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Abstract — The efficient synthesis of quantum cir-
cuits is an active research area. Since many of the
known quantum algorithms include a large Boolean
component (e.g. the database in the Grover search al-
gorithm), quantum circuits are commonly synthesized
in a two-stage approach. First, the desired function is
realized as a reversible circuit making use of existing
synthesis methods for this domain. Afterwards, each
reversible gate is mapped to a functionally equivalent
quantum gate cascade.

In this paper, we propose an improved mapping of
reversible circuits to quantum circuits which exploits a
certain structure of many reversible circuits. In fact,
it can be observed that reversible circuits are often
composed of similar gates which only differ in the po-
sition of their target lines. We introduce an extension
of reversible gates which allow multiple target lines in
a single gate. This enables a significantly cheaper map-
ping to quantum circuits. Experiments show that con-
sidering multiple target lines leads to improvements of
up to 85% in the resulting quantum cost.

I. Introduction
Using quantum mechanical phenomena such as super-

position and entanglement, quantum computation [1] al-
lows for breaching complexity bounds which are valid
for computing devices based on conventional mechanics.
The Grover search [2] and the factorization algorithm by
Shor [3] rank among the most famous examples for quan-
tum algorithms that solve problems in time complexities
which cannot be achieved using conventional computing.

For example, the Grover algorithm addresses the search
of an item in an unsorted database with N elements in
time O(

√
N), whereas conventional methods cannot be

performed using less than linear time. Shor’s algorithm
performs prime factorization in polynomial time by ex-
ploiting quantum computation methods such as the quan-
tum Fourier transform. Thus, the algorithm is exponen-
tially faster than its best known conventional counterpart,
the general number field sieve, which solves the problem
in sub-exponential time [4].

Motivated by these theoretical concepts and their re-
cent prototypical implementations (e.g. see [5] or, more
recently, [6]), the design of such devices became an ac-
tive research area. The quantum algorithms can be rep-
resented in terms of quantum circuits that often inhibit a
pre-defined structure (e.g. quantum gates putting the re-
spective quantum bits into superposition followed by the
actual computation and, finally, the evaluation in terms
of measurement). While most of these structures are al-
ready given by the respective quantum algorithms (e.g. the
Grover iteration in the search algorithm or the quantum
Fourier transform in the factorization algorithm), Boolean
components often depend on the given input. For exam-
ple, the respectively considered database or the provided
product are not fix and need to be designed for each ap-
plication.

In order to design these Boolean components, the prop-
erty that all quantum circuits are inherently reversible
is exploited. First, they are designed as a reversible
circuit that works on conventional bits rather than on
quantum bits. For this purpose, existing methods such

as [7, 8, 9, 10, 11] are used. Afterwards, mapping tech-
niques are applied that transform the reversible circuit
into a functionally equivalent quantum circuit [12, 13, 14].
This is described in more detail later in Section II.C.
While this is an established solution to design quantum
circuits, mapping reversible circuits to quantum circuits
has mainly been considered in a local manner so far,
i.e. each reversible gate is solely been mapped to corre-
sponding quantum gates.

In this paper, we propose an improved mapping of re-
versible circuits to quantum circuits which exploits a cer-
tain structure of many reversible circuits. In fact, it can
be observed that reversible circuits are often composed
of similar gates which only differ in the position of their
target lines. Allowing instead multiple target lines in re-
versible gates enables much cheaper mappings and, thus,
cheaper quantum circuit designs. We introduce corre-
sponding mappings and show their application and bene-
fits for both, existing reversible circuits and existing syn-
thesis approaches. As confirmed by an experimental eval-
uation, improvements of up to 66% in the first case and
up to 85% in the latter case can be observed.

The paper is structured as follows. The next section
provides the necessary background, while the general idea
is given in Section III. Section IV introduces the extension
of reversible gates that consider more than one target line.
Its application is outlined in Section V. Experimental
results follow in Section VI before the paper concludes in
Section VII.

