
Towards Line-aware Realizations of Expressions

for HDL-based Synthesis of Reversible Circuits

Zaid Al-Wardi1, Robert Wille1,2, and Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen
2Cyber-Physical Systems, DFKI GmbH, D-28359 Bremen, Germany

Abstract. Hardware Description Languages (HDLs) allow for the effi-

cient synthesis of large and complex circuits. Consequently, researchers

also investigated their potential in the domain of reversible logic. Here,

existing HDL-based synthesis approaches suffer from the significant draw-

back of employing additional circuit lines in order to buffer intermediate

results. In this work, we investigate the possibility of reducing this over-

head. For this purpose, an alternative synthesis scheme is proposed and

evaluated which aims at a more efficient realization of expressions. The

general idea is to re-compute (i.e to undo) sub-expressions as soon as the

respective intermediate results are not needed anymore. The observations

and discussions result in initial guidelines on how to realize expressions

more efficiently as well as a better understanding of the potential of

HDL-based synthesis.

Keywords: Reversible circuits, synthesis, hardware description languages, op-

timization

1 Introduction

Motivated by applications e.g. in quantum computation [1], low-power design [2],

or encoder and decoder design [3], research in the design of reversible circuits

received significant interest. In the past decade, some substantial progress has

been achieved in the development of corresponding (automated) design methods.

This led to a variety of design solutions for a wide range of design tasks such as

synthesis (see e.g. [4–8]), optimization (see e.g. [9,10]), verification (see e.g. [11,

12]), debugging (see e.g. [13]), and even automatic test pattern generation (see

e.g. [14, 15]).

Each design scenario results in a different circuit with equivalent functionality

but with different cost parameters. In general, reversible circuit designers tend

to synthesize circuits with a minimum number of lines. This is mainly motivated

by the possible applications of reversible circuits in the domain of quantum

computing, where circuit lines (realized by so-called qubits) are a very limited

resource [1]. However, circuits with a minimal number of lines can, thus far, only

been guaranteed by approaches that rely on Boolean/truth-table like synthesis

approaches (e.g. [4–6]). These methods expand exponentially depending on the

number of circuit inputs, which lead to the fact that these methods are practically

applicable for simple design problems with a limited number of input signals only.

Investigating design flows that scale better and have the ability to handle

complex systems with hundreds of input signals led to the hierarchical design

approaches based on Hardware Description Languages (HDLs). SyReC is a re-

versible HDL, which has been introduced to facilitate the description of reversible

circuits by means of simple high level codes [16]. A corresponding synthesis

scheme showed the ability to describe and synthesize complex functionality such

as a reversible CPU [17].

However, a major drawback of this approach is that it requires a significant

number of additional circuit lines. These additional lines are used to buffer in-

termediate results needed in order to realize entire HDL-statements. Although

first approaches aiming at the reduction of additional lines in HDL-based circuits

have been introduced [18], they mainly focused on the realization of entire state-

ments. However, further potential exists when also the realization of expressions

(used in statements) are considered. This is motivated in more detail later in

Section 3.

In this work, we investigate the possibility of improving the realization of

expressions within the HDL-based synthesis of reversible circuits. The general

idea is to re-compute (i.e. to undo) intermediate results of expressions as soon

as they are not needed anymore. While this basically continues the idea of the

“reversible undo” to the circuit realization of expressions, it also leads to new

questions on how to realize the respective expressions in detail. Hence, we discuss

some of the respective cases and provide suggestions on how to handle them

best. Experimental case studies confirm the findings. This eventually provides

new insights as well as ideas on how to improve HDL-based synthesis in general

and leads to a better understanding of the remaining potential.

The remainder of this paper is structured as follows. The next section briefly

reviews the background on reversible circuits, the HDL considered here, as well

as the corresponding HDL-based synthesis scheme. Section 3 provides a motiva-

tion of this work and illustrates the general idea which, eventually, leads to an

improved HDL-based synthesis scheme proposed in Section 4. Observations and

discussions on the applicability of the proposed approach are given in Section 5.

This is finally confirmed by an experimental case study summarized in Section 6

before the paper is concluded in Section 7.

