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Abstract—The massive increase in computation power leads
to a renaissance of supervised learning techniques, which were
published decades ago but have so far been confined to theory.
These techniques form the increasingly important field of Ma-
chine Learning (ML), which contributes to a large variety of
research concerning industrial, automotive but also consumer
applications strongly influencing our daily life. Commonly, the
learning techniques require a set of labeled data, which involves a
resource-intensive generation, to conduct the training. Depending
on the dimensionality of the data and the required precision as
needed by the application, the amount of training data varies. In
case of insufficient training data, the prediction is of low-quality
or not even possible at all, restricting the applicability of ML.

This work proposes a combination of formal techniques and
ML to implement a framework that allows coping with high-
dimensional, training data while retaining a high prediction
quality. The efficacy of this method is exemplarily demonstrated
on the basis of an interdisciplinary material science research
problem concerning the development of new structural materials,
though it can be adapted to further applications.

I. INTRODUCTION

Machine Learning (ML) subsumes a wide range of techniques
– like deep neural networks or support vector machines –,
whose algorithmic foundations have mostly been laid decades
ago. However, due to the limited computation power at that
time, these approaches had been confined to theory. With the
increase in computation power of central processing units and
the availability of high-performance hardware accelerators, ML
takes center stage of recent research and industry again.
ML provides powerful mechanisms to classify objects - as

frequently performed in computer vision - or to approximate the
output value (prediction) of highly complex or even unknown
relations for given input data (patterns). In particular, ML
has shaped systems as used for advanced driver assistance
systems and, even more importantly, enabled the pioneering
work in the field autonomous driving [1], which simply cannot
be addressed by classical approaches.
The leading class of ML techniques follows a supervised

learning scheme, i.e., the algorithm has to be trained initially
prior to its invocation. This training requires (training) data,

which consists of patterns in conjunction with the corresponding
expected output value - acting as the label of the individual
pattern. The generation of these labels forms a resource-
intensive task since these labels have to be determined by
hand or by computing-intensive simulations and, hence, this
number is strictly limited.
Generally, large training data sets are required to achieve a

certain prediction quality, i.e., the predicted value deviates from
the exact value only within a certain range. This yields a con-
fidence interval, which is then considered during the system’s
design, for instance, by introducing a certain robustness [2].
In contrast to this, several applications exist, which could take
a strong advantage of ML, though these applications rarely
invoke ML since they require a high prediction quality that
cannot be achieved yet . Such a demanding application concerns
the Electronic Design Automation (EDA), which orchestrates
more and more ML techniques during the design flow. For
instance, ML is utilized to consider non-functional aspects
about the power-consumption [3], to pave the way for new
debugging methodology [4] or to reveal malefic components
like Hardware Trojans [5], which are all essential aspects for
the next generation of circuit design.
The restricted usage of ML for these new, demanding

applications is even more emphasized by steadily increasing
dimensionality of the patterns while the amount of training data
remains relatively the same. Consequently, it is not possible to
sustain the required training rate, which unavoidably leads to a
decrease in the prediction quality or makes it even impossible
to predict at all. As said, supervised ML is meant to be applied
whenever a large set of training data are available rather than
being faced with small data.

This work proposes a new approach, which combines ML with
formal techniques to improve the prediction quality and, more
importantly, enable the applicability of ML within small data
applications dealing with a large dimensional input space. The
proposed methodology yields a data processing flow, which
seamlessly integrates so-called formalized descriptions and
state-of-the-art ML techniques, which represent application-



specific knowledge [6] about the targeted domain. More
precisely, formal descriptions are formulated, which hold static
and volatile domain-specific information about the application.
Static information refers to, for instance, physical key facts. In
contrast to this static information, volatile information refers
to the kind of information that may be altered over time,
for instance, due to new insights of the application-domain.
Thus, considering the dynamic character of the latter type of
information is of high relevance when modeling these formal
descriptions and a mechanism is required to validate the volatile
information. The proposed methodology allows for the first
time to utilize ML techniques regardless of high dimensional
patterns and small training data.

