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Abstract—Memristor-aided logic (MAGIC) is one of the most
popular design styles for implementing Logic-in-Memory (LiM)
using memristors. MAGIC-based LiM has been shown to be
useful for high throughput applications, as the same design can
be mapped to multiple rows of a crossbar. The computations can
be performed simultaneously on all these rows on different inputs
to achieve high throughput. In recent years, approximate circuits
have been extensively explored to obtain benefits in power,
performance, and area for traditional CMOS designs. While these
approximate circuits produce erroneous outputs, several applica-
tions can produce an acceptable quality output even with these
approximations. In this work, we propose approximate circuits
for MAGIC-based LiM. We have used the Ripple Carry Adder
(RCA) architecture and introduced functional approximation to
generate the approximate RCAs. We obtained the mapping of
these approximate RCAs on the memristor crossbar using the
SIMPLER MAGIC tool. We generated the Pareto-optimal designs
using Gate Count and Total Cycles as design metrics against
Mean Square Error and Mean Absolute Error as error metrics.
We generated separate Pareto-optimal designs for three different
input data distributions namely uniform, exponential, and normal
data distributions.

Index Terms—Approximate computing, memristor-aided logic,
logic-in-memory, pareto-optimal, input distribution, adders

I. INTRODUCTION

Memristors are two terminal devices that can change their
resistance in response to the applied voltage across their
terminals [1], [2]. Memristors can be configured to a low
resistance state (‘1’) or a high resistance state (‘0’) depending
upon the magnitude of the applied voltage [3]. In addition to
storage, these devices are capable of performing both analog
and digital computations [2], [4]. In this work, we focus on
using memristors to perform digital Logic-In-Memory (LiM)
computations [3]. There are a number of different design
styles to perform stateful LiM computations using memristors
crossbars [5]–[7]. We have used one of the popular Memristor-
Aided Logic (MAGIC) design styles in this work [6], [8].
MAGIC design style-based NOR and NOT operations can be
mapped to a memristor crossbar. Since NOR is a universal
gate, any Boolean function can be implemented using the
MAGIC design style [9]. There have been recent works that
have looked into comparing various arithmetic architectures
for memristors crossbars [10]–[12].

In this work, our focus is on approximate computing for
MAGIC-based LiM. Approximate computing deals with the
introduction of approximation across the computing stack to
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Figure 1: Approximation in Adder Designs (Exact Adders: Green;
Approximated Adders: Red)

improve design metrics such as power, performance, and area
as the cost of acceptable errors in the result [13], [14]. Some
applications have been shown to be resilient towards the
introduction of such approximations, i.e., these applications
produce acceptable quality output in the presence of these
approximations [15]. In this work, we deal with the circuit-
level approximation technique called functional approxima-
tion. Functional approximation means replacing the Boolean
function of the exact circuit with another Boolean function to
obtain benefits in the design metrics.

Owing to the benefits of approximate computing on tra-
ditional CMOS designs, some works have also investigated
the benefits of using MAGIC-based LiM domain [16]–[18].
However, only one work exists that deals with the design of
approximate adders LiM using the MAGIC design style [18].
In this work, the Pareto-optimal adder designs are obtained
by mapping the design to the minimum number of memristors
using MAGIC based LiM [19]. This method suffers from the
limitation of not being able to use all the available memristors
effectively. This happens because the mapping obtained fo-
cuses on minimizing the number of memristors, even though
additional memristors are available. However, in our work,
we use the SIMPLER MAGIC tool that focuses on efficiently
mapping the design for a given number of memristors (not
necessarily minimum) [20]. This becomes useful for cases
where we want to utilize the available crossbar of a given size
more effectively, thus alleviating the limitation of the prior
work [18], [19]. In addition to it, we also wanted to generate
the Pareto-optimal design for varying input data distributions.
Our motivation behind this was to generate tailored approxi-
mate circuits that can benefit from the information about the
input data distribution of the application.

Following are the contributions of our work:
1) We propose the first input-aware library of approximate

adders based on the MAGIC-based design style.
2) We obtained the Pareto-optimal designs from among



millions of functional approximate adder designs for each
distribution.