II. Background
To keep the remainder of this paper self-contained, this

section briefly introduces the basics on reversible circuits,
quantum circuits, and the corresponding mapping from
reversible to quantum circuits. For a more detailed treat-
ment, we refer the reader to [1].

A. Reversible Circuits
Reversible circuits are digital circuits with the same

number of input signals and output signals. Furthermore,
reversible circuits realize bijections, i.e. each input assign-
ment maps to a unique output assignment. Accordingly,
computations can not only be performed from the inputs
to the outputs but also in the other direction.

Reversible circuits are composed as cascades of re-
versible gates. The Toffoli gate [15] is widely used in the
literature and also considered in this paper.

Definition 1 Given a set of variables or signals
X = {x1, . . . , xn}, a Toffoli gate g(C, t) is a tuple of a
possibly empty set C ⊂ X of control lines and a single
target line t ∈ X \ C. The Toffoli gate inverts the value
on the target line if all values on the control lines are set
to 1 or if C = ∅. All remaining values are passed through
unaltered.

Example 1 Fig. 1(a) shows a Toffoli gate drawn in stan-
dard notation, i.e. control lines are denoted by while the
target line is denoted by . A circuit composed of several
Toffoli gates is depicted in Fig. 1(b). This circuit maps
e.g. the input 101 to the output 010 and vice versa.
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(a) Toffoli gate
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Fig. 1. Toffoli gate and Toffoli circuit

B. Quantum Circuits
Quantum computation [1] is a promising application

of reversible logic. The corresponding quantum circuits
are very similar to reversible circuits but work on quan-
tum bits (qubits) instead of bits. In contrast to Boolean
logic, qubits do not only allow to represent the conven-
tional Boolean states 0 and 1, but also the superposition
of them. More precisely, a qubit is a linear combination
of the conventional Boolean states in the two dimensional
complex Hilbert space. The two orthonormal quantum
states |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
are used to represent the

Boolean values 0 and 1. Thus, any state of a qubit may
be written as |ϕ〉 = α|0〉+ β|1〉, where α and β are com-
plex numbers such that |α|2 + |β|2 = 1. All quantum bits
reside on the Bloch sphere, a unit 2-sphere.

Each operation on these qubits can be defined by a uni-
tary matrix [1] which is represented by means of quan-
tum gates. However, in this work we use a definition for
quantum gates that is closer to the definition of reversible
gates.

Definition 2 A quantum gate q(C, t) over the inputs
X = {x1, . . . , xn} consists of a single target line t ∈ X
and, in some cases, of a single control line c ∈ X
with t 6= c. That is, C is either empty or equals {c}. When
further assuming that the inputs to the circuit as well as
the inputs to the control lines of the gates are restricted
to the conventional Boolean values 0 and 11, the following
four gates define the commonly used quantum gate library.

• NOT gate: The qubit on the target line t is inverted.

• Controlled NOT gate (CNOT): The target qubit t is
inverted if the control qubit c is 1.

• Controlled V gate: The V -operation is performed on
the target qubit t if the control qubit c is 1. The V -
operation is also known as the square root of NOT,
since two consecutive V -operations are equivalent to
an inversion.

• Controlled V † gate: The V † gate performs the inverse
operation of the V gate, i.e. V † = V −1.

Due to the assumption for the circuit inputs and con-
trol lines, the set of possible values {|0〉, |1〉, |v0〉, |v1〉} is
closed under the above mentioned operations. That is,
we are dealing with 4-valued logic, where |v0〉 = 1+i

2

[
1
−i
]

and |v1〉 = 1+i
2

[−i
1

]
.

Example 2 Fig. 2 shows a quantum circuit composed of
several of the gates introduced above realizing a reversible
function. Control lines are again denoted by while target
lines are either denoted by in case of NOT and CNOT
or by V and V † in case of V gates and V † gates, re-
spectively. This circuit maps e.g. the input 101 to the out-
put 111 and vice versa, whereby the intermediate value |v0〉
occurs.

