19.39 25.26 7.27
plus63mod8192 164 13 330835 4 × 4 81210 25.42 62713 14.63 65254 14.84 22.78 19.65 -4.05
rd84 253 12 9677 4 × 3 3120 0.76 1871 1.39 2043 0.82 40.03 34.52 -9.19
root 255 13 17103 4 × 4 5190 1.28 3580 1.84 3527 1.24 31.02 32.04 1.48
ryy6 256 17 257389 5 × 4 57648 19.82 70012 25.08 60008 24.62 -21.45 -4.09 14.29
sao2 257 14 76591 4 × 4 18108 5.56 15303 4.80 14954 4.17 15.49 17.42 2.28
sym10 262 11 99332 4 × 3 24108 7.09 18173 3.84 18470 3.54 24.62 23.39 -1.63
sym9 193 10 39296 4 × 3 8916 2.70 7064 1.73 6051 1.18 20.77 32.13 14.34
tial 265 22 1963642 5 × 5 462780 162.31 455134 243.02 454498 275.18 1.65 1.79 0.14
urf1 149 9 69324 3 × 3 56772 8.63 33975 5.21 28436 4.01 40.16 49.91 16.30
urf1 150 9 106039 3 × 3 40968 7.88 25482 4.00 22365 3.38 37.8 45.41 12.23
urf1 151 9 98477 3 × 3 38856 7.25 24156 3.83 21075 3.27 37.83 45.76 12.75
urf1 278 9 24916 3 × 3 22050 3.25 13035 2.36 11324 2.01 40.88 48.64 13.13
urf2 152 8 30180 3 × 3 21582 3.45 13725 2.01 11943 1.65 36.41 44.66 12.98
urf2 153 8 30013 3 × 3 12048 2.24 7167 1.38 6291 0.77 40.51 47.78 12.22
urf2 154 8 28403 3 × 3 11454 2.13 7071 1.46 5901 0.71 38.27 48.48 16.55
urf2 161 8 27460 3 × 3 18642 2.90 11409 1.83 10014 1.42 38.8 46.28 12.23
urf2 277 8 8873 3 × 3 8310 1.22 5132 1.09 4386 0.92 38.24 47.22 14.54
urf3 155 10 158808 4 × 3 134244 20.87 79233 12.28 71287 10.94 40.98 46.90 10.03
urf3 156 10 329500 4 × 3 114342 23.90 71026 11.66 64041 10.10 37.88 43.99 9.83
urf3 157 10 312746 4 × 3 109356 22.64 68380 10.75 60424 9.84 37.47 44.75 11.63
urf3 279 10 66435 4 × 3 51450 8.02 29220 5.08 26803 4.74 43.21 47.9 8.27
urf4 187 11 192024 4 × 3 131454 25.96 95514 16.48 85593 15.03 27.34 34.89 10.39
urf5 158 9 61656 3 × 3 48948 7.47 29276 4.49 25845 3.64 40.19 47.20 11.72
urf5 159 9 56096 3 × 3 18270 3.94 11604 2.15 10512 1.45 36.49 42.46 9.41
urf5 280 9 24200 3 × 3 17736 2.75 10620 2.09 9432 1.73 40.12 46.82 11.19
urf6 160 15 64440 4 × 4 67086 10.95 39401 11.48 36724 10.98 41.27 45.26 6.79
urf6 281 15 176567 4 × 4 57804 14.93 47302 14.5 44717 18.9 18.17 22.64 5.46
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5 Conclusion

An improved cost metric for nearest-neighbor mapping of quantum circuits to
hexagonal qubit architecture is presented in this paper. A new qubit numbering
system has been used, which allows elegant computation of distance between
pairs of qubits. To achieve NN-compliance, Swap gates or RCNOT templates
are optimally inserted within a window of L gates using a L-gate lookahead
approach. A new priority-based measure for estimating the weight of a gate in
the netlist has been used, which has good correlation with the actual number
of Swap gates required. Experiments on a large number of benchmark circuits
show significant reduction in gate overhead over a recently published method.
The method is general and can be applied to any other architectures as well.