3) We also show how the Pareto-optimal designs vary with
the input-data distributions and can be exploited in appli-
cations where the input data distribution is known.

II. BACKGROUND

In this section, we will discuss functional approximation,
NOR gate and NOT gate implementation using the MAGIC
design style, and mapping of MAGIC-based gates to the mem-
ristor crossbar for Single Instruction Multiple Data (SIMD)
architecture.

A. Functional Approximation
In functional approximation, as the name suggests, the

Boolean function of the exact circuit is replaced with another
Boolean function, that reduces the overall design cost metrics
with the introduction of error in the output. The replacement of
the Boolean function can be done depending on the required
constraints in the design metric as well as the error metric.
An example of a functional approximation in a Ripple Carry
Adder (RCA) will be to replace the Boolean function of
SUM = A⊕B ⊕ C with Boolean function SUM = A⊕B
of some the full adders. The approximated Boolean function
requires only one XOR operation as compared to the two
required in the original Boolean function which helps in
reducing the design metric costs. However, since the approx-
imated Boolean function is independent of the input C, for
the cases when the output is dependent on C, we will get
erroneous output. The entire goal of functional approximation
is to identify the approximate Boolean functions that will
give the maximum benefits in the design metrics for a given
error constraint. An example showing a 16-bit exact adder
and the approximate adder with the least significant 8-bit
approximated is shown in Fig. 1.

B. MAGIC Design Style
MAGIC design style uses only memristors to perform com-

putations using memristors. MAGIC design style is stateful
as the inputs are represented as resistance values and the out-
puts after the computations are also represented as resistance
values. MAGIC design style-based NOT and NOR gates can
be mapped to a memristor crossbar as shown in Fig. 2. The
NOR gate and the NOT gate require three and two memristors
respectively. For the NOR operation, the output memristor is
initialized to a low resistance state, and depending on the
inputs the two input memristors are initialized. To perform
the operation the input memristors are connected to VIn and
the output memristor is connected to the ground as shown
in Fig. 2. If at least one of the input memristors is in the
low resistance state (‘1’), the output memristor switches to
the high resistance state (‘0’). In the case, where both the
input memristors are in a high resistance state (‘0’) the output
memristor remains in the low resistance state (‘1’). Hence,
the NOR operation is achieved using the three memristors.
The NOT operation is similar to the NOR operation with the
exception that only one input memristor is required.
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Figure 2: MAGIC Design Style Based gates
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Figure 3: SIMD Implementation Using MAGIC

C. SIMD Operations

The individual MAGIC NOR and MAGIC NOT gates were
discussed in Section II-B. The same design is mapped to all the
rows of the crossbar to increase the throughput. Each design
in the different rows of the crossbar can operate on different
input data. For example, let us assume we have a crossbar of
size 256×256, and an adder can be mapped to one row of the
memristor crossbar. This adder can be replicated across the
256 rows of the crossbar. Hence at a time, 256 additions can
be done using the 256 rows. Thus, it is useful in applications
that can exploit the SIMD architecture. In Fig. 3, we show the
snippet of three NOR operations being executed on the three
rows of the crossbar.

III. METHODOLOGY

The overall library generation methodology is shown in
Fig. 4. It consists of four main stages. We will discuss each
of these stages in detail in the following subsections.

A. Approximate Adder Generation

We have used functional approximation to generate the
approximate RCA design. The RCA consists of full adders
which have three inputs and two outputs. The Boolean function
for SUM and CARRY of each full adder can be computed
as A⊕B⊕C and AB+BC+CA respectively. In functional
approximation, these Boolean functions are replaced with
another Boolean function to generate the approximate adder
designs. Rather than evaluating a subset of the approximate
Boolean function, we exhaustively generated all the possible
Boolean functions that can be generated for the SUM and
CARRY similar to [18]. There are three inputs hence the
SUM and CARRY can be each generated in 256 ways, so
in combination we generate a total of 65536 designs single-bit
approximate adder designs. Since we use 8-bit and 16-bit rip-
ple carry adder designs, another dimension of approximation
deals with how many adders will be replaced with approximate
adders. In this work for the 8-bit RCA, we start with the
replacement from the least significant bit in steps of one, i.e.,
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Figure 4: Overall Methodology for Generation of Library

1, 2, . . . 7, and similarly for the 16-bit from 1, 2, . . . 15. For
every bit of approximation we have 65536 designs, i.e., for the
example shown in Fig. 1, the 8 approximated least significant
bit adders can be any of the 65536 approximate designs. We
want to highlight to limit the design space from exploding, all
the approximated adders are of the same type. We generated
458752 and 983040 approximate RCA designs for 8-bit and
16-bit respectively.

