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Abstract—Efficient formal verification is a key in the design
of complex circuits. Many verification techniques have been
introduced, which mostly fail to give bounds for the time
complexity of the verification process. To overcome this issue,
Polynomial Formal Verification (PFV) was introduced. In this
paper, we present our approach for PFV of arithmetic circuits.
A divide and conquer approach is used to split the circuit into
subgraphs. Each subgraph is verified using Answer Set Program-
ming (ASP), a model based reasoning technique. For circuits
with limited cutwidth, the verification process can be executed
efficiently. Exemplarily, we use adder circuits to demonstrate the
applicability of the method. Furthermore, the time complexity of
the approach is analyzed and it is proven that the verification
of several adder architectures is executable in linear time. Those
theoretical findings are backed by experiments including different
adder architectures with up to 10k bit wide inputs.

Index Terms—Answer Set Programming, Polynomial Formal
Verification, Logic Synthesis, Dynamic Programming, Model
Based Reasoning

I. INTRODUCTION

Circuit designs are constantly getting more complex due
to advancements in process technology. Moreover, in recent
time more custom designs are implemented to increase the
performance for regularly occurring computation tasks (i.e.
matrix multiplication or AES). A fast verification approach of
those circuits is crucial. Otherwise, either the task of formal
verification is skipped resulting in the possibility of faulty
hardware or the verification process costs the project major
amounts of resources.

Many methods for the verification of arithmetic circuits
were introduced in the past. SAT-based approaches create
miter circuits to encode the verification as a SAT instance
[1]. Decision diagrams [2] can be used for the verification by
creating the diagrams for representing the output function of
circuits. Those diagrams can then be compared to the specifi-
cation. Because in practice many designs could not be verified
with those approaches, alternatives were introduced. Theorem
proving uses a manual approach to enable the verification
of complex circuits [3]. Symbolic computer algebra (SCA)
proved to be well suited for multiplier verification [4]. The
computational complexity of those approaches is exponential
for the most part. The SAT problem is NP-hard, decision
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diagrams can get exponentially big and polynomials used in
SCA can reach exponential size. Theorem proving on the other
hand needs time consuming manual work. To nevertheless en-
sure efficient verification, PFV methods guarantee polynomial
runtime for a specific class of circuits.

Due to the limitations of the SAT encoding of circuits, it
is essential to enable more compact encoding for the logic
functions of circuits. Answer Set Programming (ASP) [5]–
[7] is a declarative modeling and problem solving framework
oriented towards difficult (NP-hard) search problems, where
these search problems are reduced to computing answer sets
(stable models). It is well-known in the area of knowledge
representation and non-monotonic reasoning [8]. Unlike SAT,
ASP offers a compact representation of problems and enables
a straightforward way of modeling logic functions representing
a circuit.

There are many types of arithmetic circuits on which the
introduced methods could be applied. One common arithmetic
circuit is the adder circuit. Adder circuits are used in CPUs
and more complex arithmetic circuits (i.e. floating point arith-
metic). Many different adder architectures are known. The
verification of those adders was proven to be possible in
polynomial time for conditional sum adders, carry look ahead
adders, conditional sum adders as well as prefix adders [9]–
[11].

In this paper we introduce a new approach for the verifi-
cation of arithmetic circuits and apply it to the verification of
adders. The approach splits the netlist into subcircuits which
are connected through cone nodes. Accordingly, the approach
can be described as a divide and conquer approach. Each
subcircuit is verified independently and the information passed
between the subcircuits is saved. The subcircuit verification
is performed by an ASP solver. Different techniques (i.e.
SAT solvers or decision diagrams) could be applied, but in
this paper we focus on the introduction of the approach in
combination with ASP. Moreover, to the best of our knowledge
we are the first to apply ASP on PFV of arithmetic circuits.
The complexity of the verification is mainly determined by the
cutwidth between the subcircuits. This is particularly interest-
ing, because it aligns with results known from automatic test
pattern generation [12]. It is proven that the approach is able to
verify adder circuits with constant cutwidth in linear time. This
is backed by the experiments which examine the performance



of the approach for different input sizes and architectures.
In Section II we introduce the concept of ASP as well as the

relevant adder circuits. Subsequently the modeling of circuits
in ASP is described in Section III. Our approach for polyno-
mial formal verification by splitting the circuit is presented in
Section IV. Section V describes the complexity properties of
our approach. This is followed by an experimental evaluation
in Section VI.