This paper demonstrates the valuable contribution of the pro-
posed methodology on the basis of an interdisciplinary research
question of the highest relevance about the development of
new structural materials. However, the proposed techniques
can be easily adapted to other domains. In particular, this work
succeeds in implementing a Predictive Function considering
data from evolutionary (material) testing procedures to, finally,
predict resulting material properties without having the time-
consuming and cost-intensive experiments be conducted.

The structure of this paper is as follows: Section II describes
the background of the addressed application. Section III
describes the proposed methodology and defines the formal
descriptions. The implementation of the framework is briefly
given in Section IV. Section V demonstrates the framework’s
efficacy for exemplary test procedures and, finally, Section VI
concludes the paper.

II. BACKGROUND

¸ Recent advantages in the field of Computer-Aided De-
sign (CAD) allow designing integrated circuits of steadily
increasing complexity concerning the number of transistors
or processing cores. Analogously to the field of computer
engineering, the major progress of CAD techniques enables
to pursue completely new designs, which lead to novel
constructions and breakthroughs, for instance, in automotive or
aerospace applications. However, these new applications involve
complex (constructional) designs, which require, among others,
high-performance structural materials to tackle the arising
challenges concerning strength, weight or durability – forming
a requirement profile of desired material properties.
The properties of structural materials depend on the alloy

composition in conjunction with the thermal and mechanical
treatment [7]. Typically, a set of specific treatments is applied to
adjust and, more importantly, to improve the resulting properties
depending on the intended application of the material.
These treatments can be performed with a large number of

different parameter sets, like temperature gradients or the cold
forming forces. Due to the fact that it is neither possible to
model the underlying physics adequately nor to describe the
interdependence analytically, the development of new structural
material still follows a trial-and-error principle [8]–[10].
The generation and evaluation of new structural material is

a cost-intensive and time-consuming process. Consequently,

Fig. 1. Comparison between tensile test specimen and spherical micro samples
(of same mass) c©Jan Rathke

a strictly combinational search for new structural material
will not succeed with respect to the given constraints in the
sense of time and costs [11]. This is even more unlikely when
considering the large search-space of potential candidates as
spanned by the high numbers of parameters during the initial
generation and the subsequent treatments.
A high throughput approach for exploring new structural

materials has been proposed in [12] to address the shortcomings
of the trial-and-error principle. This approach invokes, among
others, supervised machine learning techniques and formal
methods. This combination should allow approximating the
material property of a given sample effectively without conduct-
ing the cost-intensive and time-consuming experiment itself.
However, the invocation of supervised learning techniques
requires a considerable amount of labeled data to be conducted
prior to the actual training. The generation of this training
data forms a cost-intensive task since the candidates (samples)
have to be generated and treated by using the most promising
parameter sets. Furthermore, the resulting sample has then to be
evaluated by applying specific (standardized) test procedures
like the tensile test to determine the label in the sense of
supervised learning.
In work [13], a shift from the macro-level to the micro-

level has been proposed to reduce the required resources
for determining the required training (and validation) data
significantly. At this micro-level, (micro) samples are provided
as spheres with diameter sizes of 0.6−1.2mm. In comparison,
a standardized testing specimen of a regular tensile test holds
a geometry of 12 times 2.5 cm [11]. From a mass perspective,
this conventional one – the macro sample – equals roughly
2,000 spherical micro-samples when considering a frequently
used commercial steel such as 100Cr6 (cf. Figure 1).

As the standardized testing procedures can not be performed
on these micro samples, completely new test procedures on



the micro-level have been developed leading to so-called
characteristic values [14].

Definition 1 (Characteristic Value). A characteristic value
is either a measured value from a testing procedure or a
determined value from a series of measured ones. Ideally, this
value is independent of the parameters of the experiment. If
this independence is not given, the parameters are kept fixed
to ensure comparability later on. Depending on whether the
value is obtained from testing a micro or macro sample, it is
called a micro characteristic value or a macro characteristic
value. Dµ describes the set of all micro characteristic values
and, analogously, the set of the macro characteristic values is
described by DM .