All elementary gates are assumed to have unit cost [12].

1Note that, as also shown in the next section, this restriction
is common when considering the design of Boolean components of
quantum circuits.
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Fig. 2. Quantum circuit
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(b) For the reversible circuit shown in Fig. 1(b)

Fig. 3. Mapping reversible circuits to quantum circuits

C. Mapping Reversible Circuits to Quantum Circuits
Since any quantum operation can be represented by

a unitary matrix [1], each quantum circuit is inherently
reversible. Consequently, every reversible circuit can be
transformed into a quantum circuit. To this end, each
gate of the reversible circuit is mapped into a cascade of
functionally equivalent quantum gates.

Example 3 Consider a Toffoli gate with two control lines
as shown in Fig. 1(a). A functionally equivalent realiza-
tion in terms of quantum gates is depicted in Fig. 3(a).
This cascade can be applied to fully map the reversible
circuit shown in Fig. 1(b) into an equivalent quantum cir-
cuit. For this purpose, all corresponding Toffoli gates are
respectively substituted with a corresponding quantum gate
cascade. The 1st, 3rd, 4th, and 5th gate remain unchanged
as they already represent quantum gates. The resulting
fully equivalent quantum circuit is shown in Fig. 3(b).

Similar mappings exist for Toffoli gates with more than
two control lines. But with increasing number of control
lines, the resulting quantum circuits become more expen-
sive, i.e. require more quantum gates. Furthermore, also
the number of the ancillarly lines, i.e. the number of cir-
cuit lines which neither are a control line nor a target line,
affect the size of the resulting quantum circuit. To pro-
vide some examples, Table I(a) lists the respective costs
for different Toffoli gate configurations according to the
mapping scheme introduced in [12, 13] and often used in
the literature. However, how to efficiently determine map-
pings from a single reversible gate to a cascade of quan-
tum gates is an active research area which led to better
results in the meantime. The costs obtained by the cur-
rent state-of-the-art [14] are provided in Table I(b). Note
that, in this work, we apply this metric since it represents
the best results available so far. But besides that, the ap-
proach proposed in this work is also applicable to other
mapping schemes (e.g. the one recently presented in [16]).

In the design of quantum circuits, Boolean components
(e.g. the oracle transformation in the Deutsch-Jozsa algo-
rithm, the database in Grover’s search algorithm, and the
modulo exponentiation in Shor’s algorithm) play a signif-
icant role. Motivated by the mapping capability sketched
above, an established design of such components for quan-
tum circuits is conducted in two steps:

• First, the desired function is realized in terms of a
reversible circuit making use of existing synthesis ap-
proaches (e.g. [7, 8, 9, 10, 11]) and,

• afterwards, the resulting circuit is mapped into a
quantum circuit using techniques shown above.



TABLE I
Quantum costs for different Toffoli gate configurations

(a) According to [12, 13]
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0 1 2 3
0 1
1 1
2 5
3 14
4 29 26
5 61 52 38
6 125 80 50
7 253 100 62

(b) Current state-of-the-art [14]
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7 64 56
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Fig. 4. Exploiting multiple targets

III. General Idea

Mapping reversible circuits to quantum circuits has
mainly been considered in a local manner, i.e. single Toffoli
gates only have been mapped to corresponding quantum
gate cascades as reviewed in Section II.C. Exceptions are
e.g. the work in [17] where the mapping of pairs of Tof-
foli gates are considered. However, considering arbitrary
sequences of Toffoli gates in order to determine more effi-
cient mappings to quantum gate cascades is a non-trivial
task and computationally expensive due to the high num-
ber of combinations.

On the other side, synthesis methods for reversible cir-
cuits often lead to realizations with a certain structure
which can be exploited. In fact, it can be observed that
many reversible circuits are composed of cascades of Tof-
foli gates which differ only in the position of their respec-
tive target lines, but have an equal set of control lines.
This can be exploited as the following example illustrates.

