
Formal Specification Level:
Towards Verification-driven Design

Based on Natural Language Processing
Rolf Drechsler∗† Mathias Soeken∗† Robert Wille∗

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{drechsle,msoeken,rwille}@informatik.uni-bremen.de

Abstract—The steadily increasing complexity of the design of
embedded systems led to the development of both an elaborated
design flow that includes various abstraction levels and corre-
sponding methods for synthesis and verification. However, until
today the initial system specification is provided in natural lan-
guage which is manually translated into a formal implementation
e.g. at the Electronic System Level (ESL) by means of SystemC
in a time-consuming and error-prone process.

In this paper, we envision a design flow which incorporates
a Formal Specification Level (FSL) thereby bridging the gap
between the informal textbook specification and the formal ESL
implementation. Modeling languages such as UML or SysML
are envisaged for this purpose. Recent accomplishments towards
this envisioned design flow, namely the automatic derivation of
formal models from natural language descriptions, verification
of formal models in the absence of an implementation, and code
generation techniques, are briefly reviewed.

I. INTRODUCTION

Being composed of up to several billion components, the
design of embedded systems is one of the most complex
problems people are facing today. While it was possible to
fully design such systems gate by gate on the drawing table
40 years ago, this procedure has become intractable due to
the ever increasing complexity. As a consequence, elaborated
design flows have been developed over the last decades in
which several levels of abstraction are considered.

Today, a design flow as briefly illustrated in Fig. 1(a) is
applied. The initial starting point is given by means of a
specification which is usually provided in terms of a text book
description, however, in order to perform even the simplest
automatic synthesis techniques, a formal representation of the
specification is required. For this purpose, an initial imple-
mentation is generated at the Electronic System Level (ESL)
using high-level programming languages such as SystemC.
This system level description enables the execution and simu-
lation of the desired design, but still hides details concerning
a precise realization in both hardware and software. From
this description, the system model is consecutively refined
in successive steps leading to descriptions at the Register
Transfer Level (RTL), the gate level, and the physical level.
At the end of this process, the resulting chip is sent to a chip
manufacturer.

As embedded systems are often employed in safety critical
systems such as avionic, automotive, and medical applications,
ensuring the correctness is of high importance. For this pur-
pose, usually each transformation from one abstraction level
to the next refinement is checked for equivalence. But due to
the absence of a formal description at the specification level,
automatic verification techniques are not applicable for the
comparison with the system level. Further, as the system level
representation is manually derived from the textual specifica-
tion, this step is particularly prone to errors and mistakes.

So far property checking is applied to address this is-
sue by extracting properties from the specification in terms
of temporal logic expressions which can subsequently be
checked by using algorithms known model checkers [1].
Further techniques called coverage detection exist that can
automatically determine whether enough properties have been
written, i.e. whether the full behavior is considered by all
properties [2]. However, the main obstacle remains, i.e. the
specification is provided in natural language and a formal
representation needs to be manually derived from it for further
processing. Motivated by this, researchers started working on
closing the gap between the informal textbook specifications
and the respective ESL implementation [3], [4].

In this work, we envision a new design flow which exploits
recent achievements in this area. For this purpose, we propose
two major extensions.

First, we follow the steady strive for higher levels of
abstraction and enrich the specification itself by formal de-
scription means. Modeling languages such as the Unified
Modeling Language (UML) [5] or the System Modeling Lan-
guage (SysML) [6] combined with constraints provided in
the Object Constraint Language (OCL) [7] provide proper
syntax and semantic for this purpose.1 While these description
means remain abstract enough for the specification level, their
formal description enables (semi-)automatic verification and
code construction. As a result, crucial design flaws can already
be detected at the specification level and thus in the absence
of a precise implementation.

Second, initial solutions are applied to automatically derive
the respective UML/OCL descriptions from the natural lan-
guage specification. Recent achievements in the area of nat-
ural language processing [8], information extraction [9], and
knowledge representation [10] are exploited for this purpose.
In fact, already simple grammatical analyses enable e.g. the
derivation of (1) basic components of a system (which can be
derived from nouns in a sentence), (2) their functions (which
can be derived from verbs in a sentence), and (3) attributes
(which can be derived from adjectives in a sentence).