Definition 2 (Material Property). A material property is a
normed value computed from the results of a standardized
testing procedure. The set containing all material properties is
given by WE.

The determined characteristic values describe the structural
material’s behavior from a chemical, thermal or a mechanical
perspective. By following this idea of down-scaling the samples’
size, a Predictive Function has been introduced in [12], [15]
to significantly save resources. More precisely, this function
allows projecting characteristic values onto material properties
by orchestrating supervised machine learning techniques. By
this, it is possible to produce a large number of samples on
the micro-level, evaluate these samples by newly developed
methods, and compute the corresponding material properties,
which makes testing much more resource-efficient.

A. Predictive Function

The Predictive Function Ψ is the central predicting compo-
nent of the high throughput development approach. In particular,
the precision of the prediction of material properties and the
capability to cope with a small amount of training data are both
critical aspects since testing material properties is a resource
intensive task. Consequently, the training has to be conducted
on just a few well-chosen grid points.

When comparing characteristic values and material properties,
one may notice that these differ not only in size but also in
the testing procedure. This circumstance further impedes the
prediction since scaling effects are implicitly given but not
modeled. For this reason, a two-stage measurement principle
has been proposed in [13], which separates between the
micro- and macro-level measurement to exclude such scaling
effects during the final prediction of the material properties.
Figure 3 reflects the obtained relationships of this two stage
measurement.
This middle layer allows for the definition of two functions

whose composition yields the Predictive Function:

Definition 3. The Scaling Function is defined as Θ :
Dµ → DM and maps Dµ to DM . Analogously, the Transfer
Function is defined as Λ : DM → WE and maps DM to
WE. Consequently, the Predictive Function Ψ: Dµ →WE
then fulfills Ψ = Λ ◦Θ.

The mentioned grid points are necessary to conduct the
training of both the Scaling Function Θ and the Transfer
Function Λ. Consequently, the Predictive Function Ψ requires
a full set of training data (of all three layers) for each and every
input dimension given by the characteristic values. Hereby, it
can be ensured that all inter- as well as intradependencies are
properly reflected.
Furthermore, a comprehensive search algorithm is required

to close the loop of the development process of new structural
materials, which is discussed next.

B. Search Algorithm

The Search Algorithm allows identifying the alloy com-
positions and subsequent treatments, which yield promising
characteristic values being measured on the micro-level. Here,
promising refers to the circumstance that the predictive function
approximates material properties for measured characteristic
values which should be as close as possible to a given
requirement profile (of material properties) [12]. The efficacy
of this search algorithm highly depends on the precision of the
predictive function. Typically, the requirement profile acts as a
starting point for this search.

Definition 4. A requirement profile is defined as a vector dp ∈
WE containing the desired value for each material property.
Besides this, it may contain a tolerance vector tv ∈ Rdim(WE)

stating the length of a tolerable error margin1.

The search algorithm identifies one or multiple of these vectors
of characteristic values, i.e., x ∈ Dµ, which, in turn, map to
the given profile dp (given the error margin) when applying
Ψ. This search is conducted by a multi-objective optimization
approach, which follows state-of-the-art techniques like [16].
A high throughput approach is presented in [13], which

seamlessly aggregates the recently presented techniques. The
resulting data and information flow is presented in Figure 2.
However, in the light of material expense, grid points can
not be produced in a quantity that enables regular supervised
learning techniques typically expected Big Data instead of
Small Data. For this reason, new measures have to be developed
and seamlessly integrated into the high throughput approach,
which allow a prediction of high quality even if the amount
of data – with respect to the number of input dimensions – is
strictly limited.
This paper proposes a framework, which allows to utilize

ML techniques by taking advantage of application-specific
knowledge in terms of formal descriptions effectively even
if high dimensional patterns and relatively small amount of
training data are faced.

