Equivalence Checking on System Level using A Priori Knowledge

Niels Thole1,2, Heinz Rienner1, Goerschwin Fey1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Institute of Space Systems, German Aerospace Center, 28359 Bremen, Germany

{nthole,hihi,fe}@informatik.uni-bremen.de

Abstract—Equivalence checking is applied when a system description is refined iteratively to reduce the manual effort required to check the consistency before and after modifications. We present a novel functional equivalence checking algorithm which is especially designed to verify equivalence of two hardware descriptions on the system level. Our algorithm uses a stepwise induction proof guided by counterexamples and incorporates a priori knowledge provided by a designer to speed up reasoning. The a priori knowledge is given symbolically in form of a hypothesis, i.e., a logical formula, which approximates the set of all possible equivalence states of the two designs. The algorithm stepwisely refines the hypothesis until either a counterexample has been found disproving equivalence or the hypothesis overapproximating all equivalence states. Our algorithm can handle hypotheses that neither precisely underapproximate nor overapproximate the set of reachable states. During reasoning, the initial hypothesis is adapted when new equivalent states are discovered or states contained in the hypothesis are proven non-equivalent. Eventually, either the hypothesis becomes an invariant strictly overapproximating all equivalent states or a counterexample is found proving non-equivalence of the two hardware descriptions. A good initial choice, i.e., a hypothesis that describes “almost” the set of all possible equivalent states, significantly speeds up the performance of equivalence checking. Experimental results indicate that our approach enables functional equivalence checking for complex hardware designs in short time when the initial hypothesis is chosen well.

Previous work on equivalence checking of high-level hardware descriptions written in the programming languages C and C++, e.g., [7, 6, 4, 3], focuses on similar source code or concerns modifications of arrays. These approaches typically use much “finer” definitions of functional equivalence such that they do not scale well to larger designs. Our approach targets complex system level designs.

The strength of the underlying algorithm for equivalence checking lies in the combination of induction and model checking. Kölbl et al. [5] also use an induction proof, however, in contrast to our approach their proof is not guided by counterexamples such that proving non-equivalence of two hardware descriptions becomes expensive. In the worst case k-induction [8] requires to unfold the transition relation to the diameter of the graph which is too large for designs used in practice. Our algorithm similarly to Property Directed Reachability (PDR) [2] step-wisely refines a candidate set of reachable states. While PDR always uses an overapproximation of the reachable states, our algorithm starts from an initial approximation of the equivalent states which does not need to be an over- or underapproximation. This allows to incorporate a priori knowledge of the designer and leads to a drastic performance boost when the initial approximation is chosen wisely.

We have implemented our algorithm for functional equivalence checking of system level hardware designs modeled...
in the programming language C++. Each hardware module corresponds to a C++ class. The set of all member variables of a class defines the state of the module, whereas public methods define terminating operations that can be executed to change the state. Our algorithm verifies whether two given modules are functionally equivalent under a given correspondence mapping allowing that the public interfaces of the two classes are different. In summary, we contribute an algorithm that

1) checks the equivalence of two system level models,
2) exploits a hypothesis that contains a priori knowledge and does not need to be an under- or overapproximation.

The remainder of the paper is structured as follows: in Sec. II, we provide definitions. Sec. III describes our algorithm and Sec. IV presents preliminary experimental results for two case studies, a scalable parallel counter and a processor model. Sec. V concludes the paper.

II. PRELIMINARIES

In this paper, the behavior of a hardware module is described as finite state machine. The exact definition of these finite state machines depends on the C++ class that models the hardware module.

Definition 1. A Mealy transducer \(M = (S, S_0, X, Y, \phi, \psi) \) is a tuple, where \(S \) is a finite set of states, \(S_0 \subseteq S \) is the finite subset of initial states, \(X \) is a finite set of inputs, \(Y \) is a finite set of outputs, \(\phi : S \times X \to S \) is a function that determines the next state depending on the current state and the input and \(\psi : S \times X \to Y \) is a function that determines the output depending on the current state and the input.