Example 4 Consider the reversible circuit composed of
two Toffoli gates as shown in Fig. 4(a). Mapping this cir-
cuit to a quantum circuit according to the procedure out-
lined in Section II.C leads to a cascade of ten quantum
gates as shown in Fig. 4(b). However, due to the fact that
both Toffoli gates have the same set of control lines, the
resulting quantum gate cascade includes redundancies. In
fact, gates checking for the values of the control lines are
added twice. In contrast, Fig. 4(c) shows a more efficient
realization which checks for the values of the control lines
only once. This enables a realization with only eight gates.

In this work, we present an approach which exploits those
structures. We are introducing an extension of the com-
monly applied Toffoli gate which allows multiple target
lines in a single gate. As the experiments in Section VI
confirm, this leads to significantly cheaper quantum cas-
cades and, hence, significantly reduces the cost of the re-
sulting quantum circuits.

...

(a) Toffoli gate

V
. . .

V

V †

. . .

V †

V
. . .

V

(b) Quantum gate cascade

Fig. 5. Mapping Toffoli gate with multiple targets

IV. Reversible Gates
with Multiple Target Lines

Motivated by the general idea outlined above, this sec-
tion introduces Toffoli gates with multiple target lines and
shows how such gates can be mapped to smaller quantum
gate cascades. In order to exploit the outlined idea, the
definition of Toffoli gates as provided in Section II is ex-
tended as follows:

Definition 3 A Toffoli gate with multiple target
lines g(C, T ) over the inputs X = {x1, . . . , xn} consists of
a (possibly empty) set of control lines C ⊂ X and a non-
empty set of target lines T ⊆ X \ C. The Toffoli gate
inverts the value on all target lines if all values on the
control lines are set to 1 or if C = ∅. All remaining val-
ues are passed through unaltered.

Toffoli gates with multiple target lines enable an eas-
ier and more efficient mapping to quantum gate cas-
cades. For this purpose, the existing mapping methods
for Toffoli gates with single target lines can be exploited.
More precisely, a Toffoli gate g(C, T ) with multiple tar-
get lines T = {t1, t2, . . . , tk} can be mapped to a quantum
gate cascade as follows:

1. Consider a Toffoli gate g(C, t) with a single target
line t ∈ T .

2. Map g(C, t) to a functionally equivalent quantum gate
cascade using any of the existing methods introduced
in the past.

3. Traverse the resulting quantum circuit. Substitute
any quantum gate q(C, t) with target line t with a cas-
cade of quantum gates q(C, t1), q(C, t2), . . . , q(C, tk).

Example 5 Consider the Toffoli gate with multiple tar-
get lines as shown in Fig. 5(a). Applying the proposed
scheme, a functionally equivalent quantum gate cascade
as shown in Fig. 5(b) results.

Exploiting Toffoli gates with multiple target lines can sig-
nificantly reduce the resulting quantum circuit costs for
Toffoli gate cascades that differ only in their target lines,
but not in their control lines. As an example, Toffoli gates
with two control lines and k target lines can be mapped to
a quantum circuit composed of 2 + 3k gates only – using
the established mapping from Fig. 3(a) considering single
target lines, the quantum circuit would be composed of 5k
gates. Analogously, the size of the quantum gate cascade
scale with increasing number of control lines.

While this already represents a substantial decrease in
the size of the resulting quantum circuits, further alterna-
tives are possible. As another example, a Toffoli gate with
multiple target lines g(C, T ) with T = {t1, t2, . . . , tk} can
be mapped to a quantum gate cascade as follows:

1. Consider a Toffoli gate g(C, t) with a single target
line t ∈ T .

2. Map g(C, t) to a functionally equivalent quantum gate
cascade using any of the existing methods introduced
in the past.
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Fig. 6. Improved mapping of Toffoli gate with multiple targets

TABLE II
Quantum costs for Toffoli gates with multiple target lines

(a) Current state-of-the-art [14]