III. PROPOSED METHODOLOGY

As introduced in Section II, the Predictive Function acts
as a central component of the high throughput approach [12].
In this context, a first data processing framework has been
proposed in [15], which allows the prediction of two material

1Here, it is assumed that the error margin is always centralized.
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Fig. 2. Information flow of the high throughput approach [13]

Fig. 3. Relationship between different levels: Shown for the exemplary testing
procedure nano indentation. From Dµ to DM only the size changes but not
the testing procedure. From DM to WE the testing procedure changes but
the size level remains comparable.

properties by considering different characteristic values of both
the micro- and macro-size of a single test procedure at once.
Similar machine-learning techniques are utilized as done

in [15] to build the basis of the proposed framework. However,
one major extension concerns the seamless integration of formal
descriptions. More precisely, the intended framework faces
multiple challenges, which all have to be thoroughly addressed
to succeed. These challenges are as follows:

1) A high number of dimensions of the input and the output
space exists.

2) An online learning capability is required since new data
are continuously generated by conducting experiments.

3) It is not ensured that all input dimensions are valued for
each and every of the grid points.

4) A non-linear relation between input and output space
exists.

5) Only a small number of data is available (in relation to
the high number of dimensions).

The three aspects 1)-3) are addressed by using a kernel-
based regression, as stated in [15]. However, the remaining two
aspects 4)-5) are not satisfactorily solved yet. As a consequence,
the efficacy of the high throughput approach [12], [13] is still
limited and, by this, the full potential of exploring new struc-
tural material is not yet exploited. The proposed methodology
of this paper closes the gap between high dimensional input
space and the prediction. By this, a fundamental contribution
to the overall flow is added.

A. Kernel Regression-based Learning

A kernel function provides a powerful learning mechanism,
which has been frequently used for classification as well as for
regression tasks. The main idea behind such a kernel is the fact
that a higher dimension might lead to a linear separability (when
used for classification) or a linear dependency (when used for
regression). A kernel is function κ : X × X → R, if there
is a Hilbert space H such that a transformation f : X → H
exists and κ(x, y) = 〈f(x), f(y)〉 holds [17]. H is often called
feature space. It is generally unfeasible to compute either
this space or the inner product explicitly since H often has
a very high dimension. To tackle this, it is taken advantage
of the so-called kernel-trick, i.e., making use of the equation
κ(x, y) = 〈f(x), f(y)〉. By this, it is not required to compute
the Hilbert-Space H. The computation κ(x, y) yields the same
result as long as all computations in H are expressed in terms
of the inner product 〈·, ·〉 and, hence, no transformation to H
has to be conducted.

Different kernel types exist such as Gaussian kernels, sigmoid
kernels, polynomial kernels and radial basis kernels. According
to Mercer’s theorem [18], as long as H does have an inner
product, i.e., is a Hilbert space, the existence of f : X →
H is given. For the actual regression a Nadaraya-Watson-
Estimator is generally invoked, where a kernel-density estimator
is employed to estimate the regression function. The support
of online (recursive) learning is essential since the underlying
learning procedure is still computationally expensive and, hence,
it is not feasible to re-train from scratch. For this reason, the
proposed framework orchestrates the Kernel Recursive Least
Squares (KRLS) algorithm as proposed in [19]. This KRLS
algorithm [19] uses a least squares technique to estimate the
regression. The required online learning capability is given by
construction since the algorithm is defined recursively. Besides
this, the KRLS technique invokes a kernel-estimator within the
RLS-core to support even non-linear regressions. According to
the situation at hand, any kernel function can be used, which



Fig. 4. Adjacency matrix represented as gene graph

satisfies Mercer’s theorem.
Three out of five challenges are addressed by embedding a

KLRS technique in the proposed framework. This is since a
non-linear online learning algorithm is provided as required by
challenges 2 and 4. Furthermore, the use of kernel-functions
allows to explore a higher dimensional space and, hence, does
not restrict to the ones as chosen initially (cf. challenge 3).
Besides this, kernel functions are an effective way to cope with
a high number of dimensions (challenge 1).

