
Extracting Small Unsatisfiable Cores from
Unsatisfiable Boolean Formula

Lintao Zhang and Sharad Malik

Department of Electrical Engineering,
Princeton University, Princeton NJ 08544, USA

{lintaoz,sharad}@ee.princeton.edu

Abstract. Given an unsatisfiable Boolean propositional formula in Con-
junctive Normal Form, we investigate the problem of extracting a subset
of the clauses of the formula such that the conjunction of these clauses
are still unsatisfiable. We call the unsatisfiable subformula the unsat-
isfiable core of the original formula. We propose an efficient procedure
to extract an unsatisfiable core from an unsatisfiability proof of the for-
mula provide by a Boolean Satisfiability (SAT) solver. Our procedure for
unsatisfiable core extraction is fully automatic and scales well on very
large (and hard) CNF instances generated from real world applications.
Extensive experimental results are provided to validate our proposed
procedure.

1 Introduction and Previous Work

A propositional Boolean formula is said to be in Conjunctive Normal Form
(CNF) if it consists of a conjunction (logic and) of clauses Ci, each is a dis-
junction (logic or) of literals. A literal is the occurrence of a variable in either
positive or negative phase. A CNF formula can be written as:

F = C1C2 . . . Cn

where Ci(i = 1 . . . n) are clauses. Given such an CNF formula that is unsatisfi-
able, there exists a subset of clauses φ ⊆ {Ci|i = 1 . . . n} such that the formula
formed by conjunct the clauses in φ is unsatisfiable. We call the formula obtained
by conjunct the clauses in φ an unsatisfiable core of the original formula. Such
an unsatisfiable core may (but not necessarily need to) contain much smaller
number of clauses than the original formula.

There are many applications that can benefit from being able to obtain a
small unsatisfiable core from an unsatisfiable Boolean formula. In application
such as planning [7]. A satisfiable assignment for the SAT instance implies that
there exists a viable scheduling. Therefore, if a planning is proven unfeasible, a
small unsatisfiable core can help locating the problem more quickly. In FPGA
routing [10], an unsatisfiable instance implies that the channel is unroutable. By
localizing the reasons for the unsatisfiability to the unsatisfiable core, it would
be easier to determine the reasons for the failure of routing.

The unsatisfiable core problem has been studied by Bruni and Sassano in
[2]. In that paper, the authors discussed a method to find minimal unsatisfiable
subformula (MUS) of an unsatisfiable CNF instance. In their approach, an adap-
tive search procedure is used to heuristically estimate the hardness of the clauses
and try to find a small subformula consisted of clauses that are deemed hard in
the original formula. The procedure performs SAT checking on the subformula
iteratively, begins with a very small subformula consists of a small number of
the hardest clauses. If the subformula is satisfiable, more clauses are added into
the subformula. If the search procedure cannot determine the satisfiability of the
subformula after certain number of branches, some clauses are removed from it.
The process goes on until the subformula can be proven to be unsatisfiable. In
that case the subformula will be the resulting unsatisfiable core. The search is
adaptive in the sense that the hardness of clauses change during the SAT check-
ing. The experimental results show that the procedure is successful for finding
small unsatisfiable cores for the instances tested. However, the benchmarks used
are very small instances that are trivial for current state-of-the-art SAT solvers.
Moreover, the proposed procedure needs careful tuning of run time parameters
(i.e. initial size of the subformula, cutoff for SAT checking, number of clauses
added/removed for each iteration) for each formula being processed. Therefore,
the procedure is not fully automatic. The procedure may not scale well on diffi-
cult SAT instances generated from real world applications because such iterative
procedure may take too much time to converge. Therefore, the procedure may
not be practical for real world applications.

In this paper, we propose another procedure that can extract a small un-
satisfiable core from an unsatisfiable Boolean formula. The procedure is based
on a SAT solver validation procedure proposed in [15]. In that paper, we show
how to check an unsatisfiable proof provided by a SAT solver. As a by product,
the checking procedure can produce the unsatisfiable core of the instance being
validated. However, in that approach the procedure may fail on large proofs due
to memory overflow. In this paper, we improve the procedure proposed in [15]
so that we can extract the unsatisfiable cores from arbitrarily large unsatisfiable
proofs.