Target lines

C
o
n
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o
l

li
n

es

1 2 3 4
0 1 2 3 4
1 1 2 3 4
2 5 10 15 20
3 14 28 42 56
4 20 40 60 80
5 32 64 96 128
6 44 88 132 176
7 64 128 192 256

(b) Proposed solution

Target lines

C
o
n
tr

o
l

li
n

es

1 2 3 4
0 1 2 3 4
1 1 2 3 4
2 5 7 9 11
3 14 16 18 20
4 20 22 24 26
5 32 34 36 38
6 44 46 48 50
7 64 66 68 70

3. For each remaining target line t′ ∈ T \ {t}, add a
CNOT gate q({t}, t′) before and after the quantum
gate cascade generated in Step 2.

Example 6 Consider the Toffoli gate with multiple tar-
get lines as shown in Fig. 6(a). Applying the proposed
scheme, a functionally equivalent quantum gate cascade
as shown in Fig. 6(b) results.

Note that the proposed mapping scheme is not recom-
mended for Toffoli gates g(C, T ) with |C| ≤ 1, i.e. gates
with no or only a single control line. As reviewed in
Section B, gates g(C, t) with C being empty or being
equal to {c} with c ∈ X are already treated as quan-
tum gates. Hence, multiple target versions of such gates
can simply be realized by a cascade of NOT/CNOT
gates q(C, t1), . . . , q(C, tk) with {t1, . . . , tk} = T .

Using this improved mapping, the size of the resulting
quantum gate cascades can further be reduced from 2+3k
to 3 + 2k for a Toffoli gate with two control lines and
k target lines (again, the current state-of-the-art leads to
quantum gate cascades of size 5k). In the following, only
this improved mapping scheme is considered.

The decrease in the costs compared to the current
state-of-the-art mapping scheme becomes more substan-
tial when the number of control lines increases. To illus-
trate this, Table II shows the resulting costs for a selection
of Toffoli gates with multiple target lines2. Table II(a)
provides the costs that result when applying the current
state-of-the-art, while Table II(b) provides the costs that
result when the proposed method is used. How these
promising observations can be exploited in actual circuit
realizations is presented in the next section.

V. Application

Toffoli gates with multiple target lines enable more ef-
ficient mappings to quantum circuits. However, so far
only Toffoli gates with single target lines are supported
by existing circuits and synthesis methods. This section
first shows how existing circuits can be re-synthesized to
exploit the proposed concept. Afterwards, a possible ex-
ploitation of multiple target lines in an existing synthesis
method, namely the ESOP-based synthesis approach pre-
sented in [9], is illustrated.

2For reasons of clarity, the best number of ancillary lines is as-
sumed here.

(a) Reversible circuit (b) Step (c) Optimized circuit

Fig. 7. Exploitation in existing circuits

A. Exploitation in Existing Circuits
One obvious application of the proposed concept in

existing circuits is to simply merge Toffoli gates that
share the same set of control lines. For example, Tof-
foli gates with single target lines g(C, t1) and g(C, t2)
can be substituted by one Toffoli gate with multiple tar-
get lines g(C, {t1, t2}). Afterwards, redundancies can
be removed. For example, a cascade of two Toffoli
gates g(C, {t1, t2}) and g(C, {t1}) can be simplified to a
single Toffoli gate g(C, {t2}). This can be generalized as
follows:

Definition 4 (Merging Rule) A cascade of two Tof-
foli gates with the same set of control lines g(C, T1)
and g(C, T2) can be merged to a single Toffoli gate
g(C, T14T2) with T14T2 := (T1 ∪T2) \ (T1 ∩T2) being the
symmetric difference. Note that, if T1 = T2, both gates
are simply removed as they represent the identity.

Besides that, the moving rule of reversible circuits can
be applied after adjusting it to the new definition. That
is:

Definition 5 (Moving Rule) Two adjacent gates
g(C1, T1) and g(C2, T2) can be interchanged if C1∩T2 = ∅
and C2 ∩ T1 = ∅, i.e. of none of the target lines of one
gate is a control line of the other gate.