2 Background

This section briefly reviews the basics on reversible circuits, a reversible HDL,

as well as the corresponding HDL-based synthesis. It provides the necessary

background to keep the paper self-contained.

2.1 Reversible Circuits

Reversible circuits realize functions f : IBn → IBn with a unique input/output

mapping, i.e. bijections. A reversible circuit G = g1 . . . gd is composed as a

cascade of reversible gates gi [1]. The inverse of G (representing the function f−1

and denoted by G−1) can be obtained by cascading g−1d g−1d−1 · · · g
−1
1 , where g−1i

is the inverse gate of gi. Since the self-inverse Toffoli and Fredkin gates are

considered in this paper (see below), gi = g−1i holds and, thus, G−1 can simply

be obtained by reversing the order of the gates of G.

For a set of Boolean signals X = {x1, . . . , xn}, a reversible gate has the

form g(C, T), where C = {xi1 , . . . , xik} ⊂ X is the set of control lines and

T = {xj1 , . . . , xjl} ⊆ X with C ∩T = ∅ is the non-empty set of target lines. The

gate operation is applied to the target lines if, and only if, all control lines meet

the required control conditions. Control lines and unconnected lines always pass

through the gate unaltered.

In the literature, several types of reversible gates have been introduced. Usu-

ally, circuits realized by Toffoli gates and Fredkin gates are considered. A Toffoli

gate has a single target line xj and uniquely maps the input (x1, x2, . . . , xj , . . . , xn)

to the output (x1, x2, . . . , xi1xi2 · · ·xik ⊕ xj , . . . , xn). That is, a Toffoli gate in-

verts the target line if, and only if, all control lines are assigned the logic value 1.

A Fredkin gate has two target lines xj1 and xj2 and interchanges their values if,

and only if, the conjunction of all control lines evaluates to 1.

By definition, reversible circuits can only realize reversible functions. In order

to realize non-reversible functions, additional circuit lines with constant inputs

and garbage outputs (i.e. don’t care outputs) are applied (see e.g. [19,20]). Fur-

thermore, additional circuit lines are also used frequently in hierarchical synthesis

approaches (e.g. [7, 16]).

Example 1. Fig. 1 shows a reversible circuit realization of a 1-bit adder. Black

circles represent control lines while ⊕ and × represent the target lines of a Toffoli

and Fredkin gate, respectively. Since the adder is a non-reversible function, one

additional circuit line is used to realize this function as a reversible circuit. The

gates g1, g2, g4, and g5 are Toffoli gates, while the gate g3 is a Fredkin gate.

0 s

cin cout

a −
b −

g1 g2 g3 g4 g5

Fig. 1. Reversible circuit realizing a full adder

1 module example(in a(16), in b(16), in c(16), out f(16))

2 wire x(16)

3 x ˆ= (a & b)

4 x += (((a * b) + (a / b)) - ((a + c) / b))

5 f ˆ= (((x + b) ˆ c) * (a - b))

Fig. 2. Simple SyReC program example

2.2 Reversible HDL

A major motivation of research in the domain of reversible circuit synthesis is

the strive for a better scalability in order to enable the efficient design of complex

functionality. Consequently, HDLs became a focus of ongoing research. A first

version of an HDL for reversible circuits named SyReC has been introduced

in [16]. SyReC is based on the reversible software language Janus [21], which

has been enriched by further concepts (e.g. declaring circuit signals of different

bit-widths), new operations (e.g. bit-access and shifts), and some restrictions

(e.g. the prohibition of dynamic loops). In the following, we briefly review the

main concepts of this HDL by means of Fig. 2 which depicts a simple SyReC

specification1.

This simple example shows that an HDL-circuit is described as a module. A

module declaration starts by naming the module and, then, declaring the port

signals for this module as in Line 1. This signal list associates each signal name

with a type (i.e. in/out) and a bit-width (16 in the example above). Internal wire

signals are defined within the scope of the module (Line 2) and are intermedi-

ately used to simplify the internal description of a module. These signals are

transparent outside of the module. All signals represent non-negative integers

or, in case of bit-width of 1, a Boolean.

