
Towards ML-based Performance Estimation of Embedded Software:
A RISC-V Case Study *

Weiyan Zhang1, Muhammad Hassan1,2, Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2Institute of Computer Science, University of Bremen, Bremen, Germany
{weiyan.zhang, muhammad.hassan}@dfki.de, drechsler@uni-bremen.de

Abstract
Performance estimation of embedded software techniques mimic the behavior of real hardware, consistently navigating
a balance between simulation accuracy and speed. Designers usually use real hardware, simulators, or static analyzers
to obtain the performance. However, these methods suffer from serious drawbacks as real hardware is not available in
the early stage of the design process, simulators either do not support any timing accuracy or require large execution
time, and static analyzers need details of the hardware microarchitecture. Recently, Machine Learning (ML) has been
successfully applied to estimate performance, in particular the clock cycles. It can significantly facilitate the exploration
of a wide range of microarchitecture solutions at the early stage, applicable across various architectures. In this paper,
we delve into the advancements of ML-based performance estimation on RISC-V processors, leveraging performance
statistics obtained directly from a fast functional simulator using built-in counters. The proposed approach uses dynamic
analysis for feature extraction and different ML algorithms including regression algorithms and Neural Network (NN)
for the generation of Predictive Models (PMs). We present a comprehensive analysis of their effectiveness across diverse
RISC-V implementations.

1 Introduction
Performance, measured in clock cycles, is a crucial
design factor in system development. Predicting executed
cycles aids in profiling embedded software, helping
developers identify and address performance bottlenecks,
such as optimizing resource utilization and enhancing
overall system efficiency. Techniques for estimating
performance in embedded software involve a trade-off
between simulation accuracy and speed, categorized as
simulation and analytic-based models.
Simulation based approaches model system architectures
at different levels of abstraction. Functional simulator
allows fast prototyping but lack precision. At the
Electronic System Level (ESL) [1], SystemC-based Virtual
Prototype (VP) is often used before the detailed hardware
implementation is finalized. This abstraction gives some
speedup over cycle-accurate modelling at a low abstraction
level. Register Transfer Level (RTL) simulation offers a
high degree of accuracy in verifying the functionality of
digital circuit designs. It can detect errors at an early stage,
leading to reduced cost in the design process. However,
its simulation speed is comparatively slow. To effectively
explore potential options for different choices of processor,
performance estimation of embedded software at a higher
level of abstraction is necessary.
Analytic-based models are another option that can be
linear or nonlinear. The basic idea is to collect
the reference executed cycles and performance-related
parameters, such as dynamic instruction counts, during
hardware execution, and apply Machine Learning (ML)
algorithms to train the models. The performance-related
parameters are selected in such a way that the approach has

*This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within projects Scale4Edge under grant
no. 16ME0127, ECXL under grant no. 01IW22002 and VE-HEP under
grant no. 16KIS1342.

the lowest dependency on microarchitectural and software
details. To predict the performance of new software, a
fast functional simulator is used to quickly obtain their
performance-related parameters, which are then applied to
the trained PMs.
As a free and open-source Instruction Set
Architecture (ISA), RISC-V demonstrates considerable
potential, particularly for embedded systems in various
utilization domains. The RISC-V ecosystem provides
a variety of implementations at different abstraction
levels, establishing it as a versatile choice for a wide
range of applications. In this paper, we propose an
ML-based methodology to estimate the performance of
embedded software across various microarchitectures.
Considering that the real physical hardware may not be
available, we employ a combination of fast functional
simulator, cycle-accurate RISC-V implementations, and
ML techniques to generate PMs. Subsequently, the PMs
are combined with a fast functional simulator to enable
fast and accurate prediction of the performance of new
embedded software. We demonstrate the generalizability
of our approach across multiple microarchitectures for the
RISC-V ISA in [2][3][4], applying it to a cycle-accurate
simulator and four real-world, cycle-accurate RTL cores
of the RISC-V ISA. Our evaluation focuses on the
performance of our approach using standard benchmarks
from TACLeBench [5].

2 Methodology
In this section, we present our proposed approach for
performance estimation, which involves coupling a fast
functional simulator with ML-based models. An overview
of our approach is depicted in Fig. 1. It encompasses two
crucial phases: the training phase and the prediction phase.
In the subsequent subsections, we will delve into a detailed



Software
Set

*Instruction
Info Log PM*Dataset

Pre-process

Functional Simulator

Runtime Data Collector

*New
Software

Estimated
Cycle

Processor ModelSoftware
ELFs

Runtime
Log

Training
Dataset

Pre-process
ANN

4 Performance Estimation
RISC-V

GCC
Tools

1 Software Compilation

*New
Software

ELFs

3 Predictive Model Generation2 Training Dataset Creation

Hyperparameters
Tuning

Model Parameters
Optimization

RISC-V
GCC Tools

RISC-V
Functional
Simulator

Machine
Learning

Techniques

NewSoftware RISC-V
GCC Tools

ELF 1
ELF 2

ELF N

Software 1
Software 2

Software N

RISC-V 
Processor

Performance Feature Vector

Performance References

New ELF
RISC-V

Functional
Simulator

Predictive
Model

Training

Prediction Performance Feature Vector Predicted Performance

Figure 1 Performance estimation of embedded software workflow.