Moving gates through the circuits enables further pos-
sibilities for the application of the merging rule and, thus,
leads to further reductions. The following example illus-
trates the benefits.

Example 7 Consider the circuit shown in Fig. 7(a).
Moving the inner gates to the outside using the moving
rule leads to a circuit as shown in Fig. 7(b). This enables
to merge both Toffoli gates using the merging rule even-
tually leading to a circuit as shown in Fig. 7(c). Given
that, the corresponding quantum circuit costs are reduced
from 12 to 9.

B. Exploitation in ESOP-based Synthesis

The proposed concept of multiple targets can also be ap-
plied in existing synthesis methods for reversible circuits.
This is demonstrated in the following by means of the
ESOP-based synthesis approach presented in [10]3. For
this purpose, the general idea of this approach is briefly
reviewed first before the application of multiple target Tof-
foli gates is discussed in more detail.

ESOP-based synthesis generates a reversible circuit
from a Boolean function provided as Exclusive Sum of
Products (ESOPs). ESOPs are two-level descriptions
of Boolean functions that are represented as the exclu-
sive disjunction (EXOR) of conjunctions of literals (called
products). A literal either is a propositional variable or
its negation. That is, an ESOP is the most general form
of two-level AND-EXOR expressions.

3Note that similar applications are possible in other approaches
e.g. the transformation-based approach presented in [18] or the exact
synthesis approach presented in [19].



x1 x2 x3 f1 f2 f3
1st 1 - 1 1 1 0
2nd 1 1 - 0 1 1
3rd 1 - 0 1 0 1
4th - 1 1 0 1 1
5th 1 - - 0 1 0
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Fig. 8. Exploitation in ESOP-based synthesis

Having an ESOP representing a function f : IBn → IBm,
the ESOP-based synthesis approach generates a circuit
with n + m lines, whereby the first n lines also work as
primary inputs. The last m circuit lines are initialized to
constant 0 and work as primary outputs. Having that,
Toffoli gates are selected such that the desired function is
realized. This selection exploits the fact that a single prod-
uct xi1 . . . xik of an ESOP description directly corresponds
to a Toffoli gate with control lines C = {xi1 , . . . , xik}.
In case of negative literals, NOT gates (i.e. Toffoli gates
with C = ∅) are applied accordingly. Based on these ideas,
a circuit realizing a function given as ESOP can be derived
as illustrated in the following example.

Example 8 Consider the function f to be synthesized as
depicted in Fig. 8(a)4. The first product x1x3 affects f1
and f2. Hence, two Toffoli gates which have target lines f1
and f2 and control lines C = {x1, x3} are added (see
Fig. 8(b)). The third product x1x3 includes a negative
literal. Thus, a NOT gate is needed at line x3 to generate
the appropriate value for the next mappings. Again, two
Toffoli gates are added and afterwards, a further NOT
gates is applied to restore the value of x3 (needed again
by the fourth product). This procedure is continued until
all products have been considered. The resulting circuit is
shown in Fig. 8(b).

Applying ESOP-based synthesis often leads to cascades
of Toffoli gates with the same set of control lines. In fact,
each time a product affects more than one output, Toffoli
gates with the same control lines are added. In the exam-
ple of Fig. 8, this is the case in all products except the last
one. In all these cases, a single Toffoli gate with multiple
target lines is sufficient.

Example 9 Consider again the function f to be synthe-
sized as depicted in Fig. 8(a). Using Toffoli gates with
multiple target lines, only a single Toffoli gate needs to be
added for each product. This leads to an optimized real-
ization as shown in Fig. 8(c). In this case, the costs of
the respective quantum gate cascades are reduced from 43
(cost of the previously obtained realization from Fig. 8(b))
to 31.