The procedure we propose use the resolution graph produced by a SAT solver
to determine an unsatisfiable core of the original formula. The idea of regarding
a DLL search as a resolution process is not new and have been studied by various
authors. Using the information provide by the resolution graph for a certification
of the SAT proof has also been discussed before [12, 15]. The contribution of
this paper is to use the same resolution graph for unsatisfiable core extraction.
Since in this work we assume the SAT solver (and the proof) to be valid, we
can avoid the overhead of checking the integrity of the resolution graph itself.
Instead, we provide an efficient algorithm to traverse the graph on hard disk
so that the procedure is not memory limited. Our procedure for unsatisfiable
core extraction is fully automated and scales well on very large (and hard) CNF
instances generated from real world applications. Extensive experimental results
are provided to validate our proposed procedure.

2 Extracting Unsatisfiable Core

In this section, we describe the theory behind our procedure for extracting un-
satisfiable core from an unsatisfiable Boolean formula. The idea of the procedure
is as follow. Given a Boolean formula, if a SAT solver based on Davis Logemann
Loveland (DLL) procedure [4] can prove that it is unsatisfiable, then we are able
to extract a resolution sequence from the proof such that an empty clause can be
generated by the sequence of resolutions on the original clauses in the formula.
The set of original clauses that are involved in the resolution sequence can be
regarded as a minimal set of clauses that are necessary for the unsatisfiability
of the original formula for that particular proof. This subset of clauses could be
much smaller than the original formula, and can be regarded as a good unsat-
isfiable core. In order to further improve the size of the core, such process can
be carried on iteratively on the unsatisfiable cores extracted from the previous
iteration. Depending on the resource limitation and requirements for the quality
of the core, we can either run the procedure for a fixed number of iterations or
continue until it converge (i.e. the extracted core cannot be shrunk further by
the procedure).

In Section 2.1, we discuss how to extract a resolution sequence from a DLL
SAT solver’s solving process. In Section 2.2, we explain how to analyze the
resolution sequence to find the minimal unsatisfiable core with regard to that
resolution sequence. In Section 2.3, we discuss some implementation issues.

2.1 Learning in DLL Search as a Resolution Process

In this subsection, we briefly discuss how we can regard a proof of unsatisfiability
produced by SAT solvers (e.g. [8] [9]) based on DLL search with learning as a
resolution process. Here we will briefly overview the learning process in such
SAT solvers. We assume the readers are familiar with modern DLL SAT solving
algorithms.

DLL procedure is a search and backtracking algorithm. When a conflict oc-
curs during the search, a conflict analysis procedure will be invoked to analyze
the conflict and bring the search to a new space. During the conflict analysis,
the knowledge of failure may be recorded as clauses to prevent the solver making
the same mistake again. This learning process can be formulated as a resolution
process [15]. The pseudo code for conflict analysis is shown in Figure 1. At the be-
ginning, the function checks if the current decision level is already 0. In that case,
the function will return -1, indicating that there is no way to resolve the conflict
and the formula is unsatisfiable. We will call the conflicting clause encountered
at decision level 0 the final conflicting clause. The final conflicting clauses only
contain value 0 literals assigned at decision level 0. If current decision level is
not 0, iteratively, the solver resolves the conflicting clause with the antecedent
clause of a variable in the clause. The antecedent clause of a variable is the
unit clause that implies the variable. Function choose_literal() will choose a
literal in the clause that is assigned last. Function resolve(cl1,cl2,var) will
return a clause that has all the literals appearing in cl1 and cl2 except for the

literals corresponding to var. Notice that the conflicting clause has all literals
evaluating to 0, and the antecedent clause of a variable has all but one literal
evaluating to 0 (since it is a unit clause) and the remaining literal evaluates to
1. Therefore the resulting resolvent clause is still a conflicting clause because all
its literals evaluate to 0, and the resolution process can continue iteratively.

analyze_conflict()

{

if (current_dlevel()==0)

return -1;

cl = find_conflicting_clause();

do

{

lit = choose_literal(cl);

var = variable_of_literal(lit);

ante = antecedent(var);

cl = resolve(cl, ante, var);

} while (!stop_criterion_met(cl));

add_clause_to_database(cl);

back_dl = clause_asserting_level(cl);

return back_dl;