1 // Generate a specified number of SLTI instructions
2 // based on the value of num_slti
3 void slti_gen(int num_slti) {
4 int i = 0;
5 while (i < num_slti) {
6 bool slti = (i < 3);
7 i++;
8 }
9 }

Figure 2 Training software module generating the SLTI
instruction.

explanation of each phase.

2.1 Predictive Model Training
During the training phase, a set of software is prepared.
To generate the RISC-V binaries on our host computer, we
take advantage of the cross-compilation. A set of training
software is compiled with the RISC-V GNU Compiler
Toolchain [6] to generate the Executable and Linkable
Formats (ELFs). The ELFs of training software are then
executed on a RISC-V processor to obtain the reference
executed cycles from performance counters and on a fast
functional simulator to obtain the dynamic information
using built-in instruction counters. The RISC-V processor
could be either a real physical hardware, such as a
development board, a cycle-accurate VP, or a cycle-
accurate implementation at RTL if physical hardware is
not available. In this paper, we explore a cycle-accurate
RISC-V VP [7] and four RISC-V implementations at the
RTL (including Ibex [8], RSD [9], SweRV [10], and
µRV32RTL [11]) to illustrate the generalizability of our
approach across various RISC-V microarchitectures. The
RTL cores were simulated using Verilator [12], an open-
source Verilog/SystemVerilog simulator.
The foundation of our performance analysis is the
extraction of dynamic instruction counts and reference
executed cycles from runtime information. Dynamic
instruction counts efficiently capture software execution
dynamics and serve as crucial performance features.
These features are then converted into vectors, forming
the training dataset for model training. We employed
supervised ML algorithms to predict the performance
of new software. For RISC-V VP, we generated three
models—PM1, PM2 and PM3—based on the different
feature vectors. PM1 and PM2 [2] were trained
using Linear Regression (LR) algorithm, incorporating

the total instruction count and six RISC-V formats
counts, respectively. In contrast, PM3 [3] employed the
Artificial Neural Network (ANN) for training, utilizing
individual instruction counts. For each RTL core,
we implemented four classic ML algorithms: Ordinary
Least Squares (OLS) regression, LR with Mini Batch
Gradient Descent (MGD), ridge regression and ANN.
OLS regression and LR with MGD are LR techniques
that optimize the model’s parameters differently. Ridge
regression is a regularized form of LR that prevents
overfitting. ANN is a more complex model capable of
capturing nonlinear relationships among variables.

2.2 Performance Prediction
In this phase, the PM is tested by a set of new software
selected from standard benchmarks. The benchmarks are
compiled to generate the ELF files. Subsequently, each
ELF file is executed on a functional simulator to obtain
dynamic instruction counts (i.e. performance features).
The performance feature vector is utilized as inputs to the
PM to estimate the clock cycles.
To evaluate the performance of our PM, we calculated
the Absolute Percentage Error (APE) metric for each
performance counter of every benchmark, defined as

APE =

∣∣∣∣y− ŷ
y

∣∣∣∣∗100%, (1)

where y and ŷ represent the actual and estimated clock
cycle for each benchmark. The APE quantifies the extent
of deviation between the real and estimated clock cycle.
To provide a more comprehensive evaluation, the Mean
Absolute Percentage Error (MAPE) is computed. This
involves summing up the APE values and dividing the sum
by the total number of benchmarks.

3 Experimental Evaluation

3.1 Experimental Setup
In the training phase, for PM1, PM2, and PM3, we
utilized 125 programs as the training software set. To
generate the PM for each RTL core, we employed about
700 programs as the training software set. These programs
were generated by providing various inputs to self-written
sample programs and several standard benchmarks from



Table 1 Experimental Results of all Benchmarks used for Validation of PM1, PM2, and PM3.