A variety of statements and expressions are available to specify the func-

tionality of the circuit without losing reversibility. Because of this, direct signal

1 For a more detailed treatment, we refer to [16] as well as to the detailed documen-

tation provided at the RevLib benchmark webpage [22].

a
a⊕=b� c⊕

0 0Gb�c G−1
b�c

b b

c c

b. Garbage free

a a⊕=b� c⊕
0 −Gb�c

b b

c c

a. With garbage

Fig. 3. Synthesis scheme

assignments of the form (x = a) are not allowed (as this would lead to a loss of

the original value of x and, hence, will make the computation non-reversible).

Consequently, signal assignments are restricted to so-called reversible assign-

ment operations, i.e. the operations increase (+=), decrease (-=), and bit-wise

XOR (ˆ =). These operations preserve the reversibility (i.e. it is possible to

compute these operations in both directions) and they are generally denoted

by ⊕ =.

In contrast to the reversible operations, binary operations (denoted by �)

which are not necessarily reversible (e.g. arithmetic, bit-wise, logical, or relational

operations) and to be used only in right-hand expressions which preserve the val-

ues of the respective inputs. In doing so, all computations remain reversible since

the input values can be applied to reverse any operation. For example, to specify

the AND-operation in Line 3, a new free signal x in combination with a reversible

assignment operation is applied. That results in the statement x ∧ = (a&b). All

binary operations are written in the form: (Operandleft � Operandright). An

Operand can be a simple signal, an integer, or even another expression that has

the same form. Nesting binary operations in such hierarchy, gives SyReC the

ability to generate complex functions out of this basic set of binary-operators.

2.3 HDL-based Synthesis

In order to automatically synthesize the resulting designs, a hierarchical synthesis

method is applied [16]. That is, existing realizations of the individual operations

(i.e. building blocks) are combined so that the desired circuit is built. Fig. 3a

illustrates the resulting scheme for the (generic) statement a ⊕= (b � c). The

⊕-block (�-block) denotes thereby a building block for a reversible assignment

operation (expression). Solid lines that cross the box represent the signals on

the right-hand side of the statement, i.e. the signals whose values are preserved.

More precisely, the following two steps are performed:

1. Compose a sub-circuit G� realizing all the right-hand side expressions in the

statement. For this purpose, use the respective building blocks. The result of

the expression is buffered by means of additional circuit lines with constant

input values.

2. Compose a sub-circuit G⊕ realizing the overall statement using the existing

building blocks of the statement itself together with the buffered results of

the expressions.

Obviously, this procedure leads to a significant number of additional circuit

lines (and corresponding garbage outputs), since new circuit lines with constant

values have to be introduced for each statement. Hence, an alternative has been

evaluated in [18] where partial results (buffered in additional circuit lines) are

inversely re-computed as soon as they are not needed anymore. This process

(also called reversible undo) yields the original (constant) values on the already

existing circuit lines which can be re-used e.g. in order to realize the following

statements. More precisely, the synthesis scheme reviewed above is extended by

a third step (see also Fig. 3b):

3) Add the inverse circuit from Step 1, i.e. G−1� to the circuit in order to set

the circuit lines buffering the result of the right-hand side expressions back

to the constant 0.

In other words, the first sub-circuit Gb�c ensures that the right-hand side

expression is realized, sub-circuit Ga⊕=b�c ensures that the entire statement is

realized, and sub-circuit G−1b�c sets the circuit lines buffering the result of b � c

back to the constant 0.

3 Motivation and General Idea

Following the synthesis scheme reviewed in Section 2.3, the number of addi-

tionally required lines for the entire circuit depends on the statement with the

“largest” expression. This is illustrated by means of the following example.

Example 2. Consider a sequence of three statements to be synthesized. Addi-

tionally, assume that 1, 6, and 4 circuit lines are needed to realize the respective

expressions. Then, in total max{1, 6, 4} = 6 additional circuit lines are needed to

realize the respective circuit. Fig. 4 illustrates how these circuit lines are applied.