II. PRELIMINARIES

A. Answer Set Programming

In this section we introduce the basic idea and concepts
behind ASP. We follow standard definitions of ASP [13], [14].

The basic idea of ASP is to represent a given computational
problem by a logic program, whose answer sets corresponds
to solutions and use an ASP solver to find the answer sets of
a logic program. It is very related to the one pursued in SAT,
where problems are encoded as propositional theories, whose
models represent solutions of a given problem. In ASP, the
logic program is built from basic notions, that correspond to
the language of first-order predicate calculus.

A key concept in ASP are constants, which represent indi-
viduals of the domain, denoted by a lowercase starting letter or
with a natural number, like a, b. Variables represent individual
variables and are denoted by an uppercase starting letter,
like X,Y . Moreover, one can use functional terms combining
variables, constants and functional symbols, like out(a), where
out is a unary function symbol. Finally, predicate terms are
used to relate all variables, constants and functional terms
together through atoms, like conn(out(a), in(b)). An atom a
is said to be a ground atom, if a does not contain any variable.
Otherwise, it is a non-ground atom. A ground atom a′ can be
obtained from a non-ground atom a by replacing variables
with constants. This process is called grounding. Therefore,
ground atoms can be considered as ordinary propositions. i.e,
ground atoms can be assigned to a truth value true (⊤) or false
(⊥). Atoms are the basic building blocks of logic programs.

Definition 1 (Logic Program): A logic program Π over a
set A of atoms is a finite set of rules in the following form:

a1 ∨ ... ∨ al ← al+1, ..., am,¬am+1, ...,¬an (1)

where l ≤ m ≤ n and each ai ∈ A is an atom, where
1 ≤ i ≤ n. Atoms a1, ..., am are called positive atoms,
while atoms ¬am+1, ...,¬an are called negative atoms. Let
Hr := {a1, ..., al} and Br := {al+1, ..., an}. Also, let
B+

r := {al+1, ..., am} and B−
r := {am+1, ..., an}.

Definition 2 (Fact): Let r be a rule of Π. Then, r is said to
be a fact, if and only if Br := ϕ.

Definition 3 (Atoms of a Rule): Let r ∈ Π be a rule of Π.
Then, at(r) is a set of atoms such that:

at(r) := Hr ∪B+
r ∪B−

r

Definition 4 (Positive Program): Let Π be a logic program.
Then, Π is said to be positive if B−

r = ϕ, for all r ∈ Π.
The answer set (stable model) semantics is defined w.r.t. a
positive program as follows.
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Fig. 1. Half adder logic diagram and its truth table.

Definition 5 (Answer Set of a Positive Program): Let Π be
a positive program and Q ∈ at(Π) be a set of atoms. Then, Q
is said to be a model of Π if for any r ∈ Π, we have Hr ∈ Q
whenever B+

r ⊆ Q. We refer by Cn(Π) to a smallest set of
atoms, which is a model of the positive program Π. The set
Cn(Π) of atoms is the answer set of the positive program Π.

For the general case, answer sets are defined in terms of a
reduct [15] of a program Π relative to a set Q of atoms.

Definition 6 (Gelfond-Lifschitz Reduct): Let Π be a program
and Q be a set of atoms. Then, the reduct ΠQ of a program
Π is defined as follows:

ΠQ := {H(r)← B+
r | r ∈ Π, B−

r ∩Q = ϕ} (2)

To illustrate (2), a reduct ΠQ of a program Π under a set Q
of atoms is the program obtained by first removing all rules
r with B−

r ∩Q = ϕ and then removing all ¬a where a ∈ B−
r

from the remaining rules r. An answer set of a program Π
can be defined as follows.

Definition 7 (Answer Set): Let Π be a logic program and
Q be a set of atoms. Then, Q is an answer set, if and only if
Q = Cn(ΠQ).
We refer by AS(Π) to a set of all answer sets of a program,
such that AS(Π) := {Q ⊆ at(Π) | Cn(ΠQ) = Q}.