Having such methods, we envision a design flow which
includes a Formal Specification Level (FSL) as shown in
Fig. 1(b). This flow enables to (semi-)automatically derive for-
mal descriptions from a given specification provided in natural
language. Formal methods are applied to this description to
verify the correctness of the design prior to an implementation.
If all checks passed, code skeletons for synthesis and formal
properties for verification are extracted for further usage within
the remaining stages of the established design flow.

1In the following, we focus on UML/OCL, while the general concepts are
similarly applicable to other modeling languages as well.

Specification
(Text Book)

ES Level
(e.g. SystemC)

RT Level
(e.g. VHDL, Verilog)

Manual
Transformation

(Semi-)automatic
Transformation

Property
Checking

Equivalence
Checking

. . .

(a) Conventional design flow

Specification
(Text Book)

FS Level
(e.g. UML, SysML)

ES Level
(e.g. SystemC)

RT Level
(e.g. VHDL, Verilog)

Interactive
Transformation

(Semi-)automatic
Transformation

(Semi-)automatic
Transformation

Equivalence
Checking

Equivalence
Checking

Specification
Checking

. . .

(b) Envisioned design flow

Fig. 1. Conventional and envisioned design flow

In the remainder of this paper, the general ideas and first
accomplishments towards this envisioned design flow are pre-
sented. The following section briefly introduces the necessary
background to keep the paper self-contained. Afterwards,
Section III outlines the proposed extension to the overall
design flow in detail. The respective steps for mapping a
natural language specification to a formal model, checking the
correctness of that formal model, and transforming the formal
model into an implementation are then outlined in Section IV,
Section V, and Section VI, respectively. Finally, remaining
challenges to be addressed are discussed and the paper is
concluded in Section VII.

II. BACKGROUND

In this work, the Unified Modeling Language (UML) is
applied to represent the code skeletons and test cases which
are semi-automatically derived from natural language. Besides
that, we also exploit language processing tools. To keep the
paper self-contained, the underlying concepts of UML and the
applied tools are briefly reviewed in the following.

A. Unified Modeling Language
In this section, we briefly review the basic UML concepts

which are considered in this work. A detailed overview of the
UML is provided in [5].

1) Class Diagrams: A UML class diagram is used to
represent the structure of a system. The main component of
a class diagram is a class that describes an atomic entity of
the model. A class itself consists of attributes and operations.
Attributes describe the information which is stored in the class
(e.g. member variables). Operations define possible actions
that can be executed e.g. in order to modify the values of
attributes. Classes can be set into relation via associations.
The type of a relation is expressed by multiplicities that are
added to each association-end. Class diagrams can be extended
by constraints in the Object Constraint Language (OCL) such
as invariants that further restrict the attribute values.

Example 1: Fig. 2(a) shows a UML class diagram specify-
ing a simple telephone. The class diagram consists of the two
classes Telephone and Receiver. The class Telephone has an
attribute wireless of type Boolean. The receiver is related to the

Telephone

wireless: Boolean
batteryLevel: Integer

dial(number)

Receiver

activate()

inv: wireless implies batteryLevel.isDefined()

1 1

(a) UML class diagram

:Telephone :Receiver

dial(6345789)

activate()

(b) UML sequence diagram

Fig. 2. UML class and sequence diagram

telephone which is expressed by an association. As expressed
by the multiplicities, each telephone has one receiver and vice
versa. Both classes have an operation, i.e. the telephone can
dial a number and the receiver can be activated. The single
OCL invariant in the diagram states that if a telephone is
wireless, its battery level needs to be defined.

2) Sequence Diagrams: The dynamic flow caused by oper-
ation calls can be visualized by sequence diagrams. Sequence
diagrams offer the possibility to represent particular scenarios
(i.e. behavior) based on the model provided by the class
diagram. Hence, several sequence diagrams exist for a given
class diagram. In the sequence diagram, instances of the
classes, i.e. objects, are extended by life lines that express
the time of creation and destruction in the scenario. Arrows
indicate operations that are called on an object, and are drawn
from the caller to the callee. Besides objects also actors from
the outside environment can be part of the sequence diagram.