B. Mapping to Memristor Crossbars

To obtain the mapping of the approximate adder designs
the open source SIMPLER MAGIC tool was used [20]. The
Verilog designs were first converted to the Berkeley Logic
Interchange Format (blif) format as the SIMPLER MAGIC
tool requires it to be in this format. The blif files were used as
input designs for the SIMPLER MAGIC tool. In [10], it was
shown that the exact 8-bit and 16-bit RCA designs require 50
and 75 memristors respectively. We wanted to use typical sizes
in which the memristor crossbars are fabricated. Hence, we
selected 64 memristor count for 8-bit RCA and 128 for 16-bit
RCA. The SIMPLER MAGIC tool gives the Gate Count, i.e.,
the number of NOR and NOT gates, and Total Cycles, i.e., the
number of cycles required to obtain the final output. We have
used these two as the design metrics in this work. SIMPLER
was not able to correctly map some approximate adder designs
we have removed such designs from the comparisons.

C. Error Computation

As discussed in Section III-A, millions of adder designs
exist in the entire design space. The error computations require
simulation of the design which is quite slow using Verilog
designs. To alleviate this we used the Verilator tool to convert
the Verilog designs to the C++ designs. This greatly improves
the simulation time. This benefit adds up as we use three input
data distributions namely normal, uniform, and exponential.
We have used the Mean Absolute Error (MAE) and the Mean
Square Error (MSE) as the error metrics in our work as shown
in Equation (1).

MAE =
1

N

N∑
i=1

|yi − xi|; MSE =
1

N

N∑
i=1

(yi − xi)
2 (1)

D. Pareto-Optimal Designs

Lastly, we need to obtain the set of the Pareto-optmial
designs. These designs can be explained as the RCA designs

having the best design metric for a given error metric or the
RCA design having the best error metric for a given design
metric. We take the design metrics namely Gate Count and
Total Cycles, and the error metrics namely MAE and MSE
for all the adder designs. We use the Python Numpy library
and the py-paretoarchive library to obtain the set of Pareto-
optimal designs [21], [22]. We perform this analysis for each
of the input data distributions to highlight its impact on the
obtained Pareto-optimal designs. Since we have two design
and two error metrics we perform four such analyses each for
8-bit and 16-bit RCA.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results in detail of the design
space exploration of the functional approximate RCA designs
using the methodology discussed in Section III.

In Fig. 5 and Fig. 6 the obtained Pareto-optimal designs
for 8-bit and 16-bit RCA designs over the three input distri-
butions, namely exponential, normal and uniform, are shown,
respectively. The figures are structured such that, rows contain
a specific design metric (Gate Count in the first row, Total
Cycles in the second row), while columns contain a specific
error metric (MSE in the first column, MAE in the second
column). Thus, Figs. 5(a), 5(b), 6(a) and 6(b) show the Gate
Count vs error metric, while Figs. 5(c), 5(d), 6(c) and 6(d)
show the Total Cycles vs error metric. To further break down
the illustration, each figure’s caption contains an identifier
for the circuit, the design metric, and the error metric. For
example, Fig. 5(b) contains the Pareto-optimal designs that
were obtained, optimizing the Gate Count against the MAE.
In particular, each plot shows the Pareto-optimal designs
determined for a given metric pair (e.g. Gate Count vs MAE in
Fig. 5(b)) for the three cases, in which input samples for error
calculation are sampled from exponential, normal and uniform
distributions respectively. Each distribution is shown by its
own respective marker in the plot, with ⋏⋏⋏ (green) marking
the exponential, ⊂ (blue) the normal and ⋎⋎⋎ (red) the uniform
distribution respectively. The x-axis shows the design metric
(Gate Count, Total Cycles) while the y-axis shows the error
metric (MSE, MAE).