Example 1: Consider the program of the circuit in Fig. 1:

Π := {s← a,¬b; s← ¬a, b; a← ¬b; b← ¬a;
c← a, b; a ∨ ¬a←; b ∨ ¬b←; }

The first four rules captures the xor gate, while the last
three rules captures the and gate. As can be seen in Table I,
AS(Π) := {{a, s}, {b, s}, {a, b, c}} w.r.t. a program Π of
Example 1, since those are the only sets of atoms that

TABLE I
GIVEN A PROGRAM Π OF EXAMPLE 1, THE RESULTS OF COMPUTING A

REDUCT ΠQ OF Π UNDER Q, AND THE SMALLEST SET OF ATOMS
Cn(ΠQ) PER A SET Q OF ATOMS.

Q ΠQ Cn(ΠQ)

{}
{s← a; s← b; a←;

b←; c← a, b; } {a, b}

{a} {s← a; a←; c← a, b; } {a, s}
{b} {s← b; b←; c← a, b; } {b, s}
{a, s} {s← a; a←; c← a, b; } {a, s}
{b, s} {s← b; b←; c← a, b; } {b, s}
{a, b, c} {c← a, b; a←; b←; } {a, b, c}
{a, b, s, c} {c← a, b; a←; b←; } {a, b, c}



satisfy the condition of being an answer set (Cn(ΠQ) = Q).
In Table I, some possible set of atoms Q are removed, as they
are not satisfied by the answer set condition.

B. Adder Function

Let a, b be two inputs with size n bits, and carry−1 be
a carry bit, that represents the incoming carry bit. The adder
function adds two inputs ai and bi together with carryi−1 and
its output are the sum sumi and carryi, for all 0 ≤ i ≤ n.
The sum bits can be characterized as follows.

sumi := ai ⊕ bi ⊕ carryi−1 (3)

The carry bits can be characterized as follows.

carryi := (ai ∧ bi) ∨ (carryi−1 ∧ (ai ⊕ bi)) (4)

Thus, the adder function has 2n + 1 input bits, and n + 1
output bits. This is due to the fact that it adds two n bit inputs
together with carry−1, while it results in n bits representing
sum and one carry output bit carryn.

In the next section, we show how ASP can be used to model
a specific representation of an adder circuit. More precisely,
we restrict our focus to the And-Inverter Graph (AIG) [16]
representations that are well-known in synthesis of logic
functions.

III. CIRCUIT MODELING USING ASP

We follow the same modeling of an AIG graph represen-
tation of a circuit that was introduced in [17] with some
extensions. To illustrate the encoding of a circuit, the AIG
graph representation of a simple adder architecture (e.g.,
Ripple Carry Adder (RCA)) is used.

First, it is essential to define the AIG graph G formally.
Let and, inv, input and output be a disjoint sets of and,
inverter, input and output gates appearing in G, respectively.
Also, let gates be a union of all gates. Given a netlist on the
reverse topological order (i.e., an output gate is always in a
higher order than its inputs), a graph AIG G can be seen as a
Directed Acyclic Graph (DAG), which is defined as follows.

Definition 8 (AIG Graph): Let G = (V,E) be a directed
acyclic graph such that:

• V := {v | v ∈ gates}.
• E := {(v, v′) | v, v′ ∈ V, v′ is reachable from v}.
In order to enable modeling, the behavior of gates is

modeled using ASP rules. Also, we introduce ports for each
gate to enable connections of gates. These ports provide a
mechanism to handle passing values between a gate and its
connections. Moreover, gate behavior is defined based on
values on their ports. Thus, we will make use of the following
predicate and function symbols for modeling of an AIG:

1) A unary function symbol P (G) representing a port of
gate G.

2) A binary predicate symbol val(P (G), v) stating the
value v on a port P of gate G.

3) A binary predicate symbol conn(P (G), P ′(G′)) defin-
ing the connection between P of G and P ′ of G′.
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Fig. 2. Example of an AIG graph of 2-bit RCA.

Since an AIG graph has different types of gates, we use a
binary predicate symbol type(G, t) to label a gate G with a
type t. e.g., and. Fig. 2 illustrates an AIG for a ripple carry
adder with 2-bit inputs. For the encoding of the circuit as
an ASP logic program we rely on the input language of the
ASP tool clingo [18], [19], which is an extended version of
prolog [20].