S
sentence

NP
noun part

DT
determiner

The

JJ
adjective

small

NN
noun

child

VP
verb part

VBZ
verb*

sings

NP
noun part

DT
determiner

a

NN
noun

song* verb, present tense, third person singular

(a) Phrase structure tree

det(child-3, The-1)
amod(child-3, small-2)
nsubj(sings-4, child-3)
root(ROOT-0, sings-4)
det(song-6, a-5)
dobj(sings-4, song-6)

(b) Typed dependencies

Fig. 3. Application of the Stanford Parser

Example 2: A sequence diagram is depicted in Fig. 2(b).
In that scenario, first a number is dialed from an actor in
the outside environment, before the telephone activates the
receiver.
In this work, class diagrams and sequence diagrams are applied
to represent the semi-automatically determined code skeletons
and test cases, respectively.

B. Stanford Parser

The Stanford Parser is an open source software compilation
published by the Stanford Natural Language Processing (NLP)
Group [8]. It parses sentences in different languages and re-
turns a Phrase Structure Tree (PST) representing the semantic
structure of the sentence. A PST is an acyclic tree with one
root vertex representing a given sentence. Non-terminal and
terminal vertices (i.e. leafs) represent the grammatical structure
and the atomic words of this sentence, respectively. A simple
PST for the sentence “The small child sings a song” is given
by means of Fig. 3(a). As can be seen all leafs are connected
to distinct vertices that classify the tag of the respective word,
e.g. nouns and verbs. These word tags are further grouped
and connected by other vertices labeled with a tag classifying
a part of the sentence, e.g. as noun parts or verb parts. The
classifier tags are abbreviated in the PST, however, in Fig. 3(a)
the full classifier is annotated to the vertices. For details on
how a PST is extracted from a sentence, the reader is referred
to [11].

Besides the PST, the Stanford Parser also provides typed
dependencies [12] which are very helpful in NLP. Typed
dependencies are tuples which describe the semantic corre-
lation between words in the sentence. Fig. 3(b) lists all typed
dependencies for the sentence considered in Fig. 3(a). For
example, the nouns are assigned their articles using the det
relation. Note that the numbers after the word refer to the
position in the text, which is necessary if a word occurs more
than once in a sentence. Two further important relations are
nsubj and dobj that allow for the extraction of the typical
subject-verb-object form. In this case it connects the verb sings
with both its subject and object.

In this work, the Stanford Parser is applied to process the
structure of the sentences describing a scenario.

Specification

Test Cases Requirements

Formal
Specification

Level
Class Diag. + OCL Sequence Diagram OCL properties

Electronic
System
Level

SystemC Skeleton

A
x

B
y

:A :B

op
always

(a → b)

+
Consistent property set
Executable testbench
Operation contracts

Fig. 4. Overview of the Formal Specification Level

C. WordNet
WordNet [10], developed at Princeton University, is a

large lexical database of English that is designed for use
under program control. It groups nouns, verbs, adjectives, and
adverbs into sets of cognitive synonyms, each representing
a lexicalized concept. Each word in the database can have
several senses that describe different meanings of the word.
In total, WordNet consists of more than 90,000 different word
senses, and more than 166,000 pairs that connect different
senses with a semantic meaning.

Further, each sense is assigned a small description text
which makes the precise meaning of the word in that context
obvious. Frequency counts provide an indication of how often
the word is used in common practice. The database does
not only distinguish between the word forms noun, verb,
adjective, and adverb, but further categorizes each word into
sub-domains. Those categories are e.g. artifact, person, or
quantity for a noun.

In this work, WordNet is applied to determine the semantics
of the sentences describing a scenario.

III. THE FORMAL SPECIFICATION LEVEL

Fig. 4 provides a more detailed view on the proposed
extension for the envisioned design flow. The main goal
is to (semi-)automatically derive an ESL-implementation in
SystemC2 from a (textbook) specification provided in natural
language. Given natural language test cases and requirements
from the specification, an initial SystemC implementation,
an executable testbench for simulation, and operation con-
tracts (pre- and post-conditions as motivated by Design-by-
Contract [13]) are (semi-)automatically generated. For this
purpose, the Formal Specification Level as shown in Fig. 1(b)
and detailed in Fig. 4 is introduced as a new abstraction level
which includes three stages.