0 0

⊕ ⊕ ⊕
� � � � � �

6 5

1 1 6 6 4 4

2 6

Fig. 4. Effect of the expression size

However, in many cases, even large expressions can be realized with a signif-

icantly smaller number of lines. To this end, consider the realization of arbitrary

expressions. Expressions can be formulated as a variety of combinations of binary

operations � over circuit signals and (nested) sub-expressions. Each expression

can thereby be represented as a binary-tree, where each node represents a binary

operator which receives two inputs (operands) and buffers an output. The root

node represents the entire expression, while the leafs represent the circuit sig-

nals. Obviously, it is impractical to provide a building block for each and every of

such combinations. Hence, only building blocks (denoted by GO) for each binary

operation O are provided. Then, an expression E is realized by cascading the

respective building blocks for each binary operation � of E. For this purpose,

additional circuit lines are required in order to buffer the respective intermediate

results. The eventually resulting circuit is denoted by GEi , whereby i denotes

the index of the root node of the expression E. This circuit requires a total of

(k×w) additional circuits lines in order to buffer the intermediate results of the

binary operations, whereby w denotes the bit-width of the circuit signals and k

is the number of binary-operations (nodes) in the expression.

Example 3. Consider the expression E=(((a * b) + (a / b)) - ((a + c) / b))

which has been taken from Line 4 of the SyReC code shown in Fig. 2 and is

composed of six binary expressions over 16-bit signals. The binary tree for this

expression is shown in Fig. 5. Each node represents a binary operation (enumer-

ated from O1 to O6) to be realized using the respective building blocks (i.e. GO1
,

. . . , GO6
). This leads to a reversible circuit GE6

= GO1
GO2

GO3
GO4

GO5
GO6

which requires a total of 6× 16 = 96 additional circuits lines in order buffer the

respective intermediate results.

When realizing such an expression, it is obvious that, eventually, only the

result of the root operation is of interest. Circuit lines storing intermediate results

can be re-computed back to their initial (constant) value as soon as they are not

required anymore. Then, those lines would, in principle, be available to store

other intermediate results needed in order to compute the overall expression.

As a consequence, even large expressions could be realized with a significantly

Eleft Eright

E6

a b a b a c b

−O6

+O3 /
O5

∗
O1

/

O2

+

O4

Fig. 5. The binary tree for the expression in Fig. 2 Line 5

smaller number of additional circuit lines compared to the currently applied

synthesis scheme. Again, this is illustrated by means of an example.

Example 4. Consider again the expression E = (((a * b) + (a / b)) - ((a + c) / b))

from Example 3, which contains 6 operations. The actually desired result of the

root operation (the subtraction O6) is obtained using the intermediate results

from the sub-expressions Eleft = ((a * b) + (a / b)) and Eright = ((a + c) / b).

The left sub-expression is realized as GEleft
= GO1 GO2 GO3 which requires a

total of 3 × 16 = 48 additional circuit lines. However, once this sub-expression

is realized and its result is buffered, the intermediate results of operations O1

and O2 are not needed anymore and can be recomputed back to their initial

(constant) value – resulting in a circuit G
′

Eleft
= GO1

GO2
GO3

G−1O2
G−1O1

. By

this, 32 circuit lines with constant values become available and can be used in

order to realize the right sub-expression. The entire expression E is then realized

as

GE6 = G
′

Eleft
GEright

GO6 = GO1 GO2 GO3 G−1O2
G−1O1

GO4 GO5 GO6

and requires a total of 64 additional circuit lines (a significant reduction com-

pared to the 96 additional circuit lines needed in Example 3).

Note that, in the following, we denote (sub-)circuits which immediately re-

compute all not needed intermediate results back to the initial (constant) value

by G
′
.

In this work, we are aiming for investigating this potential in more detail.

For this purpose, we propose a revised synthesis scheme for hardware description

languages which re-computes circuit lines buffering intermediate results back

to their initial (constant) value as soon as the respective intermediate value is

not needed anymore. Afterwards, the effect as well as the possibilities of these

changes in HDL-based synthesis are discussed in Section 5 and experimentally

evaluated in Section 6.