To convert facts and rules that are introduced in Eq. (1) into
the clingo language, we use the following mapping rules:

• A fact p← is mapped to p.
• A rule a← b1, ..., bn is mapped to a : −b1, ..., bn.

Clingo also provides an interface to represent logical oper-
ations. and, or, and xor logic functions are represented by
symbols “&”, “?” and “ˆ”, respectively. Those operations are
used to describe the behavior of a gate. Due to the restrictions
of the AIG representation, it is required to represent only
and and inverter gates. The and gate can be characterized
as follows:

val(out(G), X&Y ) : −type(G, and), val(in1(G), X),

val(in2(G), Y ). (5)

As the AIG graph is restricted to and gates with two inputs and
one output, the unary functions out(G), in1(G), and in2(G)
are used to represent the output, first and second input ports,
respectively. However, we only need one output and one input
to characterize inverter gate behavior. The unary functions
out(G) and in(G) are used to handle the output and input
ports, respectively. The inverter gate can be characterized as
follows:

val(out(G), 1ˆX) : −type(G, inverter),

val(in(G), X). (6)

In Eq. (6), the xor logical operation is used to represent the
negation of the value of X . Finally, the connection between



two ports is defined as follows:

val(P2, V ) : −conn(P1, P2), val(P1, V ). (7)

The intuitive meaning of the previous rule is that if port P1
is connected to P2 and P1 has value V , then P2 has value
V . It is worth noting that the value of a port is restricted to
0 and 1. Those values appear as constants in the program and
are passed from one of primary inputs that is connected to a
gate port. Therefore, we enable representing primary inputs as
gates with only one port, where they are characterized by facts
indicating their value. e.g., val(a0, 1). The primary outputs are
represented analogously, except that their values are observed
from the circuit. Informally, by Eq. (7), values of ports are
passed from the primary inputs to other gates until they reach
the primary outputs. Hence, to ensure the correctness of an
adder circuit, it is essential to check, whether the value of each
output gate satisfies the adder function as shown in Eq. (3)
and Eq. (4). Therefore, it is essential to encode sum and carry
functions into clingo. The sum function can be characterized
as follows:

sum(sumi, V ) : −val(ai, A), val(bi, B),

carry(carryi−1, C), V = A⊕B ⊕ C. (8)

The carry function can be characterized as follows.

carry(sumi, V ) : −val(ai, A), val(bi, B),

carry(carryi−1, C), V = (A&B)?(C&(A⊕B)). (9)

Equations (5), (6), (7), (8), and (9) are very general and
can work independently of the circuit architecture. How-
ever, in order to complete the model, we further have to
add facts representing the structure of the circuit. E.g.,
conn(out(and4), in1(and16)) represents the connection be-
tween the output port of gate “4” and the first input port
of gate “16”. It is worth noting that those facts are cir-
cuit dependent. E.g., carry(carry−1, 0), type(and2, and),
type(inv1, inverter) and conn(out(inv1), in1(and2)). For
simplicity, we show only the facts for gates “A0”, “B0” and
“2” of Fig. 2, together with their connections, and they are
summarized as follows.

type(a0, cirIn).type(b0, cirIn).type(and2, and).

type(inv1, inverter).type(inv2, inverter).

conn(a0, in(inv1)).conn(b0, in(inv2)).

conn(out(inv1), in1(and2)).conn(out(inv2), in2(and2)).

Finally, to enable the verification of output gates, it is
necessary to relate output gates with their expected logic func-
tions representing adder functions (see Eq. (8) and Eq. (9)).
Thus, we introduce one clingo rule per output bit to reach the
desired behavior. Considering Fig. 2, the clingo rules for the
verification of all outputs can be summarized as follows:

verify(o0) : −sum(sum0, X), val(o0, Y ), X = Y.

verify(o1) : −sum(sum1, X), val(o1, Y ), X = Y.

verify(o2) : −carry(carry1, X), val(o2, Y ), X = Y.

(10)

The idea behind Eq. (10) is that for a given set of facts
representing an input sequence of the primary inputs, output
bit i is said to be correct, if verify(oi) appears in the answer
set of the program. This can be formulated as follows.