Benchmark #instr-exec. VP Ours PM1 PM2 PM3
#Cycle Time(ms) Time(ms) Speedup #Cycle APE #Cycle APE #Cycle APE

adpcm_dec 2 880 767 3 606 788 1 767 241 7.332 3 921 879 8.736% 3 836 719 6.375% 3 629 782 0.638%
adpcm_enc 2 898 910 3 636 185 1 751 244 7.176 3 946 579 8.536% 3 857 304 6.081% 3 653 801 0.484%
cubic 28 338 774 37 235 221 17 129 2 243 7.637 38580428 3.613% 38 487 287 3.363% 37 325 040 0.241%
deg2rad 510 732 659 172 332 56 5.929 695 312 5.483% 684 465 3.837% 658 399 0.117%
fft 3 678 523 5 020 639 2 573 319 8.066 5 007 945 0.253% 4 881 001 2.781% 5 207 390 3.720%
gsm_dec 9 168 157 12 320 332 5 942 779 7.628 12 481 536 1.308% 12 549 342 1.859% 11 838 296 3.913%
isqrt 1 002 079 1 838 966 844 123 6.862 1 364 232 25.82% 1 786 794 2.837% 1 747 940 4.950%
lms 5 814 944 7 430 919 3 472 487 7.129 7 916 470 6.534% 7 867 054 5.869% 7 620 148 2.547%
rad2deg 420 104 571 931 312 56 3.501 571 931 5.025% 558 272 2.517% 548 256 0.677%
st 3 684 067 4 842 675 2 319 313 4.083 5 015 492 3.569% 4 889 868 0.974% 4 926 141 1.724%
MAPE 6.887% 3.649% 1.900%

Time is reported with unit millisecond (ms).

TACLeBench [5]. Fig. 2 illustrates a module within the
self-written sample program. This particular module is
responsible for generating SLTI instruction. It allows
for precise control over the quantity of SLTI instructions
by specifying a desired value. During compilation, the
RISC-V compiler was configured as RV32I. We utilized
Whisper [13] as the functional simulator to execute the
ELF files. Verilator 4.028 was employed to obtain cycle-
accurate RTL simulation results for the four cores. In
the prediction phase, we selected 10 benchmarks from
TACLeBench that differed entirely from the training
software set. These benchmarks span diverse domains,
including signal processing and mathematical problem-
solving, and are freely available, specifically designed for
embedded systems. After compilation, we again utilized
Whisper as the functional simulator to execute the ELF
files.
The application of the ML algorithms and PMs was
programmed using Python 3.8. The algorithms were
implemented with publicly available libraries, where the
OLS regression and ridge regression were implemented
using Scikit-learn 1.0 [14] and TensorFlow 2.6.0 [15] was
used to implement LR, LR with MGD and ANN.

3.2 Performance and Simulation Time
Analysis

Table 1 presents the experimental results of applying
various standard benchmarks to our proposed performance
estimation approach for cycle-accurate VP. The first
column enumerates the names of the benchmarks, while
the subsequent column displays the total instruction counts
for each benchmark. Column VP includes the cycle
count (#Cycle) and simulation time (Time) reported from
VP. Column Ours displays the execution time of our
proposed approach and the achieved speedup relative to
VP. Considering that each PM requires approximately 0.06
ms to estimate all 10 benchmarks, which is negligible in
comparison to the Whisper simulation time, the overall
simulation time on Whisper can be interpreted as the time
dedicated to estimating the number of cycles for the new
software. Colums PM1, PM2, and PM3 represent PMs
based on the total instruction count, instruction format
counts, and individual instruction counts, respectively. The
subcolumns #Cycle and APE denote the number of cycles
estimated by PM and the APE of PM compared to VP for
each benchmark, respectively. The experimental results
show that our approach achieves a speedup up to more than
8× in comparison to the cycle-accurate VP. Additionally,
we assessed the quality of each generated PM using the
MAPE metric. For the overall benchmarks, PM3 exhibits
the best accuracy in performance estimation, with a MAPE

of 1.900%. This superior accuracy can be attributed
to leveraging more detailed runtime information (i.e.,
individual instruction counts) and utilizing ANN, which
provide a more effective estimation model for capturing
non-linear behavior.
Fig. 3 presents the results for PMs of RTL cores, depicting
the APE and the corresponding speedup in comparison
between the PMs and RTL cores. The x-axis represents
10 benchmarks, while the left y-axis uses a linear scale
to show the results for APE in the form of bars. On
the other hand, the right y-axis is logarithmically scaled
to represent the results of speedup, with marked vertical
lines. The logarithmic scale is chosen for the right y-
axis due to its wide dynamic range and ability to visualize
exponential relationships. For each core, we chose the best
PM by finding the corresponding ML algorithm with the
smallest MAPE. For Ibex, the PM based on the ANN is
selected and the APEs are less than 3.5%, which means
that this PM is capable of modeling Ibex core. Our
approach achieves up to 41.4× faster simulation speed
than RTL simulation using Ibex. PM for RSD is based
on the ANN and the corresponding APE ranged from
7.5% to 42.0%. The algorithm’s sensitivity stems from
several factors. Notably, the reliance on instruction counts
proves inadequate in capturing the comprehensive features
influencing RSD’s cycle count. Additionally, disparities in
the distribution of training and testing datasets contribute
to the algorithm’s sensitivity. For simulation speed, our
approach is 208.4× to 531.2× faster than RSD. For
SweRV, the best PM is based on the LR with MGD. The
APE ranges from 0.04% to 6.8%, which means that PM
can roughly mimic the execution cycle behavior of the
SweRV core. Our approach can simulate 80.4× to 200.6×
faster than SweRV. The best PM for µRV32RTL is based
on LR with MGD with a maximum APE of 1.1%, which
means this PM can accurately model the µRV32RTL core
in a linear fashion. Compared to µRV32RTL, our approach
achieves a speedup of 563.3× to 2261.4× in simulation
speed. µRV32RTL simulation is very slow compared to
other cores. Therefore, for each benchmark, the PM for
µRV32RTL always achieves the maximum speedup. It is
meaningful to use our approach to estimate the number of
cycles on µRV32RTL.