4 Line-aware Synthesis of Expressions

Left and right operands in a binary expression E are independently considered

as shown in Fig. 5. Therefore, they can be synthesized as two different building

blocks GEleft
and GEright

, respectively. Afterwards, the corresponding results are

fed to the building block GOk
realizing the root-operation Ok. Now, realizing the

left sub-expression not according to the original synthesis scheme (i.e. as GEleft
),

but according to the ideas sketched in the previous section (i.e. as G
′

Eleft
), circuit

lines applied in order to store intermediate results from Eleft can be re-used for

the realization of Eright. Then, the overall expression E can be realized as follows:

GEk
= G

′

Eleft
GEright

GOk

This scheme can recursively be applied for all sub-expressions eventually leading

to the following (proposed) synthesis procedure:

Given An expression E to be realized,

An indication whether a circuit G or a circuit G
′

shall be realized

1. IF (E is a circuit signal only), THEN terminate the execution of this algo-

rithm (base case of the recursion).

ELSE, consider E = Eleft � Eright with � being the root-operation Ok

realized by GOk
.

2. Recursively invoke this algorithm for expression Eleft in order to generate a

sub-circuit G
′

Eleft
realizing the left-operand.

3. Recursively invoke this algorithm in order to to generate a sub-circuit GEright

realizing the right-operand.

4. Combine the resulting sub-circuits to the following cascade:

G := G
′

Eleft
GEright

GOk

5. IF a circuit G′ shall be realized THEN, re-compute intermediate results

by adding the respective building blocks in a reverse fashion, i.e. extend the

circuit to the following cascade:

G
′

:= G G−1Eright
G

′−1
Eleft

5 Observations and Discussion

Having the scheme proposed in the previous section, a detailed analysis and dis-

cussion on the potential of re-computing intermediate results as soon as possible

can be conducted. This section is devoted to that. More precisely, several cases

are discussed showcasing when the application of the proposed algorithm is ben-

eficial and when it may turn out to be disadvantageous. This can be used to get

inspirations for best practices as well as an understanding of the characteristics

that apply when synthesizing HDL descriptions as reversible circuits.

5.1 Reducing the number of lines is not always rewarding

The ideas in the proposed synthesis scheme are based on the desire of reducing

the number of lines in the resulting circuit. The total number of additionally

required circuit lines is still bounded by the number of lines required for synthe-

sizing the largest statement. Hence, improving the number of lines for a “smaller”

statement does not really help in reducing the total number of lines in the cir-

cuit. Moreover, reducing the number of lines for this smaller statement leads to

additional circuit costs, since re-computing intermediate results is conducted by

adding further building blocks in a reverse fashion.

Example 5. Consider again the program from Fig. 2 as well as the sketch of its

realization in Fig. 4. As can be seen, the statement in Line 4 has the largest

expression and would require 6 additional circuit lines when synthesized using

the original synthesis approach2. The statement in Line 5 has the second-largest

expression and would require 4 additional circuit lines.

Now, if the synthesis approach proposed in Section 4 is applied in order to

realize the largest expression, a reduction from 6 additional circuit lines to 4

circuit lines can be achieved. This is worthwhile as it indeed reduces the total

number of circuit lines required for the entire circuit. However, applying the

same scheme in order to improve the the second-largest expression does not lead

to further global reductions. Although the expression itself could be realized

with 3 rather than 4 additional circuit lines, the number of lines for the entire

circuit would not change. Moreover, this reduction would increase the number

of building blocks required for re-computing. Hence, this expression should be

realized using the original synthesis scheme.

5.2 The shape of the expression tree has an impact

In contrast to the original synthesis scheme (reviewed in Section 2.3), the pro-

posed synthesis scheme from Section 4 depends on the operation precedence

within the expression. In the worst case, the proposed procedure results in the

same result as when the original scheme would have been applied. This worst

2 Note that the number of circuit lines has to be multiplied by the bit-width w of the

circuit signals, however, is assumed to be constant and, hence, omitted for sake of

clarity.

case occurs whenever all operations in the expression have a primary value (i.e. a

signal or a number) as an operand. Then, the circuit lines can not be re-used

until the root operation is calculated. In this case, a circuit with a linear num-

ber of lines results, i.e. with k additional circuit lines and k building blocks (k

being the number of operations). An example of such case is shown in Fig. 6a.

This case occurs when the precedence of operations is ordered either from left

to right, or vice versa.