Definition 9 (Valid Sequence): Let S be a set of facts
representing an input sequence of n inputs. Then, S is said to
be a valid sequence, if and only if there exists an answer set
Q ∈ AS(Π) such that

⋃n
i=0{verify(oi)} ∪ S ⊆ Q.

By Definition 9, if the input sequence is correct, all values of
the outputs are equal to their corresponding logic function and
consequently, their verification atoms verify(oi) will appear in
one of the answer sets of the program Π. Due to the fact that
all input sequences must be a valid sequence to be able to
ensure correctness of a circuit. The previous definition can be
generalized as follows.

Definition 10 (Valid Graph): Let Π be a program defined
w.r.t. AIG graph G of size n, F be a set of sets of facts such
that each s ∈ F represents an input sequence, and |s| = n.
Then, G is said to be a valid graph, if and only if for every
s ∈ F , there exists an answer set Q such that s is a valid
sequence. Otherwise, G is an invalid graph.

It is worth noting that the search space is 2n, and conse-
quently |F| = 2n. Also, |s| = n, for all s ∈ F .

In the next section, we propose an approach for achieving
formal verification of a circuit in polynomial time, by applying
dynamic programming on graph G to obtain an upper bound
of the search space.

IV. POLYNOMIAL FORMAL VERIFICATION OF ADDER
CIRCUITS

In this section, we introduce an approach for splitting
an AIG graph G into subgraphs, which relies on the idea
from [12] and we propose a method for subgraph reduction.
Subsequently, we present an approach for passing informa-
tion between the subgraphs. Based on that, we define the
verification of the subgraphs. We assume familiarity with the
terminology of graphs and trees [21].

A. Graph Unraveling and Reduction

Given an AIG graph G = (V,E) and a node v ∈ V , a
subgraph (G, v) can be constructed as follows.

Definition 11 (Subgraph): Let G = (V,E) be a graph, v ∈
V be a node. Then, a subgraph (G, v) = (Vv, Ev) of G is
obtained such that:

• Vv := {v} ∪ {v′ ∈ V | v′ is reachable from v}.
• Ev := {(u′, v′) ∈ E | u′, v′ are reachable from v}.
In graph theory, the cutwidth [22] of a graph G = (V,E)

w.r.t. a nodes ordering h is the smallest integer k such that
for every l = 1, ..., |V | − 1, there exist at most k edges
with one endpoint in {v1, ..., vl} and the other endpoint in
{vl+1, ..., v|V |}, where {v1, ..., v|V |} ∈ V . In other words, the
cutwidth for some vertices ordering is the size of the largest
cut induced by that ordering.

We refer to the nodes induced by the cut as cone nodes.
We use the notion “node” to refer to a gate of the circuit.
AIG graph G can be seen as a multi-root tree such that each
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Fig. 3. The resulting subgraphs (G,O0), (G,O1) and (G,O2) that can be obtained from AIG graph in Fig. 2.

root node represents an output bit. Therefore, it is possible to
split G of size n into n subgraphs by taking one node v ∈ V
representing an output bit and traversing all nodes v′, that
are reachable from v as shown in Fig. 3. It is worth noting
that there exist nodes that appear in several subgraphs. e.g.,
node “4” appears in graphs (G,O0), (G,O1) and (G,O2).
We define the set of cone nodes appearing in a sub-graph as
follows.

Definition 12 (Cone Nodes): Let (G, v) = (Vv, Ev) be
a subgraph of G = (V,E). A set C(G,v) of cone nodes
defined w.r.t. (G, v) such that C(G, v) := {a ∈ Vv |
(b, a) ∈ E, b ∈ V \ Vv}. Let Ci :=

⋃i
j=0 C(G, vi), and

C(G) :=
⋃n

i=0 C(G, vi), where n is the number of output
nodes.

To check whether each subgraph is valid, the definition of
a valid graph from Definition 10 is used. However, the values
of cone nodes are evaluated multiple times. e.g., node “4” is
computed in all subgraphs.

To be able to bound the number of inputs of each sub-graph
and overcome the problem of evaluating the cone node more
than once, we propose a reduction of the sub-graph based on
C(G) to obtain such a bound.