In the first stage (cf. Section IV), the test cases and the
requirements are mapped from their natural language descrip-
tion into a formal representation by means of UML/OCL.
NLP techniques are exploited in order to extract the desired
information. More precisely, the following steps are conducted
in this first stage:

• Determine the structure of the design
Using e.g. a grammatical analysis, the basic components
of the considered system are derived from the natural
language specification. From the resulting information,

2Note that SystemC is just a representative for any high-level object-
oriented hardware description language and can readily be replaced.

a UML class diagram is created which provides a first
formal description of the structure for the considered
design.

• Determine the behavior of the design
In a similar fashion, execution sequences are derived from
the natural language specification. They are used to create
UML sequence diagrams representing certain scenarios
and thus behavior to be considered in the design.

• Determine the properties of the design
After having both the structure and the scenarios, the
requirements of the specification can be considered in
detail. From them, formal properties which need to be
satisfied by the design are derived and represented in
terms of OCL expressions.

As a result, the first stage leads to a formal description of the
desired system in terms of UML/OCL.

In the second stage (cf. Section V), this formal descrip-
tion is used to conduct initial checks for correctness. This
e.g. includes consistency checks such as checking whether it
is possible to instantiate the desired system considering all
constraints and requirements, but also first behavioral checks
such as checking whether it is possible to reach a prohibited
state. This allows for the detection of design flaws already
in very early design steps, even in the absence of a precise
implementation.

In the third stage (cf. Section VI), after all checks have
passed and no errors have been determined, a skeleton for
the system level implementation as well as corresponding
testbenches are derived.

In the next sections, first accomplishments with respect to
these stages of the FSL are illustrated.

IV. MAPPING NATURAL LANGUAGE SPECIFICATIONS
TO THE FORMAL SPECIFICATION LEVEL

The first stage addresses the (semi-)automatic determina-
tion of a formal representation describing the structure, the
behavior, and the properties of a system that is specified in
natural language. First accomplishments for the former two
aspects have been presented in [14] and are reviewed in the
following two sub-sections. Afterwards, initial ideas on the
property determination are presented.

A. Determine the Structure of the Design

Test cases inside a specification are written in a very
specific way, i.e. by using short sentences which describe the
elementary steps of a scenario. From this, much information
can already been determined automatically. As an example,
consider the following test case describing how a user is
placing a telephone call:

A caller picks up the receiver from a telephone.
The caller dials the number 6-345-789.
The telephone places a call.

Fig. 5 illustrates that already from these three sentences a
significant amount of structural information can be extracted:
Since telephone and receiver are object nouns, it can be con-
cluded that they represent components of the considered
system (to be represented by classes). Preceded adjectives
(such as wireless) substantiate objects and, thus, shall be added
as attributes to the corresponding class. Verbs correlate to
operations which can be invoked by components or actors.

Receiver

Telephone

wireless: Boolean
pickUp(): Receiver
dial(number)
placeCall()

1

A caller picks up the receiver fromthe wireless telephone.
The caller dials thenumber 6-345-789.
The telephoneplaces a call.

Fig. 5. Determine the structure of the design

Moreover, prepositions help to determine relations between
classes. For example, the receiver from a telephone does not only
imply a relation due to the preposition from but also indicates
that a telephone can only have one receiver due to the definite
article the .

Recent progress in the development of NLP technolo-
gies enables to extract much of these information in
a (semi-)automatic manner. More precisely, NLP parsers
(e.g. the one presented in [11]) are able to decompose a
sentence in terms of a phrase structure tree (PST) which
assigns each atomic word to a syntactic word type (such as
noun, verb, or adjective) and also groups words into larger
sub-parts of the sentence (cf. Section II-B).

However, sometimes the syntactical and grammatical infor-
mation alone is not sufficient. For example in the first sentence
from Fig. 5, three nouns are identified in the PST, i.e. caller ,
receiver , and telephone but only for the two latter ones classes
need to be created. This information cannot be derived from
the PST. Hence, we are additionally making use of an ontology
that allows for a further semantical classification of the words.
A look into a word database such as WordNet [10] reveals that
the first noun is of class person whereas the other nouns are
listed as artifacts. Hence, the caller is treated as an actor of
the system.