Suppose that \(M = (S, S_0, X, Y, \phi, \psi) \) is a Mealy transducer. Every sequence \((i_1, i_2, \ldots, i_n) \) of inputs on \(M \) corresponds to a sequence \((s_0, s_1, \ldots, s_n) \) of states such that \(s_0 \in S_0 \) and \(s_j = \phi(s_{j-1}, i_j) \) for all \(1 \leq j \leq n \).

When we describe a C++ class as Mealy transducer, the set of states \(S \) is defined as \(S = \text{Var}_1 \times \text{Var}_2 \times \cdots \times \text{Var}_n \), where \(n \) is the number of member variables and each set \(\text{Var}_i \) contains all possible assignments for the \(i \)-th member variable. The initial state \(s_0 \) is defined as the variable assignment of the class after calling the constructor and consequently \(S_0 = \{s_0\} \). For the sake of simplicity, we currently use only one initial state. Multiple initial states would require overhead for defining which initial states of two models correspond to each other which could easily be implemented. The set of inputs \(X \) contains a label for every possible call of a public method \(f \) with every possible argument \(\text{arg} \), i.e., \(X \) contains all elements \(f(\text{arg}) \) where \(f \) is a function of the C++ class and \(arg \) is a valid argument of \(f \).

As such, each possible argument for a function corresponds to one element in \(X \). The set \(Y \) contains all possible outputs of all public methods. For void-methods the return value \(\perp \) is used. The function \(\phi(s, f(\text{arg})) \) returns the assignments of variables of the C++ object after \(f(\text{arg}) \) was called on the assignment \(s \). Similarly, \(\psi(s, f(\text{arg})) \) is the return value of \(f(\text{arg}) \) on the assignment \(s \).

The used description leads to some restrictions to the C++ class. The finite number of states forbids mechanisms that lead to an infinite number of states. Furthermore, all methods need to terminate. Due to the halting problem, equivalence checking is not decidable if it is not known if methods terminate. On the abstract implementation of hardware systems these are common restrictions.

Two Mealy transducers are combined in a product machine. The product machine describes the behavior of the two C++ classes when running equivalent methods simultaneously.

Definition 2. Given two Mealy transducers \(M_1 = (S_1, S_{01}, X_1, Y_1, \phi_1, \psi_1) \) and \(M_2 = (S_2, S_{02}, X_2, Y_2, \phi_2, \psi_2) \) that describe C++ classes and a relation \(\text{EqMeth} \subseteq X_1 \times X_2 \) which contains the information about methods that should be equivalent, the product machine \(M_c = (S_c, S_{0c}, X_c, Y_c, \phi_c, \psi_c) \) is defined in the following way:

- \(S_c = S_1 \times S_2 \)
- \(S_{0c} = S_{01} \times S_{02} \)
- \(X_c = \text{EqMeth} \)
- \(Y_c = Y_1 \times Y_2 \)
- \(\phi_c : S_c \times X_c \to S_c \) with \(\phi_c((s_1, s_2), (f(\text{args}_1), f(\text{args}_2))) = (\phi_1(s_1, f(\text{args}_1)), \phi_2(s_2, f(\text{args}_2))) \)
- \(\psi_c : S_c \times X_c \to Y_c \) with \(\psi_c((s_1, s_2), (f(\text{args}_1), f(\text{args}_2))) = (\psi_1(s_1, f(\text{args}_1)), \psi_2(s_2, f(\text{args}_2))) \)

This model differs from the usual product machine which uses all possible combinations of inputs from both state machines instead of restricting itself to a subset.

Definition 3. Two models of C++ classes \(M_1 = (S_1, S_{01}, X_1, Y_1, \phi_1, \psi_1) \) and \(M_2 = (S_2, S_{02}, X_2, Y_2, \phi_2, \psi_2) \) are defined as equivalent under the relation \(\text{EqMeth} \subseteq X_1 \times X_2 \) iff for all tracises of inputs on the product machine \((m_1, m_2, \ldots, m_n) \in \text{EqMeth}^n \) with the corresponding path \((s_0, s_1, \ldots, s_n) \) the outputs of the two models are identical for every method call, i.e.,

\[\forall i \in \{1, 2, \ldots, n\} \exists y \in Y_1 \times Y_2 : \psi(s_{i-1}, m_i) = (y, y) \]

When the two elements of the output are equivalent for all functions in a state \(s \), it is called equivalent. All other states are called non-equivalent.

For our proof we try to avoid extensive checks for reachability and utilize a hypothesis that should separate the reachable states from the non-reachable ones.

Definition 4. A hypothesis \(\text{hyp} \) is a Boolean logic formula over the variables of the product machine. The formula \(\text{hyp} \) defines a set \(\text{Hyp} \subseteq S_c \) which contains all states \(s \in S \) that fulfill the formula \(\text{hyp} \).

We call a hypothesis \(\text{hyp} \) with the corresponding set \(\text{Hyp} \) optimal, if it is sufficient to show the equivalence with a single inductive step, i.e.,

1) \(s_0 \in \text{Hyp} \)
2) \(\forall s \in \text{Hyp}, f \in X_c : s \text{ is equivalent } \land \phi_c(s, m) \in \text{Hyp} \)

Our algorithm generates counterexamples and uses them to refine the hypothesis.

Definition 5. A counterexample is a triple \((s_{\text{start}}, s_{\text{follow}}, m)\) and depends on a pre- and a post-hypothesis \(\text{hyp}_{\text{pre}} \) and \(\text{hyp}_{\text{post}} \) as well as on a product machine \(M_c = (S_c, S_{0c}, X_c, Y_c, \phi_c, \psi_c) \). A counterexample describes a starting state \(s_{\text{start}} \in S_c \) that fulfills \(\text{hyp}_{\text{pre}} \). When the method \(m \in X_c \) is called in \(s_{\text{start}} \) the state \(s_{\text{follow}} \) is reached, i.e., \(\phi_c(s_{\text{start}}, m) = s_{\text{follow}} \). In the counterexample the method returns non-equivalent output, i.e., \(\exists y_1 \in Y_1, y_2 \in Y_2 : y_1 \neq y_2 \land \psi_c(s_{\text{start}}, m) = (y_1, y_2) \), or the following state does not fulfill the post-hypothesis.
III. OUR ALGORITHM

We present an algorithm that does an equivalence check between two high-level models of a hardware system described in C++. This section is introduced by an example that presents the used models and shows an optimal hypothesis for them. In Section III-A, we will present our used algorithm. Sections III-B, III-C, and III-D present the functions used by our algorithm.

Example 1. We consider two implementations of counters and apply equivalence checking. The counters have a single variable counter of the type integer and the public method countUp.

In the first implementation the method countUp uses the modulo operation, i.e., counter = (counter + 1) % 4. The method returns the new value of counter. This counter is interpreted as a state machine as well, the initial states are marked with an additional arrow. There are no labels on the edges since every edge corresponds to the according counters, would exactly describe all reachable states of the product machine and be generated. The set $S = \text{Int}$ describes all pairs of states of the two original state machines and the methods are meant to behave identically in the reachable states, i.e., $\text{mod} = \{0, 1, 2, 3\}$. The method ϕ_{mod} returns the next state. Since countUp is the only possible input, the next state corresponds to its execution, i.e., $\phi_{\text{mod}}(\text{counter}, \text{countUp}) = (\text{counter} + 1) \% 4$

The second counter uses the if-command to reset the counter when it would reach 4, i.e., counter++ if (counter == 4) counter = 0; When we interpret this counter as a state machine as well, we get $M_y = (S, S_0, X, \phi_y, \psi_y)$ where the sets of states and the alphabet of inputs are identical to the previous counter. The function can return all integer values except for 4, i.e., $Y_y = \text{Int} - \{4\}$. The functions ϕ_y and ψ_y are different from their counterpart in the first state machine. For these functions $\phi_y(\text{counter}, \text{countUp}) = \begin{cases} 0 & \text{if counter = 3} \\ \text{counter + 1} & \text{otherwise} \end{cases}$ and ψ_y is identical to ϕ_y. An excerpt of these counters is shown in Fig. 1. The top counter is the modulo-counter and the bottom one the if-counter. The vertices show the assignments to the variable counter and the edges represent the next-state functions. There are no labels on the edges since every edge corresponds to the function countUp and returns the next state as output. The initial states are marked with an additional arrow.

When we want to combine these two counters by using our product machine we require a relation that describes which methods should be equivalent to each other. The two countUp methods are meant to behave identically in the reachable states, i.e., $\text{EqMeth} = \{\text{countUp}, \text{countUp}\}$. With this relation the product machine $\text{Counter}_p = (S_c, S_0_c, X_c, \phi_c, \psi_c)$ can be generated. The set $S_c = S_{\text{mod}} \times S_y = \text{Int} \times \text{Int}$ describes all pairs of states of the two original state machines and the functions ϕ_c and ψ_c determine the next states and outputs of each original machine. An excerpt of the product machine is shown in Fig. 2. In the representation of the states, the top value corresponds to the if-counter and the bottom value corresponds to the modulo-counter. The reachable states of the product machine are equivalent, e.g., $\phi_c((2, 2)) = (\phi_{\text{mod}}(2), \phi_y(2)) = (3, 3)$. But the non-reachable states are not equivalent, e.g., $\phi_c((4, 4)) = (\phi_{\text{mod}}(4), \phi_y(4)) = (1, 5)$.

In this example the hypothesis $\text{hyp} = (\text{if} \text{counter} = \text{mod} \text{counter}) \Rightarrow 0 \leq \text{mod} \text{counter} \leq 3$, where the prefix mod and if correspond to the according counters, would exactly describe all reachable states of the product machine and is an optimal hypothesis. Using this hypothesis will reduce the runtime because the algorithm will find no unreachable counterexamples.

A. The Algorithm EquivalenceCheck

Algorithm 1 shows the pseudo code of our main algorithm EquivalenceCheck. For our approach, we require

```
Algorithm 1 EquivalenceCheck

Input: cModel1, cModel2: the C++ models; eqMeth: relation of equivalent methods from cModel1 and cModel2; hyp: starting hypothesis, a logical formula over the variables of cModel1 and cModel2 that is true for the initial state;

Output: Return “Equivalent” and an invariant if the models are equivalent and return “Non-equivalent” otherwise

Description:
1: init = getInitState(cModel1, cModel2)
2: hyp = hyp ∧ ¬getPredStates(cModel1, cModel2, eqMeth, hyp, true)
3: if init → ¬hyp then return (“Non-equivalent”, false)
4: while a counterexample (s_start, s_follow, m) exists
5: preds = getPredStates(cModel1, cModel2, eqMeth, hyp, ¬follow)
6: if init → preds then
7: if s_follow is a non-equivalent state then return (“Non-equivalent”, false)
8: else add the following states to the hypothesis and repeat this step for their descendants that do not fulfill the hypothesis
9: else hyp = hyp ∧ ¬preds
10: return (“Equivalent”, hyp)
```
Algorithm 2 getPredStates

Input:
cModel1, cModel2: the C++ models;
eqMeth: relation of equivalent methods;
pre_hyp, post_hyp: pre- and post-hypothesis

Output:
a logical formula that describes all starting states of
counterexamples and their predecessors that
fulfill the pre-hypothesis

Description:
1: result = false
2: while (generateCounterexamples(cModel1,
cModel2, eqMeth, pre_hyp, post_hyp)) {
3: (c1, c2, ..., cn) = generateCounterexamples
 (cModel1, cModel2, eqMeth, pre_hyp, post_hyp);
4: cex = generalize((c1, c2, ..., cn),
 pre_hyp, post_hyp);
5: result = result ∨ cex;
6: pre_hyp = pre_hyp ∧ ¬cex;
7: post_hyp = post_hyp ∧ ¬cex;
8: }
9: return result

The initial hypothesis to be true for the initial state of the
product machine. An initial hypothesis that is generated by a
developer should usually fulfill this requirement as well as an
overapproximation like true.

In line 1, we create a formula that describes the initial state of
the product machine. We require this formula for different
dchecks during our algorithm.

Afterwards, non-equivalent states and their predecessors are
excluded from the hypothesis in line 2. If any non-equivalent
state is reachable, the two models are not equivalent. If one such
state is reachable, calling equivalent methods in a reachable state
would return different results. This step is realized by calling the
function getPredStates with the starting hypothesis as pre-
hypothesis and true as the post-hypothesis. The post-hypothesis
true is valid for all states. This means that counterexamples
due to following states that do not fulfill the hypothesis do not
exist and every generated counterexample is generated due to
direct predecessors of the current state. The variable
result is initialized with false in line 1, which describes the empty set. The loop
that starts in line 2 continues while counterexamples still exist.
Whenever counterexamples to the current pre- and post-
hypothesis are generated in line 3, the counterexamples are
generalized in a first step by using the function generalize
in line 4. This allows us in each step to consider a set of
states instead of only a small number of states. The generalized
counterexamples are removed from the hypothesis in line 5 and removed
from the pre- and post-hypothesis in the lines 6 and 7. The
removal from the pre-hypothesis prevents the same counterex-
amples from triggering again while the removal from the
post-hypothesis makes every direct predecessor of the current
counterexamples a counterexample as well. The loop is repeated
until no counterexamples remain. Finally, result is returned
in line 9.

C. The Function generateCounterexamples

The function generateCounterexamples returns k
different counterexamples and receives the two models cModel1
and cModel2, the relation of methods equivMethods, as well as
two hypotheses, where the pre-hypothesis pre_hyp should
hold in the starting state and the post-hypothesis post_hyp
in the following state. The variable k is a constant. If less
than k counterexamples exist, all existing counterexamples are
returned. If no counterexamples exist, null is returned. This function
merely offers an interface to the underlying model checker that generates a single counterexample.
D. The Function generalize

We use the function generalize to generalize a number of given counterexamples to describe a set of counterexamples. As additional inputs, a pre- and a post-hypothesis are given. To generalize the counterexamples, we use three approaches:

1) Check for “don’t care” variables: We check for each counterexample \((s_{\text{start}}, s_{\text{follow}}, m) \) which assignments of variables are not relevant for the counterexample and remove the assignments of those “don’t care” variables. This provides a set of similar counterexamples instead of a single state. We start with a formula that describes a starting state \(s_{\text{start}} = \land_{i \in I}(\text{var}_i = \text{value}_i) \), where \(I \) is an index set over all variables of the two models. The formula describes the assignment of variables in the starting state. We start with a set \(J := I \) and try for each element of \(I \) to remove it from \(J \). After removing an element \(j \) from \(J \) it is tested if all states that fulfill the formula \(s_{\text{start}} = \land_{i \in J}(\text{var}_i = \text{value}_i) \) lead to a counterexample when the method \(m \) is called. If some states do not lead to a counterexample, \(j \) is inserted into \(J \) again.

2) Check for intervals: In the next step, we try to generalize the set of counterexamples even more by finding intervals for the integer variables of the provided models. For each integer variable \(\text{var} \) that remains in at least one counterexample after removing the “don’t care” variables, we determine the values in the counterexamples as well as the upper and lower bound according to the pre-hypothesis. The upper and lower bounds are detected by looking for terms within the pre-hypothesis that limit \(\text{var} \) and do not need to be the optimal bounds that can be taken from the hypothesis. With these values, we generate a sorted vector \((\text{val}_1, \ldots, \text{val}_k) \) of values that are assigned to \(\text{var} \) in at least one counterexample or are bounds according to the pre-hypothesis. We try to decrease the upper bound \(\text{val}_k \) of \(\text{var} \) according to the pre-hypothesis by replacing it with the highest value of a counterexample \(\text{val}_{k-1} \). The value \(\text{val}_{k-1} \) must be less than \(\text{val}_k \) because the starting state of a counterexample needs to fulfill the pre-hypothesis. If this is possible, we try to decrease it even further and try \(\text{val}_{k-2}, \text{val}_{k-3}, \ldots \). In a next step, we try to increase the lower bound analogously.

We use two approaches to verify if the value of \(\text{var} \) needs to remain within an interval. The first checks if all states \(s \) with \(s \rightarrow \text{pre}_\text{hyp} \land \neg(\text{upper} > \text{val} > \text{lower}) \) can be starting states of a counterexample, where \(\text{upper} \) and \(\text{lower} \) are the upper and lower bound of the interval. In this case, all these states \(s \) can be removed from the hypothesis and only states where \(\text{var} \) is within the interval remain.

The second approach checks if the value of \(\text{var} \) is always within the interval after calling any function when the value was in the interval before and the pre-hypothesis was valid. We also need to check if the initial value for \(\text{var} \) is within the interval. In this case, it is not possible to leave the interval and we can safely remove all states where \(\text{var} \) is not in the interval from the hypothesis.

The two different presented approaches are used due to different possible scenarios. In our example of the adders, the if-counter can be successfully checked by the first method and the modulo-counter by the second method.

Additionally, we try to shrink the intervals even further by decreasing the best detected upper bound of the interval and increasing the lower bound. For each bound, we try to shrink the interval accordingly, i.e., decrease the upper bound or increase the lower bound by using an approach similar to binary search until we find the optimal bound for \(\text{var} \).

4) Find equal variables: Finally, we test if some variables in the models are always equal. If a variable \(\text{var}_1 \) from the first model and a variable \(\text{var}_2 \) from the second model are different in all counterexamples, they could be required to be equal. We check for each of these pairs, if those variables are equal in the initial state. If they are equal, we verify, similarly to the second approach for intervals, that they are equal after calling any function when they were equal before and the pre-hypothesis was fulfilled. If this checks returns a positive result, we can return all states where \(\text{var}_1 \neq \text{var}_2 \) as counterexamples.

After all generalizations are done, we return the final set of generalized counterexamples.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on a Lenovo T430 with an Intel Core i5-3320M CPU with 2.6GHz and 8GB of RAM. The operating system is Windows 7 32bit. For the generation of counterexamples, CBMC v4.9 [1] is used as a blackbox.

For the experiments two kinds of counters were implemented. The compared versions used the operands modulo or if to count from 0 to 9,999,999 like described in Ex. 1. Multiple counters are used in a single C++ class, so it is possible to count on \(n \) different and independent variables. The lines of code in the used classes range from 22 for the one-dimensional modulo-counter to 88 for the ten-dimensional if-counter. An optimal hypothesis optimal for this example consists of two parts, i.e., \(\text{optimal} = \text{equal} \land \text{limit} \). The first part \(\text{equal} = \land_{i \in \{0, 1, \ldots, n\}}(\text{if.counter} \equiv \text{mod.counter}) \) describes the equality between the two counters and \(\text{limit} = \land_{i \in \{0, 1, \ldots, n\}}(0 \leq \text{mod.counter} \leq 9999999 \land 0 \leq \text{if.counter} \leq 99999999) \) describes the bounds for the variables. The hypothesis \(\text{optimal} \) describes exactly all reachable states of the corresponding product machine.

Equivalence checking on counters is complicated because the paths to some reachable states are very long. In this example the equivalence check is further complicated by the fact that most non-reachable states of the product machine are non-equivalent.

The different runtimes of our algorithm depend on the used initial hypothesis and the number of parallel counters can be seen in Fig. 3. We tried the initial hypotheses true, equal, limit,
and optimal. We can see, that hypothesis optimal is decided almost instantaneously in all cases and takes from 0.7 seconds for \(n = 1 \) to 1.6 seconds for \(n = 10 \). The additional runtime due to additional counters is almost linear due to the removal of “don’t care” variables. When a better hypothesis is used, the runtime is further decreased. However, we can even show equivalence in an acceptable time when we start with the hypothesis true.

Thus, this experiment has shown that our algorithm scales well in this example with increasing complexity of the model. The experiment also showed that the runtime highly depends on the used hypothesis. While we can show equivalence for the hypothesis true, the runtime increases significantly compared to an optimal hypothesis.

In our second experiment we considered a simple processor with a pipeline as a more complicated model. Our processor uses a 3-step-pipeline and has 4 registers that store 3-bit-values. There is no external memory and the processor can use 3-operations to add or subtract the values in the registers from each other. The C++ model provides getter-functions for all registers and a nextStep-function, that corresponds to a single cycle of the pipeline and loads a new command as argument. The processor forbids writes of data that are read from the pipeline, and writes a nop-command instead, if a loaded command would cause a conflict.

The abstract model of the processor is basically a queue. When nextStep is called, the processor computes the result of the third operation in the pipeline and writes the result in the according register. The detailed model loads the required inputs for the first operation in the pipeline, computes the result of the operation for the second operation and writes the result of the third operation back into the according register. The variables that store the data that is required for the next step, i.e., the read operands and the computed result, are stored in special registers that do not exist in the abstract model.

First, we determine an optimal hypothesis for this equivalence check. The registers and operations in the pipeline need to be equal to their according element in the other model of the processor. All registers need to be inside their valid range, i.e., between 0 and 7, and all operations in the pipeline need to be valid. There must not be any conflicts in the pipeline. Finally, the register for the loaded inputs and the computed result in the detailed model need to be correct according to the current registers and the operation that just loaded those values.

When we use an optimal hypothesis that contains this information, our approach can show the equivalence of the two models in 10 seconds. We can leave out some information from the hypothesis and will still get a correct result within an acceptable time. For example, when we remove the equality of the second operation in the pipeline, equivalence is shown in 1789 seconds.

However, changes to the more complex part of the hypothesis, e.g., omitting the correctness of the computed output value in the detailed model, will not be found by our heuristics for generalization and will lead to a time-out. In our experiments, we aborted this run after 12 hours.

In this second experiment, we showed that complex models cannot be handled within a feasible time even when we use a simple hypothesis. However, when we use a good hypothesis, our approach can handle these complex models.

For each optimization we implemented, we provided an example in our experiments that would not be feasible without that optimization. When we check the adders and use the initial hypothesis equal but do not provide the check for intervals, the algorithm will time out. Similarly, when we use the hypothesis limit instead and do not provide the optimization for checks of equivalence, the algorithm will time out as well. The optimization of removing "don’t care" variables helps when we analyze parallel counters, which could not be handled otherwise. On the other hand, when an optimization is not required for a specific hypothesis, the runtime only increases slightly. For example, when we remove the check for equality while using the initial hypothesis equal, the runtime decreases from 28 seconds to 25 seconds without the optimization for equality.

V. Conclusion

In this paper, we present an algorithm to prove functional equivalence of two hardware description on the system level. The presented algorithm uses a hypothesis that is stepwisely refined to approximate the set of all equivalent states of the two designs. The hypothesis allows to use the expert knowledge of a designer to speed up verification. Preliminary experimental results for two case studies, a scale parallel counter and a processor model, show that the runtime can be significantly reduced, even for complex designs, when the “right” hypothesis has been chosen.

REFERENCES