Definition 13 (Reduced Subgraph): Let (G, vi) = (Vvi , Evi)
w.r.t. node vi representing output gate i, where 0 < i ≤ n.
A reduced subgraph R(G, vi) = (R(Vvi), R(Evi)) is a sub-
graph of (G, vi) such that:

• R(Vvi) := {a ∈ Vvi | a ̸∈ Ci−1}.
• R(Evi

) := {(a, b) | a, b ∈ R(Vvi), b is reachable from a}.
By Definition 13, the nodes of the resulting subgraphs are
disjoint. To adapt the notion of the input node with the reduced
subgraph, we refer to any node of the reduced subgraph with
no successor as an input node. For simplicity, we use RGi

to refer to the reduced subgraph R(G, vi), where i is the
number representing output bit i. We further denote the inputs
of RGi as INi, which is split into the primary inputs PINi

and the incoming cone nodes from other subgraphs CINi.

The primary output is referred to as OUTi and the outgoing
cone nodes as COUTi.

We adapt the notion of a k-bounded circuit introduced
in [23] to the case of graphs. Briefly, a circuit is said to be
k-bounded if its nodes can be partitioned into disjoint blocks
such that each block has at most k inputs. Thus, Definition 13
yields a characterization of k-bounded circuit in terms of the
graph.

Definition 14 (k-bounded Graph): Let G = (V,E) be a
graph of n root nodes. Then, G is said to be k-bounded, if
and only if for all 0 ≤ i ≤ n, R(G, vi) has at most k input
nodes.

B. Information Passing

As we can see in Fig. 4, each cone node v is evaluated
only once in one of the subgraphs. Also, any other graph that
uses v as an input, takes the value of v from the graph in
which it is evaluated. Hence, the cone node values of reduced
subgraphs must be stored, so their values can be used in other
subgraphs. The value cannot be stored as a function over the
primary inputs, because this would pass the primary inputs
from one subgraph to the next and the last subgraph would
be dependent on all primary inputs. To overcome this issue
we use the carry function to store information about the cone
nodes. A hash table relates the values of the cone nodes with
the corresponding value of the carry function. This allows us
to use the carry function in the specification of the output for
the subgraph.

To define this table, we first introduce an injective function
f , which maps the input sequence s ∈ INi of subgraph RGi

to the set of values COUTi of outgoing cone nodes C(Gi).

f : INi 7→ COUTi (11)

The surjective function g that maps c ∈ COUTi to the value
of the carry function.

g : COUTi 7→ [0, 1] (12)
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Fig. 4. The resulting reduced subgraphs R(G,O0), R(G,O1) and R(G,O2) obtained from reducing all subgraphs in Fig. 3. The nodes highlighted in red
correspond to input nodes, and those highlighted in blue correspond to output nodes.

We refer by f(s) to the set of values representing cone nodes
C(Gi) under the input sequence s ∈ INi. Also, by g(f(s))
to the value of carry under f(s).

The key of a hash table entry is the value f(s) for which
there is a value s ∈ INi, while the corresponding value in
the hash table is g(c). Equation 13 defines the hash table
accordingly.

Ti = {(f(s), g(f(s)) | s ∈ INi} (13)

C. Subgraph Verification

For every subgraph RGi
two tasks have to be performed.

First it has to be verified that the output function of the
subgraph is correct and second the hash table Ti for COUTi

of the circuit has to be built.
The input INi contains the primary inputs PINi and the

cone nodes CINi. It is important to only allow combinations
from CINi which are in Tj . The values of CINi of RGi may
be stored in any hash table T , where j < i. Thus, it is required
to go over all tables j to obtain such values. Therefore, a
relation has to be defined between two tables Tj and Tj′ of
subgraphs, where j, j′ < i. A relation ⋊⋉ is used to define the
relation w.r.t. CINi between two tables Tj and Tj′ such that
Tj ⋊⋉ Tj′ := {r ∪ r′ | r ∈ Tj , r′ ∈ Tj′ , C(Gj) ∩ C(Gj′) ⊆
CINi}. Hence, we refer by Xi(CIN) to the resulting table
containing the values of CIN and defined as follows.