}

Fig. 1. Pseudo Code for Conflict Analysis

The iterative resolution will stop if the resulting clause is an asserting clause.
An asserting clause is a clause with all 0 literals, among them only one literal is
at the current decision level and all the others are assigned at a decision level less
than the current. After backtracking, the clause will be a unit clause and this
literal will be forced to assume the opposite value, thus bringing the search to a
new space. This flipped variable will assume the highest decision level of the rest
of the literals in the asserting clause. We call this decision level the asserting
level. The solver will backtrack to the asserting level determined by function
clause_asserting_level() and continue search. This process continues until
the solver finds a solution (if the instance is satisfiable) or a final conflicting
clause (if the instance is unsatisfiable).

If the instance is unsatisfiable, we will encounter a final conflicting clause
in the solving process. We can generate an empty clause by resolve the final
conflicting clause with antecedent of the variables that appear in it. Because all
variables appearing in the final conflicting clause are assigned at decision level
0, and in turn all their antecedent clauses contain variables assigned at decision
level 0, therefore, an empty clause can always be generated if we choose the
clauses to be resolved in proper order. Due to space limit, we will not describe
the procedure here. For a detailed description of the resolution process, we refer
the readers to [15].

Original Clauses

Learned Clauses

Empty

Clause

Involved

Clauses

Fig. 2. The Resolution Graph

2.2 Resolution Graph

In last subsection, we describe how a DLL SAT solver’s solving process can be
regarded as a resolution process to generate an empty clause. We formalize the
idea in the concept of a resolution graph. An example of resolution graph is shown
in Figure 2. A resolution graph is a directed acyclic graph (DAG) that represents
a SAT solving process of a Boolean formula. Each node in the graph represents
a clause. The root nodes are the original clauses in the Boolean formula. The in-
ternal nodes represent the learned clauses generated during the solving process.
The edges in the resolution graph represents resolution. If an edge from node b to
node a appears in the resolution graph, we say that node b (or the clauses repre-
sented by b) is a resolve source of node a (or the clause represented by a). A clause
represented by an internal node is obtained by resolving all its resolve sources. In
conflict analysis procedure depicted in Figure 1, the resolve sources of the learned
clause (the clause added to the database by add_clause_to_database(cl)) are
all the clauses that corresponds to ante in the pseudo code together with the
conflicting clause obtained by find_conflicting_clause().

As we mentioned in the last subsection, if the Boolean formula is proven to be
unsatisfiable, there will be a resolution process to generate an empty clause. The
empty clause is shown in Figure 2. The resolve sources of the empty clause are
the final conflicting clause together with the antecedent clauses of variables as-
signed at decision level 0. This resolution graph represents a proof of the Boolean
formula being unsatisfiable. All clauses that are not in the transitive fan-in cone
of the empty clause in the resolution graph are not needed to construct this
particular proof. Deleting them will not invalidate the proof of unsatisfiability.
More precisely, the root nodes (original clauses) in the transitive fan-in cone of

the empty clause is a minimal subset of the original clauses that are needed for
this particular proof. This subset of clauses is a unsatisfiable core of the original
formula.

The resolution graph can be easily recorded as a trace file during the SAT
solving process, and a simple traversal of the graph can tell what clauses are in
the transitive fan-in cone of the empty clause. Therefore, if a Boolean formula
is proven to be unsatisfiable by a SAT solver, we can generate an unsatisfiable
core from the unsatisfiable proof. The unsatisfiable core of a formula is by itself
an unsatisfiable Boolean formula. Therefore, we can run a SAT solver on it and
produce another unsatisfiable proof, and we can generate an unsatisfiable core
from the proof. This process can be carried out iteratively to improve the size
of the final result.

We want to point out that the process discussed here is not affected by the
restart technique [6] often employed by modern SAT solvers. Restart throws
away the current search tree and begins a fresh search periodically. This opera-
tion will not invalidate the facts that learned clauses are resolved from original
clauses and/or a formula is proven unsatisfiable only if the solver finds a final
conflicting clause. Therefore, all the discussions in this paper are valid regardless
whether the SAT solver employ restart or not. However, we do require that the
solver’s reasoning procedure can be regarded as a resolution process in order for
this procedure to work. If the solver employs reasoning techniques other than
unit implication (e.g. BDD [3] or St̊almarck’s algorithms [11]), the procedure
discussed in this paper may not work.