The remainder of this section focuses on the difficulties, which
arise from the combination of challenges 1) and 5), i.e., the
high dimensionality and the fact that only a small amount of
training data is available.

B. Formal descriptions

The combination of the high dimensionality and the small
amount of training data is a challenging one for every prediction
framework. This work addresses both challenges by introducing
formal descriptions of information – that is known or derived
from the data – to guide the prediction process.
Two types of information are considered as follows:
1) Physically-based information: This information stores

restrictions on characteristic values (on the micro- and
macro-level) and material properties that stem from certain
physical facts. As a simple example, a length can not
be negative, which halves the search space and, more
importantly, the prediction space for one dimension.

2) Experience-based information: This information is gath-
ered from the material scientists, which has been gained
through experiments or has been published in the literature.
This information is rather used for identifying main
correlations between features than used for restriction of
the prediction space. However, it can be used for preferred
training of kernel functions.

The proposed methodology focuses on the second type of
information. The desired experience-based information (experts’
knowledge) is represented by four different types of adjacency
matrices. These matrices encode whether an expert considers
that a relation exists between two dimensions.

Definition 5. An adjacency matrix is a symmetric ma-
trix AI,O = (aij)i∈{1,..,dimI},j∈{1,...,dimO}, where aij ∈
{0, 0.5, 1} ∪ {−1} = V ∪ F . V can be expanded to allow
for more detailed input of the relation’s degree if necessary.

aij reflects the experts’ knowledge about the assumed relations
between the i-th component of I and the j-th component of
O. If the expert assumes
• no relation at all: aij = 0
• some relation, but unsure about degree: aij = 0.5
• definite relation: aij = 1
• has no insight: aij = −1

F = {−1} is included as a flag. Furthermore, as the expert’s
knowledge about possible relations advances due to a higher
number of conducted experiments, the step size for V might
be adapted to enable a more precise specification. For example,
V might be expanded to V = {0, 0.25, 0.5, 0.75, 1.0}.

Such matrices have been created for the Scaling Function as
well as for the Transfer Function and, furthermore, for two
different levels of abstraction. At first, the level of testing
procedures is considered, describing whether one testing
procedure’s results are related to the result’s of another one.
Secondly, the level of characteristic values is considered. This
yields the four different matrices as follows:
• ATP (Θ): Matrix for scaling function Θ, high abstraction

level.
• ACV (Θ): Matrix for scaling function Θ, fine granularity.
• ATP (Λ): Matrix for transfer function Λ, high abstraction

level.
• ACV (Λ): Matrix for transfer function Λ, fine granularity.

A visualization has been done with a gene graph and is shown
in Figure 4 on page 5 for the high abstraction level.
This work utilizes the encoded relations for determining

suitable input features to train the specific kernel function such
that the likelihood, that the output features are appropriately
reflected, is maximized.

Figure 4 states how to predict the characteristic value D01.1
on the macro-level (first icon from the top in the middle layer).
In particular, it is proposed to train the Scaling Function with
the three highly related testing procedures on the micro-level
(first, third and fourth icons from the top in the left layer).
This drastically reduces the dimensionality such that the kernel-
based technique, as explained above, is able to cope with the
small amount of training data.
It is important to update the adjacency matrix regularly. On

the one hand, experts might have obtained new results that lead
to a different perception of relations and, on the other hand,
the learning process could have yielded results that neglect
a once assumed relation at all or reveals a weaker one than
initially assumed.



Furthermore, the proposed framework implements a hypoth-
esis system, which allows experts from material science to
validate their potential relations against the current data basis. A
domain-specific language has been developed to provide an easy
but powerful mechanism to formulate such a hypothesis. If the
hypothesis does not hold during the data-driven validation, the
hypotheses system returns a list of counterexamples, i.e., data
points including metadata like the corresponding test procedure,
which yields this specific value. If no counterexample has been
determined by the system, the hypothesis holds with respect to
the obtained data. This mechanism significantly contributes to
the increase in the expert’s confidence when adjusting assumed
relations within the postulated adjacency matrices.