On the other hand, an expression which can be represented by a completely

balanced tree can be realized with a logarithmic number of lines. Then, both

operands always require the same number of lines which can frequently been re-

computed and, hence, re-used. However, as already mentioned above, this comes

with the price of larger gate costs as additional building blocks are required3.

More precisely, this case would result in a circuit with 2 · (dlog2(k + 1)e) − 1

additional circuit lines and 3(dlog2(k+1)e−1) building blocks. An example of such

a case is shown in Fig. 6b.

The best case, which shows the biggest potential for the proposed procedure

with respect to the number of lines, is observed when, for all the stages of the

expression, the right operand requires exactly one circuit line less than the left

operand. Then, the right operand can always reuse the buffers lines from the left

operand and does not need to allocate an own one. An example of such a case

is shown in Fig. 6c. The number of resulting circuit lines for this best can be

approximated by the function f(n) = f(n− 1) + f(n− 2) + 1, whereby f(0) = 0

and f(1) = 1 (this sequence is related to the Fibonacci sequence), for example, if

there are n = 6 lines, then f(6) = 20, i.e. an expression arranged in the best case

with up to 20 operations, can be calculated by using 6 lines. With increasing

k, the reduction ratio in the number of lines becomes even better – although,

it is, practically, unlikely for such a single expression to occur in typical HDL

statements.

Example 6. The following three expressions are actually equivalent to each other,

each has 7 multiplication operations and the result is simply the product:

1. (((((((a ∗ b) ∗ c) ∗ d) ∗ e) ∗ f) ∗ g) ∗ h)

This case represent the worst case. It requires 7 additional circuit signals

and requires 7 cascaded blocks to be realized.

2. (((a ∗ b) ∗ (c ∗ d)) ∗ ((e ∗ f) ∗ (g ∗ h)))

This case is the completely balanced case, which requires 5 additional circuit

signals, but 9 cascaded blocks.

3 In this sense, the proposed synthesis scheme goes in line with previous observations

on the trade-off between circuit lines and gate costs as e.g. conducted in [23].

a b c d e f g h

∗
∗

∗
∗

∗
∗

∗

a b c d e f g h

∗

∗

∗∗

∗

∗∗

a b c d e f g h

∗

∗

∗

∗

∗

∗∗

a. Worst case b. Balanced tree case c. Best case

Fig. 6. Expressions with seven multiplication in different orders of precedence

3. ((((a ∗ b) ∗ c) ∗ (d ∗ e)) ∗ ((f ∗ g) ∗ h))

This case is the best case where only 4 additional circuit signals are sufficient

to realize the circuit by cascading 12 basic blocks.

For a designer writing HDL programs to be synthesized as a reversible circuit, it

is important to be aware of the synthesizer features when writing the expression

in order to write expressions, whenever possible, in the way that result in better

circuits.

5.3 Exchanging the sub-expressions has an impact

As long as the left and right sub-expressions of an expression E are calculated

independently, it is possible to exchange the order by which the respective sub-

circuits are synthesized. This can be exploited when the right sub-expression

requires a larger number of additional circuit lines for buffering intermediate

results. Then, the expression E should be realized as G := G
′

Eright
GEleft

GOk
.

This has a slight benefit (precisely one signal is saved) compared to the orig-

inal order: If the larger sub-expression is realized first, more signals can be

re-computed. One of them can be used to buffer the result of the larger sub-

expression. This signal is not needed to realize the other sub-expression since, as

assumed before, this sub-expression is smaller. Because of the recurrent nature

of the procedure, this one line reduction can be accumulated and result in a

tangible reduction in the number of lines.

If the two expressions require the same number of signals, then no improve-

ment with respect to the number of signals can be gained. Nevertheless, even then

it might be beneficial to switch the sub-expressions. In fact, the sub-expression

realized first is subject to an early re-computation. This gets more expensive for

more “costly” operations. Hence, in case both sub-expressions require the same

number of signals, the sub-expression with the “cheaper” building blocks should

be realized first. This is illustrated by the following example.