2.3 Implementation Issues

The implementation of the ideas discussed in the previous subsection is relatively
straight forward. It is a simple graph traversal algorithm to calculate the fan-in
cone of a directed acyclic graph. However, there are a couple of points we want
to mention here that are important for efficient implementation. The resolution
graph is dumped to the hard disk as a trace file by the SAT solver during the
solving process. The graph can be very large for hard SAT instances and may
not fit in the main memory of the computer. Therefore, the graph traversal has
to be carried out on hard disk. Fortunately, the graph stored on the hard disk is
already topologically ordered because when we generate a clause by resolution,
all its resolve sources must have already been generated. Therefore, if we dump
the resolve sources of clauses to the trace file in the same order as we generate
them, the nodes in the file will be topologically ordered. However, to find the
transitive fan-in of a node in a graph, we need to traverse the graph in reversed
topological order. Access a hard disk file in the reverse order as it is stored is
very inefficient. Therefore, we need to reverse it first before the traversal. This
can be achieved efficiently by using a memory buffer.

A possible failure for marking the transitive fan-ins of a node in a DAG is
that during the traversal, we need a storage to indicate whether a yet-to-be-
visited node in the graph is in the transitive fan-in or not. We use a hash table
for this storage. In theory, the hash table may has the same number of entries as

Instance Num. Num. Proof Trace Trace Num. Num.
Name Clauses Vars Time(s) Overhead Size(KB) Nodes Edges

2dlx cc mc ex bp f 41704 4524 3.3 11.89% 1261 9554 184123

bw large.d 122412 5886 5.9 9.12% 1367 7140 182127

c5315 15024 5399 22 10.45% 11337 50298 1951816

too largefs3w8v262 50216 2946 40.6 7.68% 8866 91691 1227840

c7552 20423 7651 64.4 8.76% 24327 100487 4068238

5pipe 5 ooo 240892 10113 118.8 4.51% 17466 79770 2434924

barrel9 36606 8903 238.2 4.51% 19656 121071 3058428

longmult12 18645 5974 296.7 6.17% 102397 131649 18340965

9vliw bp mc 179492 19148 376 4.26% 39538 255603 5497009

6pipe 6 ooo 545612 17064 1252.4 3.39% 151858 462135 21497545

6pipe 394739 15469 4106.7 2.77% 493655 1327373 69102904

7pipe 751118 23910 13672.8 1.68% 736053 2613927 93903489

Table 1. Statistics of SAT Instances and Resolution Graphs

the number of nodes in the unvisited graph, which in turn can be as large as the
whole graph. Therefore, theoretically the algorithm may cause memory overflow
for extremely large graphs because the hash table may not fit in memory. In
practice, we found that the maximum number of hash table entries encountered
during the traversal is rarely much larger than the number of clauses in the final
unsatisfiable cores. Therefore, our procedure in practice can find unsatisfiable
cores for arbitrarily large proofs generated by a SAT solver.

3 Experimental Results

We implemented the idea discussed in this paper as an unsatisfiable core extrac-
tor. We modified the SAT solver zchaff [14] to produce trace file representing
resolution graph of an unsatisfiable proof. We want to point out that similar
modification can be implemented on many modern SAT solvers based on DLL
(e.g. GRASP [8] and BerkMin [5]) with little effort. Therefore, as long as we
can prove a Boolean formula to be unsatisfiable using these SAT solvers, we can
extract an unsatisfiable core from the formula. The experiments are carried out
on a PIII 1133Mhz machine with 1G memory. The benchmarks we use are some
relatively large unsatisfiable instances that are commonly used for SAT solver
benchmarking. They include instances from applications such as microprocessor
verification [13] (9vliw, 2dlx, 5pipe, 6pipe, 7pipe), bounded model checking [1]
(longmult, barrel), combinational equivalence checking (c7225, c5135), FPGA
routing [10] (too large) as well as AI planning [7] (unsat/bw large).

The statistics of the instances and the resolution graph generated are shown
in Table 1. Besides the number of variables and clauses for the formula, we
also show the run time for (unmodified) SAT solver zchaff to prove the formula
unsatisfiable. In the fifth column of Table 1 we show the overhead to record the

First Iteration 30 Iterations/Fixed Point
Instance Num. Num. Hash Extract Num. Num. Num.
Name Clauses Variables Size Time Clauses Variables Itrs.