Xi(CIN) := Ti−1 ⋊⋉ ... ⋊⋉ T0. (14)

Finally, every r ∈ Xi(CIN) is populated with PINi of RGi

to obtain its input sequences.
Thus, each reduced subgraph RGi

can be checked indepen-
dently whether it is a valid graph (recall Definition 10), for
all 0 ≤ i ≤ n, where n is the number of outputs. Moreover,
the outgoing hash table T of each subgraph can be built. In

the following section, we show the overall time complexity of
the proposed approach.

V. TIME COMPLEXITY

We refer by Π(RGi
) to a logic program constructed w.r.t.

a reduced subgraph RGi
, and by Π(G) to a logic program

constructed w.r.t. the input AIG graph G. Then, checking the
graph validity of Π(RGi) depends on the number of its input
nodes INi. Thus, we obtain the following theorem.

Theorem 5.1: Let RG be a reduced subgraph. Then, Π(RG)
can be verified in time O(2|IN |).

Proof: By Definition 10, RG is a valid graph if and only
if for every s ∈ F , we have that s is a valid sequence, where F
is the set of all input sequences. Also, the size of F depends
on the number of input nodes IN of RG and the carry of
its previous subgraph (for the reduced subgraph RGi

, where
i > 0). Therefore, the overall number of input sequences is
2|IN | and consequently, Π(RG) has search space of 2|IN |.
Hence, Π(RG) can be verified in time O(2|IN |).

Since each reduced subgraph RGi
could contain a node c

such that c is a cone node and the values of c are stored in Tj
where j < i, the values of c can be obtained from Xi(CIN)
(recall Eq. (14)). We assume that Xi(CIN) can be computed
in constant time. This assumption is done based on the fact
that the search operation in a well configured hash table takes
constant time. In the worst case the operation can take linear
time, but only if many collisions occur i.e. as a result of a bad
hash function. Consequently, Xi(CIN) can be computed in
constant time P (Xi(CIN)).

Finally, the overall time required to verify Π(G) can be
characterized in the following theorem.

Theorem 5.2: Let G be an AIG graph constructed w.r.t. an
adder circuit. Then, Π(G) can be verified in time O(n · 2K),



where n is the input bit width and K is the maximum size of
input nodes of all reduced subgraphs.

Proof: Let G be a graph of n input bit width, then n
subgraphs (G, vi) have to be constructed from G by Def-
inition 11, where 0 ≤ i ≤ n. Also, a reduced subgraph
RGi can be obtained from (G, vi) by applying Definition 13.
By Definition 13, RG0 is equivalent to (G, v0) (Vv0 = R(Vv0)
and Ev0 = R(Ev0)). Thus, the set CIN0 = ϕ. Therefore, RG0

relies only on the primary input nodes PIN0. More precisely,
by Theorem 5.1, Π(RG0

) can be verified in time O(2|PIN0|).
However, in order to enable verifying the reduced subgraph
RGi , it is essential to compute Xi(CIN) (Equation 14) where
0 < i ≤ n. This is due to the fact that for all RGi , where i > 0,
and CINi ̸= ϕ. Since Xi(CIN) is computed from tables
Tj , where j < i. Let Pj be the constant time required for a
single access of table Tj . Then the overall time complexity for
computing Xi(CIN) can be calculated as follows:

Complexity(Xi(CIN)) :=

i−1∑
j=0

Pj (15)

We refer by P (Xi(CIN)) to the time obtained from the
previous equation. By Theorem 5.1, Π(RGi

) can be verified
in time O(2|INi|), where |INi| := |CINi| + |PINi|. Thus,
the overall verification process of subgraph RGi has a time
complexity of O(2|INi| + P (Xi(CIN))) = O(2|INi|), where
0 < i ≤ n. The overall time complexity for verifying Π(G)
can be calculated as follows:

Complexity(Π(G)) :=

n∑
i=0

O(2|INi|) (16)

Moreover, by Definition 14, G is said to be k-bounded if and
only if every reduced subgraph RGi

has at most k-input nodes.
Let K be the maximum size of input nodes of all reduced
subgraphs. Equation 16 shows that Π(G) can be verified in
time O(n ·2K). Hence, if K is constant, then the graph G can
be verified in a linear time.