Section IV-1 discusses the Pareto-optimal designs shown in
Fig. 5 and Fig. 6 further, while IV-2 examines the commonly
and uniquely found Pareto-optimal designs across the different
input distributions in this work’s context.
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(a) RCA-8 Gate Count vs MSE
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(b) RCA-8 Gate Count vs MAE
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(c) RCA-8 Total Cycles vs MSE
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(d) RCA-8 Total Cycles vs MAE

Figure 5: Comparison of all Pareto optimal solutions for each input distribution for 8-bit Ripple Carry Adder circuits. Each row shows the
designs for both error metrics (MSE and MAE) for a given design metric, respectively.

1) Pareto-optimal designs: This section discusses the de-
tails of the determined Pareto-optimal results as shown in
Fig. 5 and Fig. 6. As the methodology also compares the
impact of the chosen distribution to sample the inputs for the
simulations, a discussion on the effect on the obtained Pareto-
optimal set will also be discussed. First, we provide a general
overview of the 8 plots containing the Pareto-optimal sets.

Across all plots for the 8-bit RCA, it can be seen that
more aggressive optimization for the design metric (e.g. lower
amount of Total Cycles) with the exponential distribution
yields designs with lesser error. This can be attributed to the
fact that most of the sampled inputs in the exponential distri-
bution are smaller, thus the calculated results are smaller, also
resulting in lower error values. Hence, through the exponential
distribution, the design space is explored on lower errors,
yielding other designs.

In Figs. 5(a) and 5(b), below a Gate Count of 40 exponential
distribution shows a notable difference in error compared with
normal and uniform respectively. With Gate Count below
35, differences between the normal and uniform distribution
become evident too, with uniform distribution highlighting
different designs with less error. In Fig. 5(c), with a total
cycle amount of less than 30, exponential distribution also
shows a notable difference in error compared with normal
and uniform, respectively. With Total Cycles less than 20,
differences between normal and uniform distribution become

more evident as well, with uniform distribution highlighting
designs with less error again.

The observations made for 8-bit RCA are similar on 16-bit
RCA with minor differences and a few exceptions. Inspecting
Fig. 6(a), it can be seen for Gate Count less than 50 that the
errors of the designs are notably different across distributions.
For most design points, the exponential distribution presents
designs with less error than the normal and uniform distribu-
tion, respectively. With an exception at around a Gate Count
of 25, at which the exponential distribution highlights a design
with a higher error than normal and uniform distributions. At a
Gate Count less than 30, the differences between the designs
provided by normal and uniform distribution become more
evident, with uniform distribution providing designs with less
error. Examining Fig. 6(c) differences in the distributions are
notable for total cycle amounts of less than 40. Here too, most
design points with less error are provided by the exponential
distribution compared to the normal and uniform distribution.
This too has an exception, at around a little less than 25 cycles,
at which the exponential distribution provides a design with
higher error than normal and uniform distribution respectively.
At a total cycle number less than 30, differences between
the normal and uniform distribution become notable, with the
uniform distribution providing designs with less error. We want
to emphasize that the Total Cycles are heavily related to Gate
Count, hence similarities between the results are expected.
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(a) RCA-16 Gate Count vs MSE
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(b) RCA-16 Gate Count vs MAE
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(c) RCA-16 Total Cycles vs MSE
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(d) RCA-16 Total Cycles vs MAE

Figure 6: Comparison of all Pareto optimal solutions for each input distribution for 16-bit Ripple Carry Adder circuits. Each row shows the
designs for both error metrics (MSE and MAE) for a given design metric, respectively.

It is important to highlight, that different distributions for the
choice and sampling of inputs are not about which distribution
performs better in terms of the error. The different input
distributions highlight a particular set of circuits in the design
space, which gives engineers a more faithful choice of circuits
for the application the memristor-based approximate circuit
is tailored for. Being able to assess the design space is
fundamental in order to effectively trade-off between designs
in the context of the required application.