Note that the function to be synthesized in Fig. 8(a)
is rather small. With increasing number of inputs and,
therefore, an increasing size of the products, also the num-
ber of Toffoli gates suitable for multiple target lines in-
creases. As the experiments in the next section show, this
leads to substantial improvements in the resulting costs.

4The column on the left-hand side gives the respective products,
where a “1” on the ith position denotes a positive literal (i.e. xi)
and a “0” denotes a negative literal (i.e. xi), respectively. A “–”
denotes that the respective variable is not included in the product.
The right-hand side gives the respective primary output patterns.

TABLE III
Evaluations with existing circuits
Single Target Lines Mutliple Target Lines Impr (%)

Circuit n RevG QuaG RevG QuaG
apex4 202 28 5,376 209,448 1,695 69,846 -66.65
decod 217 21 80 1,458 26 510 -65.02
table3 264 28 1,012 75,605 369 26,903 -64.42
ex1010 230 20 2,611 143,396 1,184 61,646 -57.01
in2 236 29 405 22,248 193 10,794 -51.48
dc1 220 11 39 371 19 182 -50.94
inc 237 16 93 1,815 45 900 -50.41
in0 235 26 338 18,668 175 9,410 -49.59
misex3 242 28 1,752 111,827 880 56,627 -49.36
misex1 241 15 55 859 27 436 -49.24
cordic 218 25 2,533 249,116 1,130 126,816 -49.09
apla 203 22 80 3,096 39 1,620 -47.67
misex3c 243 28 1,721 107,888 877 56,456 -47.67
sao2 257 14 88 4,154 49 2,274 -46.80
cm42a 207 14 35 324 17 177 -45.37
dist 223 13 185 5,378 107 3,051 -43.57
f2 232 8 19 209 12 125 -40.19

VI. Experimental Evaluation
In order to confirm the benefits of multiple target

lines, the approaches and optimization techniques pre-
sented in Section V have been implemented in C++ on
top of RevKit [20] and evaluated using circuits from the
RevLib [21] benchmark library as well as the ESOP-based
synthesis approach [10]. As initial mapping method, the
state-of-the-art solution proposed in [14] has been applied.
All experiments have been conducted on an Intel Core i5-
2500 with 8GB of memory.

A. Evaluation with Existing Circuits
Existing circuits from the RevLib benchmark library do

not include Toffoli gates with multiple target lines. As a
result, the merging rule and the moving rule introduced
in Section V.A have been applied to generate reversible
circuits with multiple target lines so that their benefits
can be exploited. Afterwards, both the original circuits
with single target lines only and the newly generated ones
have been mapped to quantum circuits as proposed in
Section IV.

Overall, this leads to a reduction in the size of the re-
sulting quantum gate cascades by approx. 8% if all circuits
available in RevLib are considered. Note that this includes
many small circuits for which no improvement can be ob-
tained at all. In contrast, particularly for larger circuits
improvements of up to 66% are possible. Table III shows
the best improvements which have been observed during
our evaluation. The first columns give the name and the
number n of lines of the respective circuits. Afterwards,
the number of reversible gates (RevG) and the number
of the resulting quantum gates (QuaG) are reported for
the original RevLib circuits (considering single target lines
only) and the improved realizations (considering multiple
target lines). The total improvement is provided by the
last column.

B. Evaluation with ESOP-based Synthesis
In a second evaluation, we observed how existing syn-

thesis approaches can profit from multiple target lines.
For this purpose, we extended the ESOP-based synthe-
sis approach from [9] as described in Section V.B. After-
wards, circuits have been generated using both approaches
as well as functions from RevLib.