Overall, exploiting these NLP technologies, a UML class
diagram formally representing the structure of the consid-
ered system can automatically be determined in many cases.
However, since the textual description always can contain
ambiguities, manual interactions with the design engineer
cannot entirely be excluded leading to a (semi-)automatic and
assisted approach as evaluated in [14].

B. Determine the Behavior of the Design
Besides the structure, test cases of a specification also

provide information on certain scenarios, i.e. a sequence of
actions to be conducted by the considered design. Formally,
such scenarios can be represented by sequence diagrams as
introduced in Section II-A2 which represent certain behavior
of the design. The mapping from the natural description of a
test case to a sequence diagram can be performed in a similar
way as done above for determining the structure.

More precisely, each verb in a sentence can be mapped to a
corresponding operation call. The caller and a possible callee
can be determined by the subject and the object, respectively.
Structural information of the system derived beforehand are
exploited for this purpose. Fig. 6 illustrates how a sequence
diagram is built from the exemplary test case.

However, also here some obstacles need to be addressed. For
example, instead of parameters for a function (such as number
in Fig. 5), now the actual value for an operation call needs to
be fetched (such as 6-345-789 in Fig. 6). Furthermore, objects
and actors that reoccur in successive sentences need to be

:Telephone

pickUp()

dial(6345789)

placeCall()

A caller picks up the receiver fromthe wireless telephone.
The callerdials thenumber 6-345-789.
The telephone places a call.

Fig. 6. Determine the behavior of the design

determined as such and linked to their original occurrence. As
an example, The caller in the second sentence refers to A caller
from the first sentence, i.e. they refer to the same actor in the
sequence diagram.

For this purpose, again the PST is analyzed. As an example,
due to the definite article The in the third sentence, it becomes
clear that the same telephone as in the first sentence is
addressed. If instead an indefinite article had been used as
the determiner for telephone , a new object would have been
instantiated for the sequence diagram.

C. Determine the Properties of the Design
The scenarios derived in the last step describe sequences of

actions with precise simulation parameters. This helps testing
the basic functionality of the desired system, but is insufficient
to actually proof its correctness. For example, while the
basic functionality of a traffic light controller can easily be
validated by some test case scenarios, general (safety-critical)
requirements such as “the pedestrian light and the car light
are never supposed to be both green at the same time” require
a more exhaustive approach. For such purposes, properties
are usually defined which afterwards are checked by model
checkers.3

So far, such properties are mainly manually derived from the
textual specification. However, also here a systematic approach
can be applied [15]. For example, taking the “never green at
the same time”-requirement from above, the elementary sub-
terms of the expression can be detected and linked to their
respective model elements leading to:

Sub-sentence Model element
‘pedestrian light’ controller.pedLight
‘car light’ controller.carLight
‘show green’ x == true

With the aid of the adverbs in the requirement, these code
parts can be joined together to form an invariant such as

inv: not (controller.pedLight and controller.carLight).

Besides that, it is also possible to generalize properties from
test cases when they obey a certain structure. For example,
in the context of Behavior Driven Development (BDD) the
structure of a test case is often given by a Given A, When B,
Then C template [16]. Since A corresponds to environment
constraints, B corresponds to the antecedent, and C corre-
sponds to the consequent of a property, formal properties can
be generalized from such test cases [17].

3Note that, in the following we are using the terms properties and invariants
almost synonymously as “properties” are more common in the context of
formal verification whereas “invariants” is a common term used in the context
of modeling.

V. CHECKING CORRECTNESS
AT THE FORMAL SPECIFICATION LEVEL

After the first stage, a formal representation has been
derived which is sufficient to provide information about the
structure, the behavior, and the properties of the desired system
while still hiding precise implementation details. In the second
stage, this representation enables to conduct correctness checks
of the design in the absence of an implementation. For this
purpose, approaches presented in [18], [19], [20], [21] for
static verification, presented in [22] for invariant elimination,
and presented in [23], [24] for dynamic verification can be
applied. In [25], also first debugging approaches have been
introduced.