2dlx cc mc ex bp f 11169 3145 11169 0.85 8038 3070 26

bw large.d 8151 3107 8151 1.54 1364 769 30

c5315 14336 5399 14611 2.64 14289 5399 3

too largefs3w8v262 10060 2946 11971 2.65 4473 645 30

c7552 19912 7651 23651 5.37 19798 7651 9

5pipe 5 ooo 57515 7494 57521 6.62 41499 7312 30

barrel9 23870 8604 24039 4.66 19238 8543 30

longmult12 10727 4532 26894 21.31 9524 4252 7

9vliw bp mc 66458 16737 66458 10.68 36840 16099 30

6pipe 6 ooo 180559 12975 180561 37.14 109369 12308 30

6pipe 126469 13156 126469 99.96 73681 13065 30

7pipe 221070 20188 221079 152.71 133211 20076 30

Table 2. Statistics of Unsatisfiable Core Extracted

resolution graph on file as a percentage of the original SAT solving time. We
also show the file size of the resolution graph as well as the number of nodes
and edges stored in the resolution graph file (node counts exclude the original
clauses and the empty clause, edge counts exclude the incoming edges to the
empty clause). As we can see from the table, the resolution graph is quite big for
difficult SAT instances. We also notice that generating trace file is inexpensive,
especially so for hard benchmarks.

In Table 2, we show the statistics of extracting the unsatisfiable cores from
the trace files. The “First Iteration” section show the resulting unsatisfiable core
extracted in the first iteration of the core extraction procedure. We show the
size of the extracted core as well as run time for the core extraction. Moreover,
we show the maximum hash table size for storing unvisited nodes during the
traversal, as described in Section 2.3. Under the column “30 Iterations/Fixed
Point”. We measured up to 30 iterations of core extraction, and report the
data. If the “iteration” number is smaller than 30, it means that after certain
iterations, our procedure cannot reduce the size of the core further.

Comparing Table 2 with Table 1, we can see that the core extracted can
be much smaller than the original formula in the case of bw large.d or almost
the same size as in the case of c7552 and c5315. In the case of bw large.d, the
instance is obtained from SAT planning. A small core means that the reason for
unfeasible scheduling is localized. In the case of c7552 and c5315, the instances
are obtained from combinational equivalence checking. A large core means that
the two circuits being checked for equivalence do not contain much redundancy.
We also find that the core extraction is very fast compared with the SAT solving.
As we mentioned in Section 2.3, our experiment shows that the maximum hash
table sizes are barely larger than the number of clauses in the unsatisfiable cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Runtime Ratio

Clause Ratio

Variable Ratio

(a) 5pipe 5 ooo

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Runtime Ratio

Clause Ratio

Variable Ratio

(b) barrel9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Runtime Ratio

Clause Ratio

Variable Ratio

(c) too largefs3w8v262

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Runtime Ratio

Clause Ratio

Variable Ratio

(d) bw large.d

Fig. 3. Statistics of Extracted Core as a Ratio of the Original Instances

in all test cases. Comparing the 30 iteration number with the first iteration
number, we see that the core size is often reduced if we perform the procedure
iteratively, but usually the gains for core size reduction are not as large as the
first iteration.

In Figure 3, we show the statistics of the core extractions during the iterations
for four representative instances. The three lines represent the zchaff proofing
time for the instance, the number of clauses and the number of variables of the
extracted cores as a ratio of the original Boolean formula. The X-axis are the
number of iterations, the Y-axis are the ratios. From the figure, we find that
the size of the instance reduce dramatically in the first iteration, but not by
much during the following iterations. The run times for proving the cores to be
unsatisfiable are often reduced compared with the original formula with a trend
similar to the reduction in size.