Example 7. Consider Eleft =((a*b)*(c*d)) and Eright =((aˆb)ˆ(cˆd)). If Eleft is

synthesized first, a circuit G
′

Eleft
:= GO1

GO2
GO3

G−1O2
G−1O1

has to be generated,

i.e. five building blocks for multiplication are required. The right sub-expression

is then realized by GEright
:= GO1

GO2
GO3

, i.e. three building blocks for the

XOR operation are required. Exchanging the order would reverse that, i.e. result

in five building blocks for the XOR operation and three building blocks for

the multiplication. Since the realization of the multiplication requires a more

expensive building block compared to the realization of the XOR operation, this

would result in a much cheaper circuit.

Note that if the realization of the sub-expression is switched, this exchange

must also be reflected in the respective re-computing cascade. That is, a corre-

sponding circuit would have to be defined as G
′

:= G G−1Eleft
G

′−1
Eright

, i.e. again

with the right and left sub-circuit interchanged.

6 Experimental Case Studies

In order to experimentally evaluate the proposed concepts as well as the con-

sidered cases, the proposed synthesis approach has been implemented in C++.

The resulting algorithm can be applied to various expressions and determines

the number of lines as well as the number of required building blocks of the

respectively resulting realization.

A main problem for the evaluation is that, thus far, not a very huge variety

of HDL descriptions which are useful for benchmarking are available.

Hence, we manually created an initial benchmark set composed of two types

of expressions which cover different cases, namely a polynomial factored form

and a majority function.

These cases offer properties allowing to evaluate the behavior of representa-

tions e.g. in terms of a balanced tree or in the best possible case as discussed in

Section 5.

In the following, the respective cases will explicitly be discussed. In addi-

tion to that, Table 1 provides a numerical summary. The first columns denote

thereby the name of the respective case (Case), its order (Order, i.e. the size of

the respective instantiation, and the number of operations in the resulting ex-

pression (Op.). Afterwards, the number of additionally required lines (Lines4) as

4 Note that, again, the number of circuit lines has to be multiplied by the bit-width w

of the circuit signals which, however, is assumed to be constant and, hence, omitted

for sake of clarity.

well as the number of Blocks (Blocks) are provided for (1) the original synthesis

approach as reviewed in Section 2.3 (Orig. synth.), (2) the proposed synthesis

approach assuming the expression is/can be represented in terms of a balanced

tree (Balanced tree), and (3) the proposed synthesis approach assuming the ex-

pression is/can be represented in the best case (Best case). In addition to the

absolute values, also the percentual difference to the original synthesis approach

is provided in columns labeled by %.

Already the numerical evaluation shows the potential of the proposed syn-

thesis approach. In fact, significant reductions in the number of lines can be

achieved. As discussed above, this comes at the price of an increased number

of building blocks. In this sense, the proposed synthesis scheme goes in line

with previous observations on the trade-off between circuit lines and gate costs

as e.g. conducted in [23]. More detailed discussions follow with respect to the

considered cases.

6.1 Polynomial Factored Form

The first case considers polynomials in the factored form, i.e. expressions of the

form

(x + a1)(x + a2) . . . (x + am),

where m is the order of the polynomial. This form contains (2×m−1) operations

and has been chosen to demonstrate a fully balanced-tree expression. In fact, this

expression can be structured in a fashion so that sub-expressions of equal length

result. This allows to represent the entire expression in terms of a balanced-tree.

We can see from that the tendency to make both operands of the same size can

dramatically decrease the number of additionally required lines. Furthermore, it

can be noticed from Table 1 that the best case is not that much better in terms

of the number of lines. In contrast, this may lead to significantly higher cost

with respect to the needed building blocks.

6.2 Majority Function

The second case is considered in order to evaluate the algorithm on a logical ex-

pression that lacks the possibility to get represented either in form of a balanced

tree or a best case tree. This case is carried out with the majority function, i.e. a

Boolean function defined to determine if the majority of inputs are set to 1 or

not. Two sub-cases are considered: the first is the majority of three inputs which

is defined in the sum-of-products form as (a&b)|(a&c)|(b&c) and an according

version for five inputs. For the first sub-case, this function shows only a slight

change in the number of additionally required circuit lines, while the second

sub-case unveils drastic reductions.