References

1. Ahsan, M., Naqvi, S.A.Z., Anwer, H.: Quantum circuit engineering
for correcting coherent noise. Phys. Rev. A 105, 022428 (Feb 2022).
https://doi.org/10.1103/PhysRevA.105.022428

2. de Almeida, A.A.A., Dueck, G.W., da Silva, A.C.R.: CNOT gate mappings to
Clifford+T circuits in IBM architectures. In: Int’l Symp. on Multiple-Valued Logic.
pp. 7–12 (2019)

3. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A
52(5), 3457–3467 (Nov 1995)

4. Chang, K.Y., Lee, C.Y.: Mapping nearest neighbor compliant quantum circuits
onto a 2-d hexagonal architecture. IEEE Trans. on CAD of Integrated Circuits
and Systems pp. 1–14 (2021)

5. Chow, J., Dial, O., Gambetta, J.: IBM Quantum breaks the 100-qubit proces-
sor barrier. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle/
(2021), [Online; accessed 16-November-2021]

6. Datta, K., Kole, A., Sengupta, I., Drechsler, R.: Mapping quantum circuits to
2-dimensional quantum architectures. In: GI-Jahrestagung Workshop 2022. pp.
1109–1120 (September 2022)

7. Datta, K., Kole, A., Sengupta, I., Drechsler, R.: Nearest neighbor mapping of
quantum circuits to two-dimensional hexagonal qubit architecture. In: Int’l Symp.
on Multiple-Valued Logic. pp. 35–42 (May 2022)

8. Delaney, R.D., Urmey, M.D., Mittal, S., et al.: Superconducting-qubit readout via
low-backaction electro-optic transduction. Nature 606(7914), 489–493 (Jun 2022).
https://doi.org/10.1038/s41586-022-04720-2

9. Grover, L.: A fast quantum mechanical algorithm for database search. In: ACM
Symp. on Theory of computing. pp. 212–219 (Jul 1996)

10. Hilder, J., Pijn, D., Onishchenko, O., et al.: Fault-tolerant parity readout on a
shuttling-based trapped-ion quantum computer. Phys. Rev. X 12, 011032 (Feb
2022). https://doi.org/10.1103/PhysRevX.12.011032

11. Kole, A., Hillmich, S., Datta, K., Wille, R., Sengupta, I.: Improved mapping of
quantum circuits to IBM QX architectures. IEEE Trans. on CAD of Integrated
Circuits and Systems 39(10), 2375–2383 (2020)

12. Litinski, D., Kesselring, M.S., Eisert, J., von Oppen, F.: Combining topological
hardware and topological software: Color-code quantum computing with topolog-
ical superconductor networks. Physical Review 7(3), 031048 (2017)



14 Datta et al.

13. Matsumoto, K., Amano, K.: Representation of quantum circuits with Clifford and
π/8 gates. arXiv preprint arXiv 0806.3834 (2008)

14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (Oct 2000)

15. Niemann, P., Bandyopadhyay, C., Drechsler, R.: Combining SWAPs and remote
Toffoli gates in the mapping to IBM QX architectures. In: Design Automation and
Test in Europe. pp. 1–6 (2021)

16. Omkar, S., Lee, S.H., Teo, Y.S., Lee, S.W., Jeong, H.: All-photonic architecture for
scalable quantum computing with greenberger-horne-zeilinger states. PRX Quan-
tum 3, 030309 (Jul 2022). https://doi.org/10.1103/PRXQuantum.3.030309

17. Rahman, M., Dueck, G.W.: Synthesis of linear nearest neighbor quantum circuits.
In: 10th Int’l Workshop on Boolean Problems. pp. 1–9 (2012)

18. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Symp. on Foundations of Computer Science. pp. 124–134 (Nov 1994)

19. Tang, H., et al.: Experimental quantum fast hitting on hexagonal graphs. Nature
Photonics 12(12), 754–758 (2018)

20. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online
resource for reversible functions and reversible circuits. In: Proc. Intl. Symposium
on Multiple-Valued Logic. pp. 220–225. Texas, USA (May 2008)

21. Zhou, X., Li, S., Feng, Y.: Quantum circuit transformation based on
simulated annealing and heuristic search. tcad 39(12), 4683–4694 (2020).
https://doi.org/10.1109/TCAD.2020.2969647

22. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for map-
ping quantum circuits to the IBM QX architectures. IEEE Trans. on
CAD of Integrated Circuits and Systems 38(7), 1226–1236 (2019),
http://iic.jku.at/eda/research/ibm qx mapping/