Benchmark Original Extracted #Extract Minimal Clause
Instance #Cls. #Cls. Iterations #Cls. Ratio

2dlx cc mc ex bp f 41704 8036 26 7882 1.020

bw large.d 122412 1352 35 1225 1.104

too largefs3w8v262 50416 4464 32 3765 1.186

Table 3. The Quality of Unsatisfiable Cores Extracted

As shown by previous results, the procedure described can often extract
much smaller unsatisfiable cores from an unsatisfiable formula. However, the
cores extracted are minimal only with regard to the particular proofs produced
by the SAT solver. There is no guarantee of minimal (i.e. deleting any clause
from the core will render the core satisfiable) or minimum (i.e. the core is the
smallest among all unsatisfiable cores for the Boolean formula). To estimate the
quality of the cores extracted by the proposed procedure, we choose several easier
instances from our benchmarks for the following experiment. Start from the
smallest unsatisfiable core the procedure can produce (i.e. further iteration can
not reduce the core size), we delete clauses one by one from it until deleting any
remaining clause will make the instance satisfiable. Now the resulting formula is
a minimal unsatisfiable core for the original formula. We compare the minimal
formula with the extracted formula by our procedure in Table 3. It shows the
original sizes of the instance, number of clauses of the cores our procedure can
extract, number of iterations our procedure takes to converge, and the minimal
core that can be found by a iterative clause deletion procedure. It also shows
the ratio of the minimal core to the extracted core.

As we can see from Table 3, for the three benchmarks tested, the cores ex-
tracted by the procedure are about 2% to 20% larger than the minimal cores
found by an iterative process. This shows that the proposed procedure is rea-
sonably good for extracting small cores. Even though the iterative method can
find minimal cores, it takes much longer to finish (essentially needs to run a
SAT solver on the instance for iterations equal to the number of clauses in
the formula). We do not have a computationally efficient way to find the min-
imum unsatisfiable core since enumerating all combinations of the clauses in
the formula is clearly intractable. Therefore, we cannot compare the size of the
extracted cores with the size of the minimum cores of the instances.

4 Conclusion and Future Work

In this paper, we discuss a practical method to extract a small unsatisfiable
core from an unsatisfiable Boolean formula. The procedure we proposed is fully
automatic and efficient enough for SAT instances generated from real world
applications. We implemented and experimentally evaluate the procedure and
the results are encouraging.

As for future work, we are still not able to test the absolute quality of the
procedure. For example, we are not able to evaluate the closeness of the ex-

tracted core to the minimum sized core of the formula. Even test the minimality
of the resulting core when the iterative procedure converge is computationally
expensive for difficult instances. In our procedure the SAT solver is unaware of
the core extraction process. It is an open questions whether it is possible to tune
the SAT solver to generate proofs that involve small number of original clauses.

References

1. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proceedings of Tools and Algorithms for the Analysis
and Construction of Systems (TACAS’99), number 1579 in LNCS, 1999.

2. R. Bruni and A. Sassano. Restoring satisfiability or maintaining unsatisfiability by
finding small unsatisfiable subformulae. In Proceedings of the Workshop on Theory
and Applications of Satisfiability Testing (SAT2001), June 2001.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions in Computers, 8(35):677–691, 1986.

4. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

5. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE ’02), pages 142–149, March 2002.

6. Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search
through randomization. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI’98), pages 431–437, Madison, Wisconsin, 1998.

7. H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI’92), pages 359–363, 1992.

8. João P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 220–227, November 1996.

9. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

10. G. Nam, K. A. Sakallah, and R. A. Rutenbar. Satisfiability-based layout revisited:
Routing complex fpgas via search-based boolean sat. In Proceedings of Interna-
tional Symposium on FPGAs, Feburary 1999.

11. Mary Sheeran and Gunnar St̊almark. A tutorial on st̊almark’s proof procedure for
propositional logic. In Volume 152 of Lecture Notes in Computer Science, pages
82–99. Springer Verlag, 1998.

12. Allen Van Gelder. Extracting (easily) checkable proofs from a satisfiability solver
that employs both preorder and postorder resolution. In Seventh Int’l Symposium
on AI and Mathematics, Ft. Lauderdale, FL, 2002.

13. M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. In Proceedings of
the 38th Design Automation Conference (DAC ’01), pages 226–231, June 2001.

14. Lintao Zhang. Zchaff sat solver. http://www.ee.princeton.edu/ chaff/zchaff.php,
2000.

15. Lintao Zhang and Sharad Malik. Validating sat solvers using an independent
resolution-based checker: Practical implementations and other applications. In
Proceedings of Design and Test Europe(DATE’03), 2003.