IV. IMPLEMENTATION

This section briefly describes the overall implementation of
the proposed framework combining formal descriptions with
state-of-the-art ML techniques.
The developed framework has solely been written in C++

and the dlib [20] library is used as the back-end for the ML.
A document-oriented MongoDB Enterprise server instance
realizes the central database for the high-throughput approach.
This class of databases holds several advantages when dealing
with heterogeneous data of high volume [21]. A data exchange
component implements a connector to this central database,
which allows seamless access while applying required post-
processing operations, e.g., filtering, trimming, or normalizing,
to ensure that the data is compatible with the ML back-end.
The connected database stores the information of every

conducted experiment on the micro- and macro-level in a
strictly sample-oriented fashion. The information includes
meta-information about the experiments like environmental
conditions, the experimental data (characteristic values), the
measured raw data, and the material properties in the case
of infrequently performed standardized material tests. Further
information about the generation and the mechanical/thermal
treatment is stored in the database as well, which is required
to identify the corresponding data sets - considering the
relationships as stated in Figure 3 - for the grid points.
The database scheme is extended to store the formal de-

scriptions in terms of the proposed adjacency matrices (cf.
Definition 5). Four different matrices are utilized to store these
descriptions, as stated in the previous section. To reflect the
evolution of these knowledge base, i.e., the adjustments of the
matrices due to new insight to the domain, the matrices are
extended by a version control system on the document-oriented
database level.
The framework invokes a KLRS algorithm [19] as core2 of

the prediction engine. A pool of different kernel functions is
supported by the framework, for instance, linear, radial-basis,
and sigmoid kernel functions.
For the later evaluation, the prediction core orchestrates a

KRLS technique invoking a sigmoid kernel function. This

2Note that this core can be replaced by any arbitrary algorithm, however,
depending on the current data pool, this technique seems to be well suitable.
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function is defined as the hyperbolic tangent of the dot product
in the original representation and has shown to approximate
even complex, non-linear relationships. For instance, this
function is frequently used as the activation function of
neural networks [22]. This sigmoid kernel function κ for
a pair of values (x1, x2) of the matrix M is defined as
κ(x1, x2) = tanh(γ ∗M1:n(x1)•M1:n(x2) + b). Consequently,
the two parameters γ and b have to be adjusted to the data.
These parameters are determined iteratively and set as follows:
γ = 1

1000 and b = − 1
4 . Besides this, the precision is set to 1

100 ,
which reflects the available data basis.

The general flow of the framework is as follows:
1) The framework receives a prediction request for a set of

characteristic values, which should yield the (predicted)
macro-material properties.

2) If no suitable kernel-function has been trained yet, a new
kernel is built and trained as follows:
a) A control unit processes user-defined settings like the

alloy and the formal descriptions, i.e., the specific
adjacency matrices, to determine the required type
of data.

b) The derived data types are used to configure the
post-processor of the database connector to gather the
corresponding (and available) grid points.

c) A new kernel function is generated and trained with
a default parameter set by considering the grid points.
However, at least one grid point is excluded from the
training data since one grid point is used to perform
the validation.

d) The last step is repeated iteratively while adjusting the
parameter set of the kernel function or even altering
the type of function completely.

e) The most beneficial kernel function is stored in a
serialized fashion to be loaded in the case of a
prediction request.



3) The prediction core loads the specific kernel functions
and invokes them on the given data.

4) Finally, the predicted macro-material properties are re-
turned.

Figure 5 presents the individual kernel functions as yielded
by the proposed framework to realize the Transfer Function.
Depending on the used threshold (TRSH) value, up to 15 kernel
functions are generated by using the currently available database
for the 100Cr6 alloy. This threshold determines the required
level of certainty in the sense of the introduced adjacency
matrices. Consequently, more data sets are considered if a
lower threshold is assumed. Note that a single kernel function
considers multiple input dimensions (characteristic values) at
once, as shown by the histogram in Figure 5, and, more
importantly, predicts multiple material properties.