A. Verification of Static Aspects
Having a formal representation of the design does not nec-

essarily imply that a working implementation can be generated
from it. In fact, the formal model may inherit constraints which
contradict each other. As a result, no valid instantiation would
be possible and any implementation would be erroneous from
scratch. The FSL enables to detect such errors before any code
is written.

Approaches introduced e.g. in [18], [19], [20], [21] can
be utilized for this purpose. They take the obtained UML
diagram (representing the structure) together with the prop-
erties (which are encoded as OCL invariants) and automati-
cally perform the above described consistency checks. Besides
enumerative methods [20], also elaborated formal approaches
have been proposed in the recent past [21]. Considering the
abstract description of the models (usually, no complex data-
structures are applied), particularly the latter approaches are
applicable to quite significantly complex designs.

B. Invariant Removal
At the FSL, invariants are a proper description mean to

represent properties the design has to satisfy. However, when
it comes to verification they may cause unnecessary overhead.
Since invariants are assumed globally, i.e. for each possible
system state of the system, they have to be considered all the
time. Even if only a certain functionality of a design is under
verification, invariants of the entire model have to be assumed
additionally.

An alternative to prevent this overhead has been proposed
in [22]. Here, invariants are iteratively removed and replaced
instead with a smaller set of pre- and post-conditions for cer-
tain operations. This enables to entirely eliminate all invariants
without changing the semantics of the model. Since addi-
tionally, pre- and post-conditions only have to be considered
locally when the corresponding function is called, this reduces
the overhead.

Furthermore, invariant elimination enables a design flow
in which the implementation of different operations can be
conducted by different developers. Then, the respective sub-
teams do not have to globally consider all the invariants
anymore, but just the local pre- and post-conditions of the
corresponding operation.

C. Verification of Dynamic Aspects
Finally, also the dynamic behavior can be verified at the

FSL. This is possible due to the above-mentioned pre- and
post-conditions of operations which enable a descriptive rep-
resentation of the behavior, without giving a precise implemen-
tation. A pre-condition describes in which states an operation

can be called, while the post-condition describes the effect an
operation has on that system state. These conditions may be
specified directly from the designer or are determined by the
invariant elimination step described above.

Any model where its operations are enriched with pre- and
post-conditions can be transformed into an instance similar to
Bounded Model Checking (BMC) [26] and, therefore, allows
for addressing certain dynamic verification tasks. In fact,
similar to verification at the implementation level, operation
sequences can be determined that lead e.g. to bad states,
good states, live locks, or dead locks [23]. Utilizing these
techniques, again, errors can be detected before any code is
written.

VI. MAPPING FROM FORMAL SPECIFICATION LEVEL
TO THE ELECTRONIC SYSTEM LEVEL

Finally, the formally modeled and verified design shall be
implemented in a proper ESL-language so that it can be further
refined using the established design flow. Also in this final
stage of the FSL the formal representation can be exploited.

In fact, the corresponding UML/OCL descriptions allow for
a generation of code parts for the implementation process. This
includes
x code stubs generated from class diagrams (Section IV-A),
x an executable testbench generated from the sequence dia-

grams (Section IV-B),
x generalized properties from the parameterized test

cases (Section IV-C),
x a consistent property set (Section V-A),
x and contracts for the operations of a class (Section V-B).
Further, the verification of dynamic aspects plays a significant
role in the transition from the FSL to the ESL. As briefly dis-
cussed in Section V-C, all dynamic aspects, i.e. the interaction
of the components, can be checked in the absence of a precise
implementation. As an example, it can be ensured that the
model is deadlock-free or that all operations can be reached
from given initial states. Hence, after the implementation
phase, it is sufficient to check whether the implementation of
each single operation adheres correctly to its contracts. That is,
assuming the pre-condition and executing the code must imply
the post-conditions. Since the verification of the operations can
be performed locally without considering the whole system,
verification effort can be decreased.