4 Conclusion and Future Work
In this paper, we present a novel ML-based approach
for performance estimation of embedded software across
various processors, using RISC-V processors as a case
study. Our method utilizes the runtime trace of the
software via a fast functional simulator to achieve accurate



Figure 3 For the PMs of the RTL core, the APE of each benchmark, and the corresponding speedup of our approach.

performance estimation. We demonstrate its applicability
through validation across a cycle-accurate simulator and
four real-world, cycle-accurate RTL cores of the RISC-V
ISA." The quality of our proposed approach was validated
in terms of simulation speed and the accuracy of cycle
count predictions, using a set of standard benchmarks.
In the future, we plan to extend this approach to other
computer architectures. Furthermore, we intend to explore
the use of Large Language Models (LLM) and fine-tune
them to adapt our approach for estimating the performance
of embedded software, exploring the potential efficiency
gains through transfer learning.

5 Literature
[1] M. Goli and R. Drechsler, “Automated design

understanding of systemc-based virtual prototypes:
Data extraction, analysis and visualization,” in
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2020, pp. 188–193.

[2] W. Zhang, M. Goli, and R. Drechsler, “Early
performance estimation of embedded software on
risc-v processor using linear regression,” in 2022 25th
International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS). IEEE,
2022, pp. 20–25.

[3] W. Zhang, M. Goli, A. Mahzoon, and R. Drechsler,
“ANN-based performance estimation of embedded
software for risc-v processors,” in 33rd International
Workshop on Rapid System Prototyping (RSP), 2022.

[4] W. Zhang, M. Goli, M. Hassan, and R. Drechsler,
“Efficient ml-based performance estimation approach
across different microarchitectures for risc-v
processors,” in Euromicro Conference Series on
Digital System Design (DSD). o.A., 2023.

[5] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper,
W. Puffitsch, C. Rochange, M. Schoeberl,
R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support
worst-case execution time research,” in International
Workshop on Worst-Case Execution Time Analysis
(WCET), ser. OpenAccess Series in Informatics
(OASIcs), M. Schoeberl, Ed., vol. 55. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2016, pp. 2:1–2:10.

[6] “RISC-V GNU Compiler Toolchain,” https://github.
com/riscv-collab/riscv-gnu-toolchain.

[7] V. Herdt, D. Große, and R. Drechsler, “Fast and
accurate performance evaluation for risc-v using
virtual prototypes,” in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE).
IEEE, 2020, pp. 618–621.

[8] “Ibex RISC-V Core,” https://github.com/lowRISC/
ibex.

[9] “RSD RISC-V Core,” https://github.com/rsd-devel/
rsd.

[10] “SweRV RISC-V Core,” https://github.com/
chipsalliance/Cores-VeeR-EH1/tree/1.0.

[11] S. Ahmadi-Pour, V. Herdt, and R. Drechsler,
“The microrv32 framework: An accessible and
configurable open source risc-v cross-level platform
for education and research,” Journal of Systems
Architecture, vol. 133, p. 102757, 2022.

[12] W. Snyder, “Verilator,” https://www.veripool.org/
wiki/verilator.

[13] “Whisper ,” https://github.com/chipsalliance/
VeeR-ISS.

[14] “Scikit-learn,” https://scikit-learn.org/stable/.
[15] “TensorFlow,” https://www.tensorflow.org.

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://github.com/rsd-devel/rsd
https://github.com/rsd-devel/rsd
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/1.0
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/1.0
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://github.com/chipsalliance/VeeR-ISS
https://github.com/chipsalliance/VeeR-ISS
https://scikit-learn.org/stable/
https://www.tensorflow.org

	Introduction
	Methodology
	Predictive Model Training
	Performance Prediction

	Experimental Evaluation
	Experimental Setup
	Performance and Simulation Time Analysis

	Conclusion and Future Work
	Literature