V. EVALUATION

This section describes the experimental evaluation of the pro-
posed methodology. At first, the standard approach is evaluated
invoking solely kernel regressions without experts’ knowledge.
Second, the formalized experts’ knowledge is combined with
the prediction core following the proposed scheme of Section
III. The mean absolute error of the prediction accuracy after
a five-fold cross-validation [23], [24] is determined since the
data is not uniformly distributed and, hence, a bias in the
error estimation is prevented. Finally, the rate of impossible
predictions, i.e., kernel functions returning NaN, is given.

The training data consists of grid points, i.e., fully classified
structural materials including roughly 6,500 data points. The
resulting dimensions are presented in Table I. Due to this
high testing effort for the full classification and, particularly,
intensive resource demand for the macro-level experiments,
not more than five grid points were obtained.
The evaluation focuses on the Transfer Function, which

projects the new test procedures (conducted on macro material)
onto the standardized material testing procedures, since this
function is even more interesting from a material scientific
point of view.
All experiments were executed on an AMD Ryzen 7 3700X

8-core CPU running at 4.2 GHz with 32 GB DDR4 system
memory. The framework has been compiled by GCC v9.3.1
(including dlib v19.2) on a Fedora 31 operation system. A
MongoDB Enterprise v3.6.17 runs as the central database
server.

A. Evaluation Metric and Results

Let T = {1, 2, 3, 4, 5} be the set representing the available
data. A number i ∈ T is chosen and the remaining data is
used to train the Transfer Function denoted by ΛTi

. The
absolute error is determined by comparing the predicted values
(ΛTi

(cvmacroi )) - where cvmacroi denotes the characteristic
values on macro level of grid point i - to the actually measured
values mpi.

absErrTi = |ΛTi (cvmacroi )−mpi|

TABLE I
DIMENSIONS (NOT NECESSARILY INDEPENDENT OF EACH OTHER) BEING

CONSIDERED DURING TRAINING OF PREDICTIVE FUNCTION ψ.

level # dimensions # data points (avg.)
char. values (micro) 205 25
char. values (macro) 134 10
material properties 30 10

absErr is a vector containing the absolute errors for every
prediction dimension of the output space, i.e., all 15 kernel
functions are considered, as presented in Figure 5. The
calculation of an overall relative error is required since the
range of measured values highly varies. To that end, every
component of absErr is divided by the corresponding value
of mpi. This procedure can now be repeated for every i ∈ T
and the results are averaged.

predError =
1

5

5∑
i=1

overErrTi

The overall run-time of every run is 46.53s in average ±0.9s.
This run-time includes the data post-processing, the filtering
as well as the training of the KRLS technique. When invoking
the prediction framework without the formal descriptions, the
NaN rate equals 100%. The NaN rate can be reduced by
86.7% to 13.3% when utilizing the formal descriptions in the
considered scenario, as proposed by this work. Following the
evaluation metric above, the predError equals 22.13% and
can be decreased to ≈ 17% when excluding the outliers (N=1)
from the prediction.

VI. CONCLUSION

This paper proposed a combination of formal and supervised
ML techniques, which yielded the Predictive Function. This
function succeeded with the prediction even when only small
data had been available for the initial training. More precisely,
this work considered two types of information - static as well
as volatile information - for deriving formal descriptions, which
were modeled in terms of adjacency matrices. Furthermore, a
suitable hypothesis system was implemented, which allowed to
validate the inserted volatile information. The feasibility of this
approach has been proven on the basis of an interdisciplinary
material science research problem about the development of
new structural materials. Hereby, it was possible for the first
time to predict the majority of resulting material properties
with sufficient accuracy by processing experimental data, which
were conducted by new evolutionary testing procedures without
invoking the time- and cost-intensive standardized material
tests.
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