VII. CONCLUSION

In this paper, we envisioned a new design flow which
includes an FSL representing the desired design using mod-
eling languages such as UML or SysML combined with
constraints provided in languages such as OCL. The proposed
flow bridges the gap between the natural language textbook
specification and the formal ESL implementation. We illus-
trated that first accomplishments towards the envisioned design
flow have already been made: NLP techniques are available to
derive formal descriptions of natural language specifications,
verification approaches based on modeling languages allow
to detect design errors prior to a precise implementation, and
code generation techniques can be applied to generate code
stubs, executable testbenches, etc.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation
(DFG) within the Reinhart Koselleck project DR 287/23-1.

REFERENCES

[1] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[2] D. Große and R. Drechsler, Quality-Driven SystemC Design. Dordrecht,
Heidelberg, London, New York: Springer, Dec. 2009.

[3] R. Drechsler, “Quality-driven Design of Embedded Systems based on
Specification in Natural Language,” in EUROMICRO Symp. on Digital
System Design, 2011.

[4] I. G. Harris, “Extracting design information from natural language
specifications,” in Design Automation Conference, 2012, pp. 1256–1257.

[5] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage reference manual. Essex, UK: Addison-Wesley Longman, Jan.
1999.

[6] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., Feb. 2008.

[7] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
modeling with UML. Boston, MA, USA: Addison-Wesley Longman,
Mar. 1999.

[8] D. Jurafsky and J. H. Martin, Speech and Language Processing. Pearson
Prentice Hall, 2008.

[9] J. R. Cowie and W. G. Lehnert, “Information Extraction,” Communica-
tions of the ACM, vol. 39, no. 1, pp. 80–91, Jan. 1996.

[10] G. A. Miller, “WordNet: A Lexical Database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

[11] D. Klein and C. D. Manning, “Accurate Unlexicalized Parsing,” in
Annual Meeting of the Association for Computational Linguistics, July
2003, pp. 423–430.

[12] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
Typed Dependency Parses from Phrase Structure Parses,” in Int’l Conf.
on Language Ressources and Evaluation, May 2006, pp. 449–454.

[13] B. Meyer, J.-M. Nerson, and M. Matsuo, “EIFFEL: Object-Oriented
Design for Software Engineering,” in European Software Engineering
Conference, ser. Lecture Notes in Computer Science, H. K. Nichols and
D. Simpson, Eds., vol. 289. Springer, Sept. 1987, pp. 221–229.

[14] M. Soeken, R. Wille, and R. Drechsler, “Assisted Behavior Driven
Development Using Natural Language Processing,” in Int’l. Conf. on
Objects, Models, Components, Patterns, May 2012.

[15] H. M. Le, D. Große, and R. Drechsler, “From Requirements and
Scenarios to ESL Design in SystemC,” in Int’l Symp. on Electronic
System Design, Dec. 2012.

[16] D. North, “Behavior Modification: The evolution of behavior-driven
development,” Better Software, vol. 8, no. 3, Mar. 2006.

[17] M. Diepenbeck, M. Soeken, D. Große, and R. Drechsler, “Behavior
Driven Development for Circuit Design and Verification,” in IEEE Intl’l
High Level Design Validation and Test Workshop, Nov. 2012.

[18] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Cambridge, MA, USA: MIT Press, Apr. 2006.

[19] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” in IEEE Int’l. Conf. on
Software Testing Verification and Validation Workshop, Apr. 2008, pp.
73–80.

[20] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Tests and Proofs.
Springer, July 2009, pp. 90–104.

[21] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, Mar. 2010, pp. 1341–1344.

[22] M. Soeken, R. Wille, and R. Drechsler, “Eliminating Invariants in
UML/OCL Models,” in Design, Automation and Test in Europe, Mar.
2012, pp. 1142–1145.

[23] ——, “Verifying Dynamic Aspects of UML Models,” in Design, Au-
tomation and Test in Europe, Mar. 2011, pp. 1077–1082.

[24] J. Cabot, R. Clarisó, and D. Riera, “Verifying UML/OCL Operation Con-
tracts,” in Integrated Formal Methods, ser. Lecture Notes in Computer
Science, M. Leuschel and H. Wehrheim, Eds., vol. 5423. Springer,
Feb. 2009, pp. 40–55.

[25] R. Wille, M. Soeken, and R. Drechsler, “Debugging of Inconsistent
UML/OCL Models,” in Design, Automation and Test in Europe, Mar.
2012, pp. 1078–1083.

[26] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