TABLE IV
Evaluation with ESOP-based Synthesis

Single Target Multiple Target Impr (%)
Circuit RevG QuaG RevG QuaG QuaG
seq 201 2243 245625 575 34827 -85.82
ex5p 154 748 25843 140 3817 -85.23
urf6 77 2911 274091 1347 41091 -85.01
bw 116 262 3852 33 795 -79.36
urf5 76 390 16133 210 5287 -67.23
spla 202 1163 96782 600 31781 -67.16
urf2 73 914 24695 401 8576 -65.27
urf1 72 1742 60139 869 22777 -62.13
hwb8 64 885 20973 410 7965 -62.02
urf3 75 3089 134853 1632 51273 -61.98
hwb7 15 382 7409 174 2939 -60.33
hwb9 65 1799 56621 868 22472 -60.31
hwb6 14 152 2000 74 875 -56.25
aj-e11 81 32 220 18 100 -54.55
decod24-enable 32 11 79 6 37 -53.16
4 49 7 34 234 20 129 -44.87
frg2 161 2322 190708 1496 107444 -43.66
4mod7 26 23 143 17 83 -41.96
5xp1 90 95 1180 65 748 -36.61
hwb4 12 24 144 16 93 -35.42
decod24 10 11 27 6 18 -33.33
apex5 104 782 46858 639 32075 -31.55
mod5adder 66 48 482 35 335 -30.50
cycle10 2 61 77 1662 64 1203 -27.62
3 17 6 13 45 8 33 -26.67
ham3 28 11 23 6 17 -26.09
fredkin 3 7 23 5 17 -26.09
plus127mod8192 78 53 985 44 745 -24.37
ex-1 82 10 26 6 20 -23.08
one-two-three 27 13 52 9 40 -23.08
plus63mod8192 80 52 1008 45 786 -22.02
0410184 85 396 8740 307 6910 -20.94
alu3 97 112 2195 90 1754 -20.09
mini-alu 84 12 95 11 77 -18.95
add6 92 264 5517 211 4665 -15.44
alu4 98 1227 42204 1139 35961 -14.79
rd53 68 27 225 23 195 -13.33
adr4 93 67 663 53 588 -11.31
alu2 96 190 3760 176 3367 -10.45
rd32 19 9 29 8 26 -10.34
rd73 69 84 869 70 806 -7.25
rd84 70 147 1964 135 1847 -5.96
plus63mod4096 79 50 654 43 624 -4.59
apex2 101 3618 567406 3499 552800 -2.57
4mod5 8 6 22 6 22 0.00
9symml 91 157 3442 157 3442 0.00
alu1 94 36 231 33 231 0.00
alu 9 9 43 9 43 0.00
mod5d1 16 15 31 13 31 0.00
mod5d2 17 20 36 14 36 0.00
sf 232 9 39 9 39 0.00

The results are summarized in Table IV. The first col-
umn gives the name of the function. Afterwards, the num-
ber of reversible gates (RevG) and the number of the re-
sulting quantum gates (QuaG) are reported for (1) the
circuits obtained by the original approach considering sin-
gle target lines only and (2) the circuits obtained by the
proposed approach additionally exploiting multiple target
lines. The last column lists the total improvement.

Also in this evaluation substantial improvements have
been observed. On average, the size of the resulting quan-
tum gate cascades can be decreased by 28% (even though
also here some circuits are included where no improvement
at all can be reported). In the best cases, reductions of
up to 85% are possible.

VII. Conclusions

In this work, we proposed the consideration of multiple
target lines in the synthesis of reversible circuits. We ob-
served that synthesis approaches often lead to reversible
circuits which are composed of cascades of Toffoli gates
with the same set of control lines. Motivated by this, we
introduced an improved mapping scheme which exploits
this structure when generating the corresponding quan-
tum gate cascades. Exploiting multiple target lines helps
to improve both, existing reversible circuits and existing
synthesis approaches. Improvements of up to 66% in the
first case and up to 85% in the latter case have been ob-
served.

As a result, this work builds a promising basis for a
further investigation in this direction. In particular, an
application to other gate types (e.g. Fredkin gates), to

gates including negative control lines, or nearly introduced
mapping schemes (e.g. the one introduced in [16]) is of
interest. Besides that, the consideration of multiple target
lines in other synthesis methods (e.g. the transformation-
based approach introduced in [18] or the exact synthesis
approach introduced in [19]) is left for future work.
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