Table 1. Experimental case studies

Case Order Op. (k) Orig. synth. Balanced tree Best case

Lines Blocks Lines % Blocks Lines % Blocks

4 7 7 7 5 29% 9 5 29% 15

Factored Polynommial 8 15 15 15 7 53% 27 6 60% 41

16 31 31 31 9 71% 81 8 74% 205

Majority function 3 5 5 5 4 20% 7 4 20% 7

5 29 29 29 8 72% 102 8 72% 170

7 Conclusion

In this work, an alternative procedure for HDL-based synthesis has been pro-

posed which focused on a line-aware realization of expressions. The general idea

was to re-compute intermediate results as soon as they are not needed anymore.

By this, a significant amount of circuit lines can be saved. Nevertheless, the

applicability of the proposed scheme significantly depends on the respectively

applied expressions. Hence, we discussed possible cases and, by this, provided a

better insight into the possible potential. Experimental case studies confirmed

the findings. Future work will focus on the development of strategies for code

optimization, e.g. term rewriting techniques that best exploit the potential of

the proposed synthesis method. Besides that, how to reduce the number of re-

quired building blocks and, hence, the resulting gate costs of the obtained circuit

remains an open issue to be addressed.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-

bridge Univ. Press (2000)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,

E.: Experimental verification of Landauer’s principle linking information and ther-

modynamics. Nature 483 (2012) 187–189

3. Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-

power encoders using reversible circuit synthesis. In: Design, Automation and Test

in Europe. (2012) 1036–1041

4. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for

reversible logic synthesis. In: Design Automation Conf. (2003) 318–323

5. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic

circuits. IEEE Trans. on CAD 22(6) (2003) 710–722

6. Wille, R., Le, H.M., Dueck, G.W., Große, D.: Quantified synthesis of reversible

logic. In: Design, Automation and Test in Europe. (2008) 1015–1020

7. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.

In: Design Automation Conf. (2009) 270–275

8. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of re-

versible circuits with minimal lines for large functions. In: ASP Design Automation

Conf. (2012) 85–92

9. Feinstein, D.Y., Thornton, M.A., Miller, D.M.: Partially redundant logic detection

using symbolic equivalence checking in reversible and irreversible logic circuits. In:

Design, Automation and Test in Europe. (2008) 1378–1381

10. Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of re-

versible and quantum circuits. In: IEEE Symposium on Design and Diagnostics of

Electronic Circuits and Systems. (2010)

11. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum

circuits and states. In: Int’l Conf. on CAD. (2007) 69–74

12. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method

for quantum circuits. IEICE Transactions 91-A(2) (2008) 584–594

13. Wille, R., Große, D., Frehse, S., Dueck, G.W., Drechsler, R.: Debugging of Toffoli

networks. In: Design, Automation and Test in Europe. (2009) 1284–1289

14. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for

reversible circuits. In: Asian Test Symp. (2005) 422–427

15. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simula-

tion, boolean satisfiability, and pseudo boolean optimization. In: IEEE Annual

Symposium on VLSI. (2011) 120–125

16. Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for

synthesis of reversible circuits. In: Forum on Specification and Design Languages.

(2010) 184–189

17. Wille, R., Soeken, M., Große, D., Schönborn, E., Drechsler, R.: Designing a RISC

CPU in reversible logic. In: Int’l Symp. on Multi-Valued Logic. (2011) 170–175

18. Wille, R., Soeken, M., Schönborn, E., Drechsler, R.: Circuit line minimization in

the HDL-based synthesis of reversible logic. In: IEEE Annual Symposium on VLSI.

(2012) 213–218

19. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans.

on CAD 23(11) (2004) 1497–1509

20. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines

for large reversible circuits. In: Design, Automation and Test in Europe. (2011)

1204–1207

21. Yokoyama, T., Glück, R.: A reversible programming language and its invertible

self-interpreter. In: Symp. on Partial evaluation and semantics-based program

manipulation. (2007) 144–153

22. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online

resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-

Valued Logic. (2008) 220–225 RevLib is available at http://www.revlib.org.

23. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and

gate costs in the synthesis of reversible logic. INTEGRATION, the VLSI Jour.

47(2) (2014) 284–294