VI. EXPERIMENTAL WORK

To evaluate the upper bound K for the verification process
of adder circuits introduced in Section V and check the
scalability of our approach, we have implemented the ASP
framework in Python. It is worth noting that our approach is
not restricted to a specific architecture. The framework takes
input circuit in the standard AIGER format [24]. Then, the
input circuit is evaluated to see whether it is a valid or an
invalid circuit.

A. Experimental Setup

Measure and Resources. We mainly compare the wall
clock time and the number of timeouts. We set a timeout of
1500 seconds and a limited available RAM to 8 GB per circuit
instance.

Benchmark Instances. We use three types of bug-free
adder circuits of different sizes (Ripple Carry Adder (RCA),

TABLE II
CALCULATED UPPER BOUND AND THE MAXIMUM NUMBER OF and GATES

AMONG ALL REDUCED SUBGRAPHS FOR DIFFERENT ADDER CIRCUITS.

Adder Upper bound (K) Maximum No. and Gates
RCA 4 7

CSKA 9 15
CLA 11 18

TABLE III
RUN TIME OF VERIFYING ADDER CIRCUIT (SECONDS).

Size Benchmarks
RCA CSKA CLA

1024 8.79 49.83 189.58
2048 21.77 105.09 397.86
3072 39.63 167.93 611.72
4096 62.30 233.20 871.86
5120 89.06 308.79 1312.50
6144 124.32 390.16 T.O.
7168 161.21 472.60 T.O.
8192 199.01 572.60 T.O.
9216 248.80 672.24 T.O.

10240 300.32 759.22 T.O.

Carry Skip Adder (CSKA), and Carry Look Ahead (CLA)).
These circuits are generated using the ArithsGen tool [25],
where the design is synthesized using Yosys [26].

Benchmark Hardware. All instances are performed on
Intel(R) Core(TM) i7-11370 with 3.30 GHz and 16 GB of
memory.

B. Experimental Results

Table II shows the results of the upper bound of inputs
(as shown in the second column) and the maximum number
of and gates appearing in reduced subgraphs (as shown in the
third column) for adder architectures (as shown in the first
column) during the verification process. We can observe that
the upper bound is circuit dependent. This is due to the fact
that each circuit has a different architecture, and consequently
the number of cone nodes that appear as inputs of reduced
subgraph is circuit dependent. It is worth noting that each
reduced subgraph is also bounded in terms of the number of
and gates.

Table III compares the run time of each adder architecture
w.r.t. different input size, where the input size is represented
in the first column, and the second, third, and fourth columns
represent the run time of RCA, CSKA, and CLA, respectively.
If the ASP framework was not able to solve the instance
within the timeout limit, then the run time of this instance
is set to T.O. (e.g., a CLA of “6144” input size) as shown
in Table III. It shows that the ASP-based verification has a
good time performance for different types of adder circuits.
Also, it confirms the scalability of the proposed approach.
Since the proposed approach relies on the upper bound K, this
explains why one circuit scales faster in terms of run time than
another one. More precisely, the run time of the CLA scales
faster than the run time of the RCA, as K = 11 for the CLA,
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Fig. 5. Run time graphs per adder circuit. The x-axis refers to the input
bit-width, and the y-axis depicts the run time sorted in ascending order for
each circuit type individually.

while K = 4 for the RCA. Analogously, the CSKA scales
faster than the RCA.

Moreover, Fig. 5 shows the run time of each adder archi-
tecture per input size, where the run time per input size is
shown in Table III. Hence, the curve of each adder architecture
is a linear curve. Therefore, it confirms the correctness of
the calculated complexity bound obtained from Theorem 5.2
in Section V.

VII. CONCLUSION

In this paper, we have proposed a new polynomial verifi-
cation approach that relies on the cutwidth of a netlist, where
ASP was used to verify each subcircuit independently and
reason about nodes that are used in more than one subcircuit.
Moreover, we have shown that the verification of adder circuits
can be done in linear time, for a constant cutwidth K.
Finally, the experimental evaluations confirm the upper bound
complexity of each circuit.

As future work, we will focus on extending this approach
for the PFV of combinational adder circuits to the case
of sequential adder circuits. Furthermore, we plan to apply
different verification techniques for the verification of the
subcircuits. While SAT solvers can be expected to behave
similarly to ASP solvers, using BDD is particularly interesting.
The main challenge will be adapting the hash table T .
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