2) Common and unique designs: Lastly, we examine the
commonly and uniquely obtained circuit designs between
different Pareto-sets for each metric pair (e.g. Gate Count
vs MAE). This is of importance, as the Pareto-optimal sets
discussed in IV-1 focus on qualitative differences in the design
space. The listing and comparison of commonly and uniquely
found designs across the input distributions allows for a quan-
titative assessment of our results. Hence, further differences
are emphasized, supporting the case for the need for such a
systematic methodology employing input distribution.

In Table I unique and common designs across input dis-
tribution are presented for each metric pair examined in this
paper. The table is split into three parts. The leftmost part
shows the circuit and the respective bit-width examined. The
two columns right of that contain cells with the number of
designs in the Pareto-optimal set that are common and unique
to the input distribution for a design metric (from left to right:

Gate Count, Total Cycles). For each column with a design
metric, the table contains the error metrics (MSE, MAE).
Each cell in the table contains the four respective amounts
of (C)ommon designs found with each input distribution and
those uniquely determined by (E)xponential, (N)ormal and
(U)niform distribution respectively. Take the 8-bit RCA for
Gate Count vs MAE as an example, with the cell containing
C: 11, E: 1, N: 1, and U: 2. This means the Pareto-optimal
sets have 11 designs in common across all distributions, 1
design uniquely found by exponential distribution, 1 design
uniquely found by normal distribution, and 2 designs found
by uniform distribution.

From the table, we can observe, that with each distribution
unique designs are determined, while each Pareto-optimal set
contains commonly found circuits in the design space. The
case of RCA-16-GateCount-MSE and RCA-16-TotalCycles-
MAE contains the most commonly found designs (C:35),
while RCA-8-GateCount-MAE and RCA-8-TotalCycles-MAE
have the lowest amount of commonly found designs (C:11).
For the exponential distribution, RCA-16-GateCount-MSE
and RCA-16-TotalCycles-MSE report the highest amount of
unique designs (E:11), while all metrics pairs of RCA-8 show
a single unique design (E:1), respectively. For the normal dis-
tribution, RCA-16-GateCount-MSE and RCA-16-TotalCycles-
MSE have the highest number of unique designs (N:9),
while RCA-8-GateCount-MAE and RCA-8-TotalCycles-MAE



Table I: Number of common (C) and unique design points for input samples from exponential (E), normal (N), uniform (U) distribution.

Circuit Gate Count Total Cycles
MSE MAE MSE MAE

RCA
8-bit C: 13 E: 1 C: 11 E: 1 C: 13 E: 1 C: 11 E: 1

N: 4 U: 5 N: 1 U: 2 N: 4 U: 5 N: 1 U: 2

16-bit C: 35 E: 11 C: 33 E: 2 C: 35 E: 11 C: 33 E: 2
N: 9 U: 11 N: 2 U: 5 N: 9 U: 11 N: 2 U: 5

contain the lowest number of unique designs (N:1). For
the uniform distribution, RCA-16-GateCount-MSE and RCA-
16-TotalCycles-MSE report the highest number of unique
designs (U:11), while RCA-8-GateCount-MAE and RCA-8-
TotalCycles-MAE contain the lowest number of unique de-
signs (U:2).

In general, the results can be summarized in two points
1) Section IV-1 shows and emphasizes the different circuits
found in the design space through different input distributions,
and 2) Section IV-2 highlights the found differences quantita-
tively by a comparison of common and unique designs found
between input distributions.

V. CONCLUSION AND FUTURE WORK

We proposed the first input data-aware library of approx-
imate RCA that can be mapped to a memristor crossbar.
We used functional approximation to generate several ap-
proximate RCA designs and explored this design space to
identify the Pareto-optimal designs. Our library consists of
8-bit and 16-bit approximate RCA that have been tailored for
three different distributions namely uniform, exponential, and
normal data distributions. We showed how the Pareto-optimal
design space is dependent on the input data distributions
as well as the design and error metrics. We believe that
this work will act as a baseline to be used in research
directions to perform approximate computing using MAGIC-
based LiM on memristor crossbars. Hence we made the
Pareto-optimal designs available at https://github.com/agra-
uni-bremen/vlsid2024-inputaware-approxadders-magic. In the
future, we plan to extend this work to the design of approxi-
mate multipliers for LiM